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ABSTRACT

The quantity of precipitation as well as its distribution varies in time, space, and even in
small areas. This temporal and/or spatial variability is due to the support of several quite
complex climatic and physiographic factors. The description and the prediction of this vari-
ability is a fundamental requirement in a wide variety of human activities, as well as in the
elaboration and the design of hydraulic projects. The objective of this work is to study the
applicability of Kalman filter (KF) technique for the modeling and prediction of annual or
monthly rainfall amounts in the Cheliff watershed, as well as the assessment of the predic-
tion error. The major advantage of KF is to provide with the prediction error covariance an
indicator of the filter accuracy. In addition, its algorithm works in the temporal domain
with a recursive nature and has an optimal estimator in the least squares concept. Another
aspect of its optimality is the incorporation of all the available information on the system,
measurements and errors in an adaptive operator, which is reset each time as a new mea-
surement is available. For the implementation of this filter, time series of monthly and
annual rainfall data registered over a period of 51 years (1959–2009) in 39 precipitation sta-
tions are studied in the Cheliff watershed and the obtained results are quite satisfactory.
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1. Introduction

In a semiarid country like Algeria, water is an ele-
ment of survival which is directly or indirectly
related to any economic and social development.

Unfortunately, water resources are facing great chal-
lenges due to the lack and scarcity of rainfall as well
as its geographical variability. It is important to note
that among the 100 billion cubic meters received in
the form of rainfall per year, on the northern part of
Algeria, only 4.8 billion are captured in operational
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dams in 2008 [1]. In 2012, according to the National
Agency of Dams and Transfers (ANBT), a filling rate
of 76% was recorded in the operational 65 dams in
Algeria, which corresponds to a stored amount of
5.5 billion cubic meters. This amount is inevitably
decreased if different types of losses are included in
addition to the increase in the demand for agricul-
tural, industrial, and domestic purposes. According
to recent studies [2–4], the demand for water has
reached 5 billion cubic meters per year, with a supply
of 170 (m3/capita/d), instead of a minimum standard
of 250 (m3/capita/d), which is already considered as
a deficit. This deficit is becoming more and more
problematic from one year to another and thus an
urgent and effective solution is necessary to ensure a
regular water supply for all users.

The new Algerian policy focuses on the integrated
management of water resources [5]. Therefore, two
types of actions are to be taken into consideration. The
first is related to the economy of these resources while
the second concerns the optimal management of water
resources, which relies mainly on successful models
for prediction.

Such models in hydrology are numerous and
diverse; the literature offers a wide range of work, but
in this study, our attention is focused on a particular
type, the state-space models. The latter include the
distinction between the observed (signal) and hidden
(internal state) variables, and they generally consist of
an equation of state, showing the dynamics of the hid-
den variable and a measurement equation describing
the way how observations are generated by hidden
variables and residuals [6,7].

The objective of this study is the Kalman filter (KF)
application. The KF combines two independent esti-
mations to get a better weighted estimation. The first
one is an estimate (prediction) based on a prior
knowledge and the second is an estimate based on
new information (measurement) arrival.

The term “filter” is borrowed from the electronic
language and it means the extraction of a signal from a
noisy environment, and the filtering operation is
defined as the operation in estimating the state of a
dynamic system from partial and noisy observations. In
other words, it means any mathematical operation that
uses past data or measurements of a dynamic system to
obtain better estimations in the past (interpolation), in
the present (filtering), or in the future (forecast).

By definition, the forecast is the likely future
behavior of a process. The trust assigned to it depends
on the nature of the studied process and the quality of
the model adequacy it represents [8,9].

In hydrology, these processes are complex, nonlin-
ear depending on time and a certain number of

uncertain parameters, [10]. As a consequence, the
formulations based on simplifying assumptions of
linearity and time invariance can cause substantial
differences between the observed and predicted
values [11]. In the context of a real-time forecasting
[9], it is important to distinguish between the two
modes with which a model can work. In simulation
mode, one can use the outputs of the model as new
input in the calculation of new outputs; however, it
is excluded to use the observed output as input to
the model. In adaptive mode, the current output of
the model can be based on earlier observed output of
the system [12]. In the real-time forecasting, it is nec-
essary to work in the adaptive mode, which involves
the use of a model with a retroactive structure that
makes the model output at the present time con-
nected to the previous observed output as in the case
of the KF [13].

The KF is a quite effective tool, since its introduc-
tion in the sixties of the last century Kalman [14] has
not ceased to intrigue scholars, and until now its
results in all areas are so satisfactory that it has
become a very popular tool [15–17]; in the field of
data assimilation can be found [18–21]. The spectrum
of its application has been extended to include other
areas, one can cite [22–24] among others, particularly
in the hydrological estimation and prediction. In this
respect, a quite interesting reference [10] included
several articles that were presented at the Chapman
Conference on Applications of the Theory and Tech-
nique of KF in Hydrology, Hydraulics and Water
Resources, The Geophysical American Union. There
are several applications such as modeling and predic-
tion of flows, studies of rainfall-runoff system, flow
hydraulics and other transport processes in rivers,
studies related to the quality of water, groundwater
problems, and other areas of water resources and
geophysics.

Among recent publications on the KF one can refer
to [25–29]. Harrison and Stevens [30] has mentioned
that the KF is the most general approach to statistical
estimation and prediction, and all prediction methods
are special cases of it.

In this paper, we consider the discrete KF, which
presents difference equations rather than differential
equations, because the predictions in hydrology are
made in discrete time; the objective is to study its
applicability for the modeling and multi-site predic-
tion of precipitation, as well as the assessment of the
prediction error. The expected result is an online
optimal prediction model that would not be fixed in
space or in time; in addition, it would automatically
adapt itself to the changes in meteorological condi-
tions in the watershed under study.
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2. Materials and methods

2.1. Study area

The Cheliff-Zahrez watershed covers an area of
56,227 km2, bounded to the north by the Mediterra-
nean Sea, to the west by the Oran-Chott Chergui
region, to the south by the desert, and to the east by
the region of the Algiers-Chott Hodna (Fig. 1). The
study area is bordered by two main chains: the Tellian
Atlas to the north and the Saharian Atlas to the south.
It lies between the longitude of 3˚ 50´ East and 0˚ 08´
West, corresponding to the upper valley of Chellif
watershed between the longitude of 2˚ 82´ East and 1˚
58´ West and the latitude of 33˚ 53´ South and 36˚ 14´
North.

Landform, the effects of crests, as well as the influ-
ence of the site are major factors in the structuring of
rainfall fields and their orientation in space.

2.2. Data

The data used in this study are the annual and
monthly rainfall registrations recorded by the National

Agency for Water Resources (ANRH) in the Cheliff
watershed. These data are recorded in 39 rainfall sta-
tions; four of them are located on operational dams.
Their distribution in the Cheliff watershed is shown in
Fig. 1. These data constitute 39 time series with a com-
mon observation period of 51 years lying from 1959 to
2009.

2.3. Discrete KF

The KF is a statistical approach of data assimila-
tion, whose principle is to correct the model trajectory
by combining observations with the information pro-
vided by the model, so as to minimize the error
between the true state and the filtered one. This
method uses a prediction that is based on a determin-
istic model and a registration that relies on innovation
(the difference between the measured and predicted
output) [14]. One of the most important steps in the
application of the KF technique is the formulation of
the state and the measurement equations according to
the structure of a state space model. In the present
case, these can be formulated as follows:

Fig. 1. Location of Cheliff watershed and distribution of rainfall stations.
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State equation:

Xk ¼ /k=k�1Xk�1 þWk�1 (1)

Measurement equation:

Zk ¼ HkXk þWk (2)

where

Xk, Xk−1 (n × 1) vectors of the state of the system at time
tk and tk−1, respectively

ϕk/k−1 (n × n) matrix of state transition permitting the
passage of Xk−1 up to Xk

Wk−1 (n × 1) noise vector of the system at time tk,
assumed to be white Gaussian noise with a
known covariance structure

Zk (m × 1) measurement vector at time tk
Hk (m × m) measurement matrix at time tk
Vk (m × 1) noise vector of measurement at time tk,

assumed to be a white noise with a known
covariance structure and uncorrelated with Wk−1

Once the formulation of the model is achieved, cer-
tain initializations such as the initial state vector and
the associated error covariance matrix, the system and
measurement noise covariance matrices, as well as the
state transition matrix and the measurement matrix,
are required to start the calculations. The latter are
made according to the following five matrix relations:

Update of the state vector:

X̂k=k ¼ X̂k=k�1 þ Kk Zk �HkX̂k=k�1

� �
(3)

Gain estimation:

Kk ¼ Pk=k�1 þHT
k HkPk=k�1H

T
k þ Rk

� ��1
(4)

Correction of the matrix of covariance of estimation
error:

Pk=k ¼ 1� KkHkð ÞPk=k�1 (5)

Prediction of the state vector:

X̂kþ1=k ¼ /kþ1=kX̂k=k (6)

Prediction of the covariance of the prediction error:

pkþ1=k ¼ /kþ1=kpk=k/
T
kþ1=k þQk (7)

where Qk and Rk are the system noise covariance and
the measurement noise matrices, respectively, such as:

E½WkW
T
j � ¼

Qk; j ¼ k
0; j 6¼ k

� �
(8)

E½VkV
T
j � ¼

Rk; j ¼ k
0; j 6¼ k

� �
(9)

3. Application and discussion

To develop and apply the approach of the KF
model to the modeling and multi-site prediction of
rainfall in Cheliff watershed, the observations
recorded at 39 precipitation stations, for both monthly
and annual scales, observed over a period of 51 years
(1959–2009) were considered. Hence, the system state
variable is a vector giving the observed precipitations
simultaneously at the 39 rainfall stations under consid-
eration.

3.1. Annual predictions

The estimation of initial values mentioned above is
essential for starting calculations. To this end, the ini-
tial state vector Xk/k−1 (k = 1) consists of the average
annual precipitation observed at the 39 stations (X1, 2
… 39); the associated error covariance Pk/k−1 is a
matrix with the value of 1,000 on the main diagonal
and zero elsewhere; this has the advantage of giving
more flexibility to the algorithm in order to fit the sen-
sitive values in a relatively short time. This choice will
lead to an increase in both of the covariance matrix
Pk/k−1 and the filter gain, allowing as such the filter to
weigh more heavily the new coming measure. For the
initial system noise covariance (Q), a matrix with the
value of 100 on the main diagonal and zero elsewhere
was adopted. Since we hope the measures to be less
noisy than the dynamic of the system, we have taken
a measurement noise matrix (R) with the value of 50
on the main diagonal and zero elsewhere. Concerning
the estimation of the initial state-transition matrix (ϕk/
k), the inter-correlations between the observations of
the 39 rainfall stations have been considered. Harrison
and Stevens [30] showed that the initial value of such
a matrix does not substantially affect the results of the
KF. Regarding the measurement matrix (Hk), we opt
for the unit matrix (39 × 39) as long as all rainfall
stations provide observations.

5962 S. Harkat et al. / Desalination and Water Treatment 57 (2016) 5959–5970



The common observation period for the 39 rainfall
stations is 51 years; the first 30 years are used to esti-
mate the parameters of the model, while the last 21
years are used for its validation. The consecutive exe-
cution of KF equations over the observation period
constitutes the application of the KF approach to the
multi-site modeling and prediction of annual rainfall
for the above mentioned rainfall stations.

Minimization of the prediction error covariance
matrix trace is a convergence and optimality criterion
of the filter. As shown in Fig. 2, the trace of this
matrix starts with high values at the beginning of the
calculations, and then decreases rapidly to converge to
a stable positive value very close to zero. This conver-
gence confirms the adequacy of the adjusted model to
the studied process and means that the algorithm of
calculation is effective, and hence, it provides optimal
predictions.

Indeed, in this first phase, measurement is more
credible than the estimation provided by the model
because the calculations are unavoidably influenced
by the initial conditions which are quite subjective,
but in the progress of calculations, the latter are
quickly discarded and the filter gives more importance
to the measurement which contributes continuously to
the improvement of the model parameters estimation.

So initially, when the model parameters are only
rough estimates, the measure represents any objective
information and the role of the gain matrix is precisely
to ensure that the measure is heavily weighted in the
estimation of the state parameters. In this case, the KF
gain matrix takes important values and the result is
an automatically bad estimation, which explains the
relative big errors in the first iterations. However, with

the progress of the calculations when the confidence
assigned to the accuracy of the parameters of the
model begins to rise, the values of the gain matrix
begin to gradually decrease to a value asymptotically
close to zero (Fig. 3), which means decrease in the
influence of the measurement in the update of the esti-
mation of the model parameters and the associated
errors.

The results also show that the predictions obtained
for the 39 stations over the 51 years follow closely the
historical observations, and differences between pre-
dictions and observations are minimal except for the
first iterations. These differences are given in terms of
percentage of relative error.

Fig. 4 is an example; it shows the predictions
obtained at Teniet-el-had station with the percentage
of associated relative errors. Examination of this figure
shows how much closely the observations and predic-
tions follow each other; the degree of this concordance
is given in terms of relative error in percentage.

Another point of view, Fig. 5, consists of two figures
and reveals the observations and predictions obtained
simultaneously in 39 rainfall stations with the relative
prediction error in percent. The top one corresponds to
the beginning (1960), while the bottom one corresponds
to the end (2009) of the calculations. On the first figure,
one can see the large gap between observations and
their corresponding estimates (predictions); this is due
to the fact that at the beginning of calculations, the
model parameters are not yet well established to give
good estimations. The model which is initialized with
subjective values must then rely more on the measure-
ment (as the only objective available information) in
order to learn from the provided information; this is

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

Time (year index)

P
re

di
ct

io
n 

er
ro

r 
co

va
ri

an
ce

 m
at

ri
x 

tr
ac

e 

Fig. 2. Annual prediction error covariance matrix trace.
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essential for the KF to adapt itself automatically as soon
as a new piece of information becomes available. There-
after, over the next iterations as shown in the figure
below, the result is a minimum distance between obser-
vations and their corresponding predictions. In terms of
percentage of the relative error, this difference which
begins with a maximum of −37.7% at the station 18
(Teniet-el-had), for example, is reduced to the value of
−4.3% by the end of the calculations (2009).

Table 1 gives some average statistical characteris-
tics for observations and predictions obtained from 39

rainfall stations during the study period. It is a sum-
mary of information that makes possible to compare
the obtained predictions to the recorded observations;
this is done in terms of some statistical parameters of
central location (mean) and dispersion around this
central position (standard deviation). Each one of
these parameters is an average which is calculated for
both temporal and spatial dimensions.

Regarding the temporal dimension, it is shown
that the average prediction value is about 22.95 mm
against an average observation value of 22.37 mm,
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Fig. 3. Annual KF gain.
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Fig. 5. Multi-site annual rainfall predictions from 1959 to 2009: (a) the beginning (1960) and (b) the end (2009).

Table 1
Some average statistical characteristics of annual observations and predictions obtained at the 39 rainfall stations (1959–
2009)

Observation Prediction Relative error (%)

Mean (mm) St. dev. (mm) Mean (mm) St. dev. (mm) Mean St. dev.

Temporal 22.37 18.16 22.95 18.6 −4.22 −4.04
Spatial 22.6 21.46 24.24 22.36 −7.28 −11.23
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with a relative error of −4.22%. On the other hand, the
average standard deviation is 18.6 mm against a value
of 18.16 mm for observations, with a relative error of
−4.04%. For the spatial dimension, an average predic-
tion value of 24.24 mm is shown against the value of
22.6 mm for the observations average, with a relative
error of −7.28%, and an average standard deviation
value of 22.36 mm for predictions against a value of
21.46 mm for the observations, with a relative error of
−11.23%. Fig. 6 depicts the temporal behavior of the
average standard deviation for the annual observa-
tions and predictions calculated for the 39 stations
from 1959 to 2009. It is obvious that values are

constantly higher for predictions, which express a
possible tendency of KF to overestimation.

3.2. Monthly predictions

The application of KF was also carried out on
monthly rainfall of 39 rainfall stations. Those data are
observed from September 1959 to August 2009 and
the whole observation period is about 612 months. As
mentioned above, the first 240 months (20 years) are
used for model estimation, whereas the rest of data is
used for its validation.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
10

15

20

25

30

35

40

Time (year)

A
ve

ra
ge

 s
ta

nd
ar

d
de

vi
at

io
n 

 (
m

m
)

Observation
Prédiction

Fig. 6. Average standard deviation for annual observations and predictions at the 39 rainfall stations (1959–2009).
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Fig. 7. Monthly prediction error covariance matrix trace.
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The optimality of the obtained results is illus-
trated by Fig. 7; it is expressed by the shape of the
curve, which describes the decreasing behavior of
the major diagonal elements of the covariance
matrix. To be noticed here, those major diagonal ele-
ments are nothing else than the prediction error
variances. It is shown how those major diagonal
elements take important values in the beginning of

calculations, and how after some iteration till the
end of calculations, it continues to decrease in a reg-
ular way to reach values close to zero, but still stays
positive.

The gain matrix as illustrated in Fig. 8 that pre-
sents a similar behavior to that of the prediction error
covariance, which is indicative of the KF optimality;
this means that the model parameters have reached
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Fig. 8. Monthly KF gain.
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their optimal values during the estimation period (first
240 months) and presents an additional proof for the
model suitability.

Fig. 9 illustrates an example of the multi-site
monthly predictions obtained over the 612 months
going from September 1959 to October 2009. It shows
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Fig. 10. Multi-site monthly rainfall predictions for October.
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Fig. 11. Average standard deviation for monthly observations and predictions at the 39 rainfall stations (September 1959–
August 2009).

Table 2
Some average statistical characteristics of monthly observations and predictions obtained at the 39 rainfall stations
(September 1959–August 2009)

Observation Prediction Relative error (%)

Mean
(mm)

St. dev.
(mm)

Mean
(mm)

St. dev.
(mm) Mean

St.
dev.

Temporal 14.62 12.90 15.22 13.03 −3.37 −1.41
Spatial 22.51 10.50 23.62 10.81 −4.95 −2.30

5968 S. Harkat et al. / Desalination and Water Treatment 57 (2016) 5959–5970



how the observations and predictions at Zmalet el
Amir AEK station follow each other very closely; the
difference between them is given in terms of relative
error in percentage, and it is obvious that this later
varies only between −5 and +5%.

The quality of the obtained predictions can also be
appreciated from a spatial point of view; as an
example, the monthly observations and predictions
obtained at the 39 stations during the month of
October are illustrated in Fig. 10. A visual inspection
of such figure shows that the differences between the
observations and the corresponding predictions are so
minimal that one cannot even distinguish between the
two curves. This difference, translated in terms of rela-
tive error in percentage varies between 4 and 2%, and
confirms once again the performance of the filter for
the monthly scale.

The eventual tendency of overestimation of the
model developed throughout this work is also
observed for the monthly scale. Fig. 11 and Table 2
confirm this eventuality. It is shown that the average
values of mean and standard deviation are higher for
predictions relative to observations; this is observed
both for temporal and spatial points of view.

Definitively, the obtained results show that the
multi-site predictions obtained by KF closely follow the
recorded observations; the average relative error in
absolute value is about 7.28% and 4.95%, respectively,
for annual and monthly scales. These prediction errors
are minima; they are in all cases well below 10% which
is highly acceptable. This constitutes a proof of KF effi-
ciency in the modeling and the multi-site prediction of
rainfall at Cheliff watershed, even in the presence of
seasonality and in spite of the geographical variability
and the disparity of rainfall stations.

4. Conclusion

Throughout this work, a KF model is developed for
multi-site rainfall predictions. For this purpose, monthly
and annual rainfall time series have been investigated.
These data are observed during a common observation
period of 51 years (1959–2009) at 39 precipitation
stations, in Cheliff watershed in northern Algeria.

The obtained predictions are very close to the
observed values at the aforementioned stations over
the study period. This is observed for the temporal as
well as the spatial dimension, and indicates that the
multi-site KF is practically an effective tool for rainfall
modeling and prediction in Cheliff watershed.

The performance of the developed model was
highlighted by calculating the percentage of the
relative error of multi-site predictions; this average

percentage over the entire observation period is signif-
icantly less than 10%, which is quite acceptable.

A possible model tendency for overestimation was
also highlighted by means and standard deviations,
which are more important for the predictions than for
the observations.

The developed model shows the great advantage
of taking into account not only the stochastic nature of
rainfall, but also their temporal and spatial variations.

In the end, one can say that, KF is a technique
based on the concept of least squares, which has a
very important property as the sequential optimiza-
tion, which means that the model is updated in an
adaptive fitting way as soon as a new system output
becomes available. One advantage of this technique is
that the stationary is not prerequisite, as it is the case
in most of models in hydrology; this allows for
changes in the model parameters and the variances,
which is a way of accounting for the non-linearity of
the concerned hydrological system response. Another
advantage of the technique is that the application is
made in the temporal domain. This characteristic
plays an important role the in real-time forecasting of
time series in hydrology. In addition, the KF algorithm
can be started with minimum available objective infor-
mation, and then a self-learning is automatically
launched when new data arrive. These features make
the FK one of the most appropriate tools, and there-
fore, the most used, particularly in situations where
everything changes. Moreover, the results are optimal.
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