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ABSTRACT

In the current research, which is based on recorded and collected data from one of the San
Joaquin River data recording stations, an artificial neural network (ANN) model was devel-
oped to simulate water quality parameters. Then, the results were compared with tradi-
tional salinity formula to optimize parameters. We also chose the best parameters for
estimation of dissolved oxygen (DO) through an ANN model. In both models, we used
feed-forward perceptron training algorithm along with Levenberg–Marquardt as the learn-
ing algorithm and tansign(x) as transfer function algorithm. To simulate the salinity, we
used more than 5,000 water quality data-sets. Also, we used two groups of data-sets, with
16,000 related data for simulating DO. We developed a highly precise model and verified
the results with the most recommended formula. Mean squared error is 12.5 for the
presented model and 9061 for the traditional formula (Salinity = 0.64*EC). We also recom-
mend a formula whose result is very close to the pilot-recorded data. It showed a large dis-
agreement between traditional formula and the proposed model. We used MATLAB
software to optimize the design parameters of the model.
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1. Introduction

Water scarcity in the world is turning into a more
serious challenge every year. During the last century,
water consumption grew at twice the rate of popula-
tion increase [1], and the complexity of managing natu-
ral resources generally increases as human population
grows [2]. Therefore, the assessment of the properties
and processes of running water is a major issue in
aquatic environmental modeling [3]. Accurate determi-
nation of the concentration of nutrients and other

substances in water bodies is an essential requirement
for supporting effective management and legislation
[4]. Water management decisions are increasingly
based on model studies, [5] while modeling tools are
becoming progressively more sophisticated [6]. Making
models for the study of water quality parameters also
has the benefit that the value of data modeling can be
demonstrated as overall saving in maintenance or
development costs. Viewed broadly across an organi-
zation’s entire budget, this can be truly significant. The
value of data modeling can also be seen at a more
detailed level by the saving it will provide for develop-
ment tasks on a specific project. Additionally, its value
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can be determined by identifying specific benefits that
data modeling provides and then quantifying those
benefits per project. Finally, data models can be reap-
plied in whole or in part to multiple projects which
can result in significant saving for any organization [7].
Models can also generate the missing data [8].

The dissolved oxygen (DO) is an important quality
index of water resources. However, it is difficult to
simulate the DO concentration by traditional mathe-
matical methods due to the effects of different factors
on different waters [9]. Salinity is also a significant
parameter. Many researchers, including McNeil and
Cox [10], Granlund et al. [11], and CWT 2004 [12],
have tried to estimate salinity using EC measurement
data. They have confirmed that the median ratio of
salinity/conductivity alters for different salinity ranges
and different temperatures. In the current research as
is presented, we recommend the following definition:

Salinity ðppmÞ ¼ 0:5� ECðls=cmÞ (1)

Moreover, the above equation is only true for the
current case (the water from San Joaquin) and for
other saline waters, the relationship should be reed-
ited. We have also compared the recommended
equation with most recommended formula which is:

Salinity ðppmÞ ¼ 0:64� ECðls=cmÞ½13� (2)

Using artificial neural network (ANN) as a model for
estimating water salinity parameters is increasing due
to its exceptional capabilities for solving and modeling
complicated problems. ANN focuses on completion of
all requested parameters. Its use is also increasing in
optimization problems [14]. Many studies have been
accomplished in modeling and data analysis with
ANN. For example: Patki et al. [15] worked more on
finding the optimum number of neurons and hidden
layers by finding the optimum status when changing
these numbers. They included such parameters as pH,
alkalinity, hardness, TS, and MPN as the input vari-
ables, which can be used to forecast water quality
index in various zones of municipal distribution
system. Rounds [16] have worked on the DO concen-
tration in Tualatin River (in northwest Oregon,
Oswego Dam). At first, he explained the importance of
research on DO before showing an ANN model using
a feed-forward algorithm. The information about air
temperature, solar radiation, rainfall, and stream flow
are considered as input, while DO concentration is the
output of the model. The whole data were collected
between 1991 and 2001. Cordoba [17] carried out a
research on a four-year-old database with a set of

inputs collected in the city of Našiměřice, Czech
Republic. He used a feed-forward network to make the
model and Multi-Layer Perceptron. Temperature, pH,
flow, pipe material, diameter, and age of pipes were
considered as input of the model while free chlorine
was the output obtained using 1965–2002 data-set.

Using ANN for groundwater calculations was
carried out for the first time by Aziz and Wong [18].
Paulin [19] calibrated three types of ANN (PNN,
GRBF, RNN) using groundwater and hydrometeorol-
ogy data to simulate the fluctuation of groundwater in
Gondo. Chitsazan et al. [20] presented an ANN model
to predict the groundwater depth according to such
values as rain condition, mean monthly temperature,
relative humidity, discharge of irrigation canal, and
groundwater recharge from the plain boundary. Using
MATLAB, they changed some network parameters
and found the optimum groundwater network. Rak
[21] presented an ANN model to predict turbidity of
treated water in a newly-operating water treatment
system for surface and retention water at Sosnówka
reservoir, Poland. The input data are psychochemical
parameters of interim water. The work demonstrates
parameters effective on the NTU.

Pandan et al. [22] reviewed a model to predict the
water level of a river branch analyzed in this study,
the Kushabhadra, which originates at Balianta gauging
site, flows downstream for a distance of about 90 km
and finally drains into the Bay of Bengal. The
presented model is a feed-forward network with a
learning function of Levenberg–Marquardt (LM) and
back propagation training algorithm. Simulated water
levels by MIKE 11 HD were compared with the corre-
sponding water levels predicted by the ANN model.
The results obtained from the ANN model were found
to be much better matched than MIKE 11 HD results
as indicated by the values of the goodness of fit
indices used in the study.

Chu et al. [23] represented an ANN model that
could estimate the quality of the surface water parame-
ters using some given parameters. The results showed
that the factor analysis technique was introduced to
identify important water quality parameters. Results
revealed that biochemical oxygen demand, permanga-
nate index, ammonia nitrogen, nitrogen, Cu, Zn, and
Pb were the most important parameters in assessing
water quality variations in the study area. This project
was based on GB3838-2002 “Environmental quality
standard for surface water.” The model is a one-layer
network using the algorithm of Hopfield Neural Net-
work and created by the MATLAB. Ghazi Zade and
Noori [24] presented an ANN model with a feed-for-
ward network in order to predict generated solid
waste in Mashhad. The utilized data is based on
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weekly sampling of solid waste in Mashhad from 2004
to 2007. They showed that their model is performing
better than the traditional methods. Nejadkoorki and
Baroutian [25] presented an ANN model using a three-
layer feed-forward back propagation neural network
that was trained with (LM) training algorithm. It can
estimate maximum PM10 concentration (that is smaller
than 10 μm) in Tehran 24 h in advance. They used data
collected between 2001 and 2009. Diamantopoulou
et al. [8] presented a model using the data from one of
Axios river quality monitoring stations as input data
for training a feed-forward neural network. The data
was collected from 1980 to 1994. In the presented
model, such parameters as temperature, flow, EC,
HCO3, SO4, Na, Cl, Ca, and DO were input data and
nitrate was the model’s output. Steyl [26] reviewed the
application of ANN algorithms in geohydrology. The
function of ANN model (standard neural network)
trained by LM algorithm to predict fluctuation of
groundwater depth was examined in Maheshwaram
basin in India’s Heidar Abad by Sreckanth et al. [27].
The model efficiency and accuracy were measured
based on the root mean square error and regression
coefficient (R). They implied that the ANN appears to
be a promising tool for precise and accurate ground-
water level forecasting. Nadiri [28] had dealt with eval-
uation of ANN’s (FFN-LM) ability in modeling
complex aquifer of Tabriz. The main purpose of this
article also is to use ANNs, especially feed-forward
back propagation neural networks to simulate and pre-
dict groundwater level. Zealand et al. [29] compared
the performance of a stochastic–deterministic model
with ANN for short-term river flow forecasting and
concluded that the ANN model performed better than
the stochastic-deterministic model during the testing
phase. A similar study by Demirel et al. [30] revealed
that the ANN model is better than the physically based
model in predicting peak flow values. In the current
paper, we trained two separate models that are used to
predict the Salinity and DO. The models are based on
the Grant Line Canal near Clifton Court Fore bay. The
data was collected continuously in 2010 and was also
verified. The simulation tests and results are presented
here. Despite large and increasing number of studies
that have been carried out in the field of modeling the
properties of waters, different behavior of various
waters necessitate making specific model(s) for
particular water(s).

2. Methods and materials

Multi-layer feed-forward networks trained with
back propagation algorithm are among the most popu-
lar kinds of networks [14,31]. Neuron is the smallest

data processor unit that is the base of neural networks
operations. You can see a single input neuron in
Fig. 1. The input and the output signals are scalars
(vectors). The effect of P on A is shown by the w
scalar (matrix) [32]. The Product of this summarization
is n, which will be the pure input for transfer (activa-
tion) function (F) [20,26] and, therefore, the output of
neuron will be calculated as:

a ¼ fðwp þ bÞ (3)

The parameters b and w are adjustable and the activa-
tion function can be also chosen by designer of the
network. Training means that b and w will change
many times in a direction to get closer to a desired
relation between input and output. The activation
function (f) can be linear or non-linear. Function (f)
would be chosen according to defined problem. A few
sample functions are shown in Fig. 2.

Fig. 3 shows a neuron that has a number of R
inputs. All the elements of p vector multiply in the
related element of w matrix to form the bios (b)
[33,34].

The input (n) calculated as:

n ¼
XR

i¼1

pi � w1;i þ b ¼ w½ � � pþ b (4)

p ¼ p1; p2; . . .; pR
� �T

; w ¼ w1;1;w1;2; . . .; w1;R

� �
(5)

Then the formula for the output will be like:

Fig. 1. A simple neuron model.

Fig. 2. Transfer functions.
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a ¼ fðw � pþ bÞ (6)

A single-layer network with S neurons and R inputs is
shown in Fig. 4.

3. Learning rules

We define learning rule as a process for correcting
or improving weights and biases. We have two kinds
of learning rules (functions): supervised and unsuper-
vised rules. In the supervised mode, e.g. Perceptron,
we compare the network output with learning exam-
ples (which is related to the input data). Unsupervised
learning method is being used mainly for division
problems.

4. Feed-forward networks

Architecture of network: The basic architecture
contains three types of layers: input layer, hidden
layer, and output layer. The input layer is responsible
for introducing the input data and hidden layer(s) is
the place where they are processed. The output layer
produces the results [16, 35–39]. In the Fig. 5, a five-
layer feed-forward network with three hidden layers
is demonstrated. Each layer can contain different
numbers of neurons.

In feed-forward networks, data stream signal
always goes straight forward from the input side to
the output site. This process can take place in many
units (i.e. layers) [20]. We don’t have a return data

Fig. 3. A neuron with R inputs.

Fig. 4. S neuron with R inputs.

Fig. 5. A network with five layers.

Fig. 6. A three-layer feed-forward network.

Fig. 7. Simulated EC (μs/cm) and salinity (ppm).

Fig. 8. Simulated pH and temperature (C).
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stream here. When being trained by constant stream
of data, the network changes weights and biases in
each step and compares the output layer with
answers. The supervised mode is the next step in
training weights and biases to minimize the error.

You see a three-layer (tansign/pureline) network
in Fig. 6. This network can be used to estimate
any function with any number of rupture points
(Figs. 7–11).

5. Calculation method

To start the calculation, we can use a two-layer
model. Then, we calibrate weight and bias matrixes
(by guessing) as shown below (according to: [31,33])
to reduce the error and get closer to the required pre-
cision. Here, α is the learning rate (α > 0) and l is the
number of each step:

w
ðlþ1Þ
i;j ¼ w

ðlÞ
i;j �a

@eðw; bÞ
@w

ðlÞ
i;j

(7)

b
ðlþ1Þ
i;j ¼ b

ðlÞ
i;j �a

@eðw; bÞ
@b

ðlÞ
i;j

(8)

b
ðlþ1Þ
i;j ¼ b

ðlÞ
i;j �a

@eðw; bÞ
@ b

ðlÞ
i;j

(9)

@eðw; bÞ
@ w

ðlÞ
i;j

¼ 1

m

Xm

i¼1

@

@ w
ðlÞ
i:j

eðw; b; xðiÞ; yðiÞÞ
2
4

3
5þ awðlÞ

i;j (10)

@eðw; bÞ
@ b

ðlÞ
i;j

¼ 1

m

Xm

i¼1

@

@ b
ðlÞ
i:j

eðw; b; xðiÞ; yðiÞÞ
2
4

3
5þ a b

ðlÞ
i;j (11)

The scale of precision (in supervised mode) will be
also the quantity of mean square error (MSE), ti is the
answer (matrix) and ai (matrix) is the output of the
network:

MSE ¼ 1

m

Xm

i¼1

e2 ¼ 1

m

X
i¼1

ðti � aiÞ2 (12)

MATLAB is used for calculations [20,23]. Tables 1 and 2
show the design parameters of the network. The
network contains three layers of neurons. The number
of the layers and the neurons must be chosen in a way
that would get us closer to the target. By increasing the
number of input data, we can reach a higher precision,
(false data decreases the precision of the network more
than the increase caused by true data). However, it is
not possible to get a higher precision by increasing the
number of layers or neurons in each layer.

Data come from resources provided by California
Department of Water Resources, the State of California.

Fig. 9. Simulated DO (mg/l) and DO percentage.

Fig. 10. Simulated total chlorophyll (mg/l) and turbidity
(NTU).

Fig. 11. Simulated DO (mg/l) and temperature (C).
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They use the data to manage and predict water specifi-
cations and levels [40]. The data is also used for water
resources management as well as environmental and
industrial controls. This project was based on San
Joaquin River data related to 2009 and 2010, collected
in Grant Line Canal near Clifton Court Forebay station.
The data, which were registered every 15 min, cover
the following parameters: 1- the time and date of each
test; 2- EC; 3- DO; 4- DO percentage; 5- Chlorophyll
concentration; 6- Temperature; 7- pH; 9- Turbidity; and
10- Salinity.

The parameters were chosen based on their rela-
tion with total salinity to achieve a higher degree of
precision. Therefore, we developed an ANN model to
calculate the salinity as the output when the other
parameters were assumed as the input. To generate
the model, all data related to 2010 according to
B9529500 document of the site [40] were downloaded
and prepared for modeling. More than 35,000 groups
of data-sets were recorded for each year and we
needed at least 1,000 data groups to reach the required

precision. We decided to use more than 5,000 groups
of data to achieve a higher precision. Therefore, we
chose almost one parameter from seven data groups.
In the following charts you can see 5,000 groups of
2010 data that we used to develop the ANN model.
We found that we could not achieve a precision lower
than 2 mg/l by using 5,000 groups of data. As a
result, we used 16,300 data groups. In order to
develop a model for predicting the DO, only tempera-
ture data were assumed as input of the model and
DO was the output parameter. During the current
study, the number of input data was tested to achieve
higher algorithm efficiency (Table 1). Figs. 7 through
11 show the data that we used to develop the current
model.

6. Results and discussion

In fact, in order to get the best results, the number
of layers and neurons must be chosen properly
according to existing complications problems and the

Table 1
Some of the best networks that we tested

Number Target NLa NNL1b NNL2 NNL3 ALFc PFd TFe Gradient Performance

1 Salinity 4 15 8 8 LearrnGDMf MSEg tansig 0.239 0.209
2 Salinity 4 15 15 15 LearrnGDM MSE tansig 1.81 0.2
3 Salinity 4 15 8 8 LearrnGD MSE tansig 0.903 0.211
4 Salinity 4 15 8 8 LearnGDM SSEh tansig 2,400 1,700
5 Salinity 4 15 8 8 LearnGDM MSE logsig 1,450 299
6 Oxygen 4 15 8 8 LearnGDM MSE tansig 0.0188 0.436
7 Oxygen 4 15 15 15 LearnGDM MSE tansig 0.0784 0.441
8 Oxygen 3 10 10 LearnGDM MSE tansig 0.629 0.433

aNumber of layers.
bNumber of neurons in layer1.
cAdapting learning function.
dPerformance function.
eTransfer function.
fGradient descent with momentum weight and bias learning function.
gMean squared normalized error performance function.
hSum squared error performance function.

Table 2
Design parameters of optimal networks

Network type Feed—forward back propagation Α 0.001

Training function Trainlma α-dec 0.1
Adaption learning function Learngdm α-Inc. 10
Performance function MSE α-max l010

Transfer function Tansign epoches 1,000
Minimum gradient of error 1.00E-10 Goal 0

aLevenberg–Marquardt back propagation.
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number of input and output parameters [34]. Our
experience in this field shows that problem complica-
tions are related to the number of layers and the num-
ber of problem parameters related to the number of
neurons. One of the best ways to optimize the model
is Monte Carlo method. We found out the most
proper number for each design parameter. So we
tested hundreds of times with different numbers for
each parameter. We saw that with 3 or more than 5
layers, the results were not acceptable. However, with
4 (and sometimes 3) layers, we were able to have a
low number of errors. Some of the best tested
networks are shown in Table 1.

In salinity model, the other seven parameters are
considered input and, in an optimal state, the number
of layers is four while the number of neurons in each
layer will be: 15, 8, 8. As mentioned before, the num-
ber of the last layer’s neurons is chosen by the
program.

In the case of designing the DO predictor model,
we found out that we could reach a higher precision
(an error lower than 10 ppm) by choosing just the
temperature as the input data. Therefore, for the
proposed model, DO will be the output and the tem-
perature will be the input. This model contains four
layers and the number of neurons in each layer is: 15,
10, and 10. Design parameters of optimal networks are
shown in Table 2.

Then, we could find the best models according to
performance charts (represented by MATLAB, see
Fig. 12). We saved the models and tested them by
randomly chosen data from year 2009 that have been
given in Table 3. Fig. 12 shows a performance plot
generated by MATLAB, which indicates MSE value
changes in the training process.

We have shown the results in Table 4. According
to the current model, additional analyses were per-
formed on model results and the results of tradi-
tional formulas. Many researchers have shown that

Fig. 12. Performance plot.

Table 3
Selected data for network testing

Date and time EC (μs/cm) DO (mg/l) DO (%) pH Clph (mg/l) Tu (NTU) T (˚C) Salinity (ppm)

10/1/2008 15:59 653 7.69 89.9 7.63 3.4 12.3 23 320
10/20/2008 10:00 483 9.32 96.3 7.52 3.6 7 16.9 230
11/3/2008 8:59 515 8.21 84.7 7.63 2.4 4.5 16.8 250
11/12/2008 0:29 743 11.51 113.1 8.09 11.7 17.1 14.5 370
12/21/2008 1:00 844 11.12 92 7.91 4.5 5.6 7.1 420
12/24/2008 12:15 923 11.07 92.3 7.94 3.5 6.1 7.4 460
1/1/2009 16:30 969 10.43 90.1 7.82 3.7 7.2 8.8 480
1/16/2009 5:30 1,061 11.76 102.2 7.84 10.2 9.5 9.1 530
2/11/2009 23:16 739 11.07 99.7 7.78 4 12.2 10.6 360
2/17/2009 12:01 654 11.03 97.4 7.8 4.3 6.1 9.8 320
3/13/2009 15:30 863 11.01 108.2 8.04 10 21.5 14.5 430
3/24/2009 16:01 432 10.12 99.9 7.92 7.8 9.5 14.7 210
4/2/2009 15:16 364 9.63 97.6 7.95 7.1 15.5 16 180
4/10/2009 4:46 401 8.98 90.6 7.74 9.9 14.1 15.7 190
5/8/2009 10:00 424 8.67 95.2 7.61 3.1 17.8 19.9 200
5/18/2009 13:45 371 6.25 73.7 7.23 2.2 13.7 23.6 180
6/10/2009 1:45 464 7.4 82 7.55 8.5 30.3 20.3 220
6/14/2009 1:30 343 8.4 93.9 7.66 5.4 14.2 20.8 160
7/12/2009 15:00 631 5.25 61.7 7.33 7.9 34.3 23.3 310
7/19/2009 3:45 226 7.37 89 7.4 3.4 12.8 24.8 110
8/12/2009 16:45 698 6.33 77.4 7.46 10.7 27.5 25.4 340
8/14/2009 12:45 607 5.88 69.6 7.4 2.6 9.7 23.7 290
9/6/2009 18:14 473 7.89 92.6 7.73 2.6 5.9 23.3 230
9/25/2009 5:00 541 7.47 88.4 7.77 5.2 10.9 23.7 260

4894 E. Salami Shahid and M. Ehteshami / Desalination and Water Treatment 57 (2016) 4888–4897



EC/salinity relationship depends on the place and
the water characteristics and have found various
values for EC/salinity. McNeil and Cox [10] showed
that EC/salinity could be somewhere between lower
than 0.5 to higher than 1. But the most common
formula in the literature is: [13]

Salinity ðppmÞ ¼ 0:64� ECðls=cmÞ (13)

Tested data were then verified by the model, which
showed that they were very different from the used
data. Therefore, we optimized the value of EC/salinity
relation to 0.5:

Table 4
Error analysis and comparison between networks, formula and pilot results

Date &Time PSDa EC (μs/cm) 0.5.EC F1Eb 0.64.EC F2Ec CDd CDEe PODf CODg

10/1/2008 15:59 320 653 327 7 418 98 317 −3 7.69 6.953
10/20/2008 10:00 230 483 242 12 309 79 232 2 9.32 9.461
11/3/2008 8:59 250 515 258 8 330 80 249 −1 8.21 8.665
11/12/2008 0:29 370 743 372 2 476 106 366 −4 11.51 9.725
12/21/2008 1:00 420 844 422 2 540 120 416 −4 11.12 10.97
12/24/2008 12:15 460 923 462 2 591 131 457 −3 11.07 10.93
1/1/2009 16:30 480 969 485 5 620 140 481 1 10.43 9.987
1/16/2009 5:30 530 1,061 531 1 679 149 523 −7 11.76 9
2/11/2009 23:16 360 739 370 10 473 113 363 3 11.07 9.64
2/17/2009 12:01 320 654 327 7 419 99 321 1 11.03 9.633
3/13/2009 15:30 430 863 432 2 552 122 426 −4 11.01 9.725
3/24/2009 16:01 210 432 216 6 276 66 209 −1 10.12 9.541
4/2/2009 15:16 180 364 182 2 233 53 174 −6 9.63 9.296
4/10/2009 4:46 190 401 201 11 257 67 193 3 8.98 9.284
5/8/2009 10:00 200 424 212 12 271 71 204 4 8.67 7.759
5/18/2009 13:45 180 371 186 6 237 57 176 −4 6.25 6.953
6/10/2009 1:45 220 464 232 12 297 77 223 3 7.4 7.911
6/14/2009 1:30 160 343 172 12 220 60 164 4 8.4 7.995
7/12/2009 15:00 310 631 316 6 404 94 307 −3 5.25 6.953
7/19/2009 3:45 110 226 113 3 145 35 107 −3 7.37 6.953
8/12/2009 16:45 340 698 349 9 447 107 336 −4 6.33 6.953
8/14/2009 12:45 290 607 304 14 388 98 295 5 5.88 6.953
9/6/2009 18:14 230 473 237 7 303 73 228 −2 7.89 6.953
9/25/2009 5:00 260 541 271 11 346 86 261 1 7.47 6.953

aPilot salinity data.
bFormula 1 (Salinity = 0.5 × EC) errors.
cFormula 2 (Salinity = 0.64 × EC) errors.
dCalculated data.
eCalculated data errors.
fPilot oxygen data.
gCalculated oxygen data.

Fig. 13. Comparison between model, pilot test, and oxygen
(mg/l) data. Fig. 14. Comparison between model, pilot test, and

formula salinity (ppm) data.
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Salinity ðppmÞ ¼ 0:5� ECðls=cmÞ (14)

We reached the following optimum relations accord-
ing to as Eq. (14), which are shown in Table 4. Table 4
shows the results of this formula as well. In Table 4,
errors for each approach are summed for comparison.

Table 4 shows the precision of two models, espe-
cially for salinity, you can see that the result of the
models is much closer to the pilot tests data than the
result of traditional formulas. For a better understand-
ing of this issue, you can see Figs. 13 and 14.

As Figs. 13 and 14 show, data were generated by
models which were then verified by pilot data. For
salinity problem, the quantity of MSE for Eq. (14) is
considered to be 60.7. This value (MSE) is set to 9,061
for Eq. (13), while for the model, MSE stands at 12.5.
The results from Fig. 14 show how the ANN model
can work better than a common formula. The preci-
sion is higher because the model covers all the effec-
tive data-sets. Fig. 15 shows higher precision of the
model.

It is evident that the error of the model is very
small when compared to the equations. In fact, some
of the existing errors result from low precision of the
testing equipment and human errors. In other words,
the model has a lower possibility of fault than the
pilot data when more than 5,000 data points are used.
The current model is not just a reliable model; it can
be used to enhance the precision of the measurement
equipment and their operators. Also, it can generate
the missing data. It should be noted that the reliability
of these two models for other water body depends on
the properties of those particular water.

7. Conclusions

It is known that the ANN model can be used in
many practical and scientific projects. In this work, we
focused on the ANN model and its ability to simulate
river water quality data. The results show that

applications of the ANN model are useful in the
following cases: (1) A reliable replacement for salinity
test; (2) To control equipment and operators; (3) A
proper tool for estimating the missing data; (4) Calibra-
tion of measurement tools; (5) The ability to predict
quality data; (6) The ability to do sensitivity analyzes on
the data generated by the model for scientific applica-
tions; (7) Suitable for conditions with experimental diffi-
culties; (8) A highly precise replacement for traditional
equations; (9) We also found a predicting equation
(Salinity = 0.5*EC) which can estimate the salinity
according to EC.

Several projects can be suggested for future works:
(1) To present model(s) for estimating other parameters
like DO; (2) To present model(s) for other stations or
places and comparing the results with our results or
combining two models to create a more powerful
model; (3) Conducting sensitivity analyses based on the
data generated by our model; (4) Conducting a compre-
hensive comparison between our results and some
results obtained through other similar models; (5)
Assessing model applicability and efficiency for a
specific site in order to develop a useful global model
for water quality analyses; (6) To formulate universal
equations such as EC, TDS formulas. The current
method of ANN modeling can be applied easily to
other cases and data-sets.
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