

57 (2016) 6712–6722 March

Alachlor photocatalytic degradation over uncalcined Fe–TiO₂ loaded on granular activated carbon under UV and visible light irradiation

M.D.G. de Luna^a, K.K.P. Rivera^{b,c}, T. Suwannaruang^{c,d}, K. Wantala^{c,d,e,*}

^aDepartment of Chemical Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines, Tel. +632 981 8500, ext. 3114; Fax: +632 929 6640; emails: mgdeluna@up.edu.ph, mgdeluna@ugmail.com (M.D.G. de Luna)

^bEnvironmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines, Tel. +632 981 8500, ext. 3114; email: kprivera@upd.edu.ph

^cChemical Kinetics and Applied Catalysis Laboratory (CKCL), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand, Tel. +664 336 2240; email: totsaporn.eng.kku@gmail.com (T. Suwannaruang), Tel./Fax: +664 336 2240, ext. 42; email: kitirote@kku.ac.th (K. Wantala)

^dFaculty of Engineering, Department of Chemical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand ^eFaculty of Engineering, Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand

Received 23 April 2014; Accepted 20 January 2015

ABSTRACT

Alachlor is a recalcitrant carcinogenic contaminant that may easily spread in water sources due to its wide usage as an herbicide. The aim of this study is to synthesize $Fe-TiO_2$ on granular activated carbon (GAC) support via hydrothermal method for the photocatalytic degradation of alachlor under ultraviolet and visible light irradiation. The effects of Fe–TiO₂ loading, initial alachlor concentration, and initial solution pH were determined using Box-Behnken design (BBD). X-ray diffraction (XRD) analysis of Fe-TiO₂-GAC samples showed anatase TiO₂ peaks as well as the graphite peak from carbon. Scanning electron microscope (SEM) images verified that Fe–TiO₂ was immobilized onto the GAC. In UV photocatalysis, the interaction between Fe and TiO₂ loading and initial alachlor concentration is significant wherein low Fe-TiO₂ loading and 50 ppm initial alachlor concentration increased the removal efficiency. In visible light photocatalysis, low Fe-TiO₂ loading and initial alachlor concentrations of 30 and 70 ppm are significant. The interactions of the initial solution pH with Fe–TiO₂ loading and initial alachlor concentration are also significant in which low solution pH increased alachlor removal for low Fe-TiO₂ loading and low initial concentration. The highest alachlor removal percentages obtained were 99.74 and 99.96% under UV and visible light irradiation, respectively. Total organic carbon analysis confirmed the mineralization of alachlor with 92.44 and 66.49% removal by UV and visible light photocatalysis, respectively.

Keywords: Alachlor; Box–Behnken design; Fe–TiO₂; Granular activated carbon support; Photocatalysis

^{*}Corresponding author.

^{1944-3994/1944-3986 © 2015} Balaban Desalination Publications. All rights reserved.

1. Introduction

Alachlor is a recalcitrant carcinogenic contaminant in drinking water monitored by the World Health Organization and the US Environmental Protection Agency [1]. Due to its wide usage as a primary herbicide for weed growth control, alachlor easily finds its way to the groundwater and other drinking water sources [1–3]. In the US, the maximum contaminant level for alachlor in drinking water is set at 0.002 mg/L, while its corresponding maximum residue level in Europe is 0.0001 mg/L [4].

Conventional methods are unable to remove alachlor completely from contaminated waters [4]. Various technologies have been applied for alachlor removal such as activated carbon [5,6], gamma radiolysis [7], hydrodynamic cavitation [8], ferrate oxidation [9], ozonation [10–13], photo-Fenton process [14], biological oxidation [14,15], sonochemical and ultrasonic treatments [16,17], and TiO₂ photocatalysis [18,19].

Titanium dioxide has been one of the most commonly used photocatalysts for the removal of organics in wastewater due to its strong oxidizing ability, nontoxicity, and photostability [18–23]. However, a typical problem common to TiO₂ photocatalysts is the fast recombination rate of the photogenerated electrons and holes, which leads to decreased photocatalytic activity [24]. In addition to this, the photocatalytic activity of pure TiO₂ is limited to UV irradiation because its energy band gap is at 3.2 eV. Metal doping with Fe³⁺ has been used to lower the bandgap and to extend the photoactivity of pure TiO₂ to the visible light spectrum [25,26]. The addition of Fe^{3+} to TiO_2 is very feasible since the small difference in their atomic radii enables the Fe ions to stably form a solid solution with TiO₂ [27]. Thus, Fe–TiO₂ photocatalysts tend to increase the photocatalytic activity of TiO₂ [28-30]. Ghorai et al. [29] demonstrated that Fe-doped TiO₂ was more photoactive in the removal of several organic dyes than P25 and commercial TiO₂ photocatalysts. Also, Tayade et al. [30] reported that the photocatalytic activity increased from 89 to 97% and from 57 to 83% for acetophenone and nitrobenzene removal in a 4 h of reaction time under bare TiO_2 and Fe–TiO₂, respectively.

Aside from the limitations by the high recombination rate and large energy band gap of TiO_2 photocatalysts, it also has issues when its powder form is used in aqueous systems. TiO_2 in powder form cannot be recycled because it cannot be separated from the solution readily [26]. The use of a support matrix such as granular activated carbon (GAC) will enable easy separation of the catalyst from the system and will also provide a larger surface area available as photocatalytic sites [31–34]. The support matrix enhances the light-gathering properties of the TiO_2 powder when it coats and adheres to its larger surface [35].

A combination of these two modification techniques will result in a composite of Fe–TiO₂ catalysts embedded on activated carbon, which has been investigated to determine the synergy of photocatalysis and adsorption [36,37]. Fe–TiO₂ photocatalysts supported on GAC showed higher photoactivity when compared to Fe–TiO₂ photocatalysts and TiO₂ on activated carbon combinations. This is due to the synergistic effects of the metal ion and the support matrix on TiO₂, including enhanced photoactivity under visible light and improved surface properties, respectively [36].

The preparations of Fe–TiO₂ photocatalysts on GAC support normally require calcination under a nitrogen atmosphere in order to activate the anatase TiO₂ crystalline phase and to remove impurities. However, in this study, the photocatalysts were synthesized by hydrothermal method without calcination. Photocatalytic degradation of alachlor was done in static reactors under UV and visible light. Box–Behnken design (BBD) generated using Minitab 16.0 (Minitab, Inc., Pennsylvania, USA) was used to investigate the effects of % Fe–TiO₂-GAC, initial alachlor concentration, and initial solution pH on alachlor removal under UV and visible light irradiation.

2. Materials and methods

2.1. Chemicals

Titanium tetrachloride (TiCl₄, 99%) from Merck Schuchardt OHG was used as the titanium dioxide catalyst precursor, 1,000 ppm Iron for atomic absorption standard as the dopant, and GAC (1,680–4,760 μ m) purchased from Sigma-Aldrich as the support matrix. Synthetic alachlor PESTANAL analytical standard (99.2%), was dissolved in HPLC-grade distilled water from RCI Labscan Limited to prepare a 100 ppm stock solution. Hydrogen peroxide (H₂O₂, 30%) and ammonia solution (NH₄OH, 28%) were purchased from Ajax Finechem Pty Ltd., and QRëc, respectively. Isocratic-grade acetonitrile (CH₃CN, 99%) and methanol (CH₃OH, 99%) were purchased from Merck and RCI Labscan Limited, respectively.

2.2. Catalyst synthesis

Titanium dioxide doped with 0.20% wt Fe³⁺ (Fe–TiO₂) was prepared via hydrothermal method. TiCl₄ was dissolved in 400 mL cold deionized water and was stirred for 30 min. NH₄OH (90 mL) was introduced dropwise into the TiCl₄ solution. The resulting white suspension was stirred for another 30 min in an ice bath, centrifuged, and decanted. The precipitates were washed with deionized water several times until the pH of the washing is neutral and then died at 40 °C for 16 h to obtain amorphous TiO₂ powders.

Amorphous TiO₂ was dissolved in 30 mL H₂O₂. The solution was stirred for 30 min in an ice bath prior to dropwise addition of 90 mL H₂O₂. Doping was done by the addition of 0.84 mL 1,000 ppm Fe³⁺ solution. The solution was continuously stirred for 4 h until it became transparent yellow.

Meanwhile, GAC was soaked in 1.0 M HNO₃ for 24 h. Afterward, it was washed several times to remove excess acid and was dried at 100°C for 24 h. During the hydrothermal synthesis of the Fe–TiO₂-GAC catalysts, GAC was added to the Fe–TiO₂ solution after the 4 h stirring procedure. The following amounts of GAC were used: 5.4, 2.4, and 1.4 g for 10, 20, and 30% Fe–TiO₂-GAC, respectively. The resulting transparent yellow solution with GAC was transferred to a Teflon-lined steel autoclave and was subjected into hydrothermal treatment at 150°C for 8 h. The solution from the autoclave was filtered and dried as follows: (1) 40°C for 2 h, (2) 100°C for 4 h, and (3) 250°C for 4 h.

2.3. Analytical methods

X-ray diffraction analysis (XRD Model D8 Discover, Bruker AXS, Germany) was performed to confirm the presence of the crystalline anatase phase in the Fe–TiO₂ catalysts embedded on the GAC support. The obtained patterns were compared to those of Fe–TiO₂ and GAC. The following conditions were used: Cu K α radiation at $\lambda = 0.15406$ nm, 40 kV potential, and 40 mA current. Scanning was done at a step of 0.02°/step from 2 θ of 20° to 70°. Scanning electron microscopy (S-3000 N, Hitachi, Japan) was used to observe the morphologies of GAC and the GAC-supported catalysts at 500x magnification. The surface areas of the Fe–TiO₂-GAC photocatalysts were measured using Brunauer–Emmett–Teller analytical technique (NOVA 1200e, Quantachrome, USA).

Analysis of the remaining alachlor concentrations was done using high-pressure liquid chromatography (Waters e2695 HPLC, Harlow Scientific, USA) at the maximum absorption wavelength of 197 nm was used for the UV detector, with a mixture of 40% methanol and 60% acetonitrile as the mobile phase at a flow rate of 1.0 mL/min. Injection volume was 20 μ L. The separation was performed by a Hypersil C18 ODS 4.0 mm × 125 mm 5 μ m column. Total organic carbon (TOC) measurements were done using a TOC analyzer (multi N/C 2100S, Analytik Jena, Germany).

2.4. Photocatalytic degradation of alachlor

Static reactors were used in the photocatalytic degradation of alachlor with Fe–TiO₂-GAC catalysts. The effects of the amount of Fe–TiO₂ loaded on GAC, initial alachlor concentration, and initial solution pH were investigated following the experimental design in Table 1. Fe–TiO₂-GAC (1 g) catalysts was added to 10 mL alachlor solution, enough to fill a monolayer at the bottom of the static reactor. The durations of the photocatalytic degradation were 60 and 90 min for UV and visible light irradiation, respectively. The comparison of adsorption and photocatalysis under both UV and visible light irradiation was examined using pure GAC (1 g) and 20% Fe–TiO₂-GAC (1 g) catalyst and 10 mL of 50 ppm alachlor. Samples were filtered prior to chemical analysis.

3. Results and discussion

Alachlor removal percentages by the synthesized Fe–TiO₂-GAC photocatalysts under UV and visible light irradiation are summarized in Table 2. Under UV light irradiation (60 min), the highest alachlor removal (99.74%) was obtained using the following conditions: 10% Fe–TiO₂-GAC, 30 ppm initial alachlor concentration, and initial solution pH of 6. On the other hand, the highest alachlor removal (99.96%) under visible light irradiation was achieved at 10% Fe–TiO₂-GAC on alachlor solution with initial concentration of 50 ppm and initial solution pH of 4. The lowest removal percentages of 72.94 and 83.64% were attained for UV and visible light photocatalysis, respectively.

ANOVA statistics in Tables 3 and 4 shows that the RSM models for alachlor degradation under UV ($R^2 = 0.9445$) and visible light ($R^2 = 0.9526$) irradiation are both significant whereas the corresponding lack-of-fit errors are not significant. With UV irradiation (Table 3), none of the main effects are significant and only the interaction between Fe–TiO₂ loading and initial alachlor concentration is significant. With visible light (Table 4), the main effects of Fe–TiO₂ loading and initial alachlor concentration, as well as the interactions of initial solution pH with Fe–TiO₂ loading and initial alachlor concentration are significant.

The mathematical models for the photocatalytic degradation of alachlor under UV and visible light irradiation are given in Eqs. (1) and (2), respectively.

$$Y_1 = 77.57 - 1.60A + 0.07B - 0.39C + 9.45AB + 3.32AC + 1.81BC + 4.68A^2 + 7.91B^2 - 2.38C^2$$

(1)

Table 1

Factors and	levels t	for the	photocataly	ytic de	egradation	of a	lachlor
				/			

		Levels		+1
Factors	Symbol	-1	0	
% Fe–TiO ₂ on GAC	А	10	20	30
Initial alachlor concentration (mg/L)	В	30	50	70
Initial solution pH	С	4	6	8

Table 2 Alachlor removal under UV and visible light using Fe–TiO₂-GAC

Run				Alachlor removal (%)	
	% Fe–TiO ₂ on GAC	Initial alachlor concetration (mg/L)	Initial solution pH	UV (60 min)	VIS (90 min)
1	10	30	6	99.74	90.29
2	30	70	6	99.46	85.92
3	20	50	6	81.24	89.69
4	30	50	4	74.24	90.61
5	30	30	6	79.66	87.19
6	20	30	4	85.70	95.84
7	20	70	8	84.11	91.72
8	10	50	8	78.87	93.64
9	20	50	6	78.52	87.87
10	10	70	6	81.76	87.74
11	20	30	8	81.10	87.32
12	20	70	4	81.46	83.64
13	20	50	6	72.94	90.08
14	10	50	4	86.08	99.96
15	30	50	8	80.29	92.27

Table 3 ANOVA for a lachlor removal under UV light with Fe–TiO₂-GAC

Source	df	Sum of squares	Mean square	F value	<i>p</i> -value	
Regression	9	768.221	85.358	9.46	0.012	Significant
Linear	3	21.733	7.244	0.80	0.544	Ū.
A-% Fe-TiO2 on GAC	1	20.480	20.480	2.27	0.192	
B—Initial alachlor concn	1	0.044	0.044	0.00	0.947	
C—Initial solution pH	1	1.209	1.209	0.13	0.729	
Square	3	332.559	110.853	12.28	0.010	Significant
A^2	1	68.651	80.971	8.97	0.030	Significant
B ²	1	243.000	230.753	25.57	0.004	Significant
C ²	1	20.907	20.907	2.32	0.189	Ū
Interaction	3	413.930	137.977	15.29	0.006	Significant
AB	1	356.832	356.832	39.53	0.001	Significant
AC	1	43.957	43.957	4.87	0.078	Ū
BC	1	13.141	13.141	1.46	0.282	
Residual error	5	45.129	9.026			
Lack-of-fit	3	9.321	9.321	0.17	0.906	Not significant
Pure error	2	35.808	17.904			0
Total	14	813.351				

8.653

32.332

42.078

85.220

0.410

15.920

68.890

11.194

2.804

1.391

ANOVA for alachlor removal under visible light with Fe-TiO ₂ -GAC								
Source	df	Sum of squares Mean square		F value	<i>p</i> -value			
Regression	9	224.899	24.989	11.16	0.008			
Linear	3	50.706	16.902	7.55	0.026			
A—% Fe-TiO ₂ on GAC	1	30.576	30.576	13.66	0.014			
B—Initial alachlor concentration	1	16.878	16.878	7.54	0.041			
C—Initial solution pH	1	3.251	3.251	1.45	0.282			
Square	3	88.974	29.658	13.25	0.008			

8.412

38.484

42.078

85.220

0.410

15.920

68.890

11.194

8.411

2.783

236.093

Table 4 ANOVA for alachlor removal under visible light with Fe–TiO₂-GAC

1

1

1

3

1

1

1

5

3

2

14

$$Y_2 = 89.21 - 1.96A - 1.45B - 0.64C + 0.32AB + 2.00AC + 4.15BC + 1.53A^2 - 2.96B^2 + 3.38C^2$$

(2)

where Y_1 and Y_2 are the percentages of alachlor removal under UV and visible light irradiation, respectively; A is % Fe–TiO₂ on GAC, B is initial alachlor concentration, C is initial solution pH, AB is the interaction between % Fe–TiO₂ on GAC and initial alachlor concentration, AC is the interaction between % Fe–TiO₂ on GAC and initial solution pH, BC is the interaction between initial alachlor concentration and initial solution pH, and A², B², and C² are the quadratic terms for each of the main factors, respectively.

From Eqs. (1) and (2), the negative coefficients of Fe-TiO₂ loading indicate that the low amounts of Fe-TiO₂ results in high alachlor removals under UV and visible light irradiation. Under UV photocatalysis, the main effects are not significant and their coefficients have the lowest numerical values. The interaction between Fe-loading and initial alachlor concentration has a positive effect on alachlor removal and its contribution is the highest among all the factors as shown by its numerical coefficient. On the other hand, under visible light photocatalysis, all of the main effects have negative effects on alachlor removal. Of the three, the initial solution pH has the least impact on alachlor removal. The interactions between the initial solution pH with Fe loading and initial alachlor concentration are both significant and have more weight in the equation.

Based on BBD, the optimum conditions for alachlor degradation under UV and visible light irradiation are the same: 10% Fe–TiO₂ on GAC, initial alachlor concentration of 30 ppm, and initial solution pH of 4.

3.86

14.44

18.80

12.69

0.18

7.11

30.77

2.01

0.106

0.013

0.007

0.009

0.687

0.045

0.003

0.349

Significant

Not significant

Fig. 1 compares the main effects of the factors on alachlor removal under the two different light sources. Increasing the Fe-TiO₂ loading on GAC decreases the alachlor removal. In both experimental setups (Table 2), the highest alachlor removal percentages are achieved at the lowest Fe-TiO₂ loading on GAC. From this, it can be inferred that adsorption by GAC plays a major role in alachlor removal. GAC is an effective adsorbent for alachlor removal [5,6]. The low amount of Fe-TiO₂ relative to the amount of GAC means that there are more adsorption sites than there are photocatalytic sites. Thus, it was possible that some of the alachlor have already been removed by adsorption onto the GAC before the photocatalysis with the Fe–TiO₂ occurred. For the catalysts containing 20 and 30% Fe-TiO₂-GAC, alachlor removal is not only predominantly ascribed to adsorption onto the GAC but also to the photocatalytic activity of Fe-TiO₂.

The main effect of the initial alachlor concentration on alachlor removal has opposite trends in UV and visible light photocatalysis. The initial alachlor concentration of 50 ppm has the lowest mean alachlor removal in UV photocatalysis while in visible light photocatalysis, it gave the highest mean alachlor removal. Opposing trends are also observed in the effect of initial solution pH on alachlor removal under UV and visible light irradiation. The initial solution pH of 6 gave the highest mean alachlor removal in

 $A^{\frac{1}{2}}$

 B^2

 C^2

AB

AC

BC

Interaction

Residual error

Lack-of-fit

Pure error

Total

Fig. 1. Main effects for alachlor removal under UV light (a) and visible light (b) irradiations.

Fig. 2. Contour (a) and surface plots (b) for the interaction of $Fe-TiO_2$ loading on GAC and initial alachlor concentration on alachlor removal under UV light.

Fig. 3. Contour (a) and surface plots (b) for the interaction of $Fe-TiO_2$ loading on GAC and initial solution pH on alachlor removal under visible light.

UV photocatalysis while it gave the lowest mean alachlor removal in visible light photocatalysis.

In UV photocatalysis, the interaction of Fe–TiO₂ loading and initial alachlor concentration is significant (Fig. 2). It is observed that the combination of the extreme settings of both factors gives the highest alachlor removal percentages (Table 2). At 10% Fe–TiO₂ loading and 30 ppm initial alachlor concentration, alachlor removal was at 99.74%. At 30% Fe–TiO₂ loading and 70 ppm initial alachlor concentration, alachlor removal was at 99.46%.

On the other hand, the significant interactions in visible light photocatalysis are the interactions of initial solution pH with the Fe– TiO_2 loading on GAC and initial alachlor concentration, respectively.

Considering both pairs of interactions (Figs. 3 and 4), the highest alachlor removal percentages occur at the conditions with low initial solution pH (Table 2). At 10% Fe–TiO₂ loading and initial solution pH 4, alachlor removal was 99.96%. At 30 ppm initial alachlor concentration and initial solution pH 4, alachlor removal was at 95.84%. Although the main effect of initial solution pH alone is not significant in alachlor removal using Fe–TiO₂-GAC catalysts under visible light irradiation (Table 4), it has a considerable effect on both the catalyst and the alachlor in solution. The explanation for this is the point of zero charge of Fe–TiO₂ since GAC does not have a net charge in solution and is not sensitive to pH. At pH levels greater than 4, both the Fe–TiO₂ catalyst and alachlor

Fig. 4. Contour (a) and surface plots (b) for the interaction of initial alachlor concentration and initial solution pH on alachlor removal under visible light.

Fig. 5. XRD patterns of Fe-TiO₂-GAC, Fe-TiO₂, and GAC.

would exhibit negative charges [36]. This causes a slight repulsion between the two components resulting in decreased activity.

The XRD spectra of the Fe–TiO₂-GAC photocatalysts along with those of pure TiO₂ and pure GAC are shown in Fig. 5. All the major peaks of anatase TiO₂ at the 2 θ positions of 25°, 38°, 48°, 55°, 56°, and 63° were present in the Fe–TiO₂-GAC photocatalysts [31,38–40]. The lone graphite peak at the 2 θ position of 27° decreased with increasing amounts of Fe–TiO₂ loaded onto GAC. No Fe peaks were detected since doping was done in a very small amount (0.20% wt. Fe).

Fig. 6 shows the Scanning electron microscope (SEM) images of the photocatalysts at $500 \times$ magnification. The surface of pure GAC (Fig. 6(a)) is rough, uneven, and porous. The incorporation of Fe–TiO₂ onto the GAC enhanced the smoothness of the catalyst surface. Moreover, as the amount of Fe–TiO₂ loading was increased from 10 to 30%, the degree of its coverage and dispersion on the GAC improved considerably.

BET surface area measurements of the Fe-TiO₂-GAC photocatalysts exhibited very large surface areas of 332.31, 465.43, and 423.96 m²/g for 10, 20, and 30% Fe-TiO₂ on GAC, respectively. The surface area of pure GAC is about $506 \pm 34 \text{ m}^2/\text{g}$ [41]. The decrease in the surface area of GAC of about 45% for the 10% Fe– TiO₂-GAC catalyst can confirm the SEM results for the coating of Fe-TiO₂ on the surface of GAC. Thus, GAC is an effective support matrix for Fe-TiO₂ as it was able to increase the surface areas available for photocatalysis. Increasing the amount of Fe-TiO₂ loading from 10% to 20% enhanced the catalyst surface area by 40%. However, as the $Fe-TiO_2$ loading was increased from 20% to 30%, the surface area of the catalyst decreased slightly 9% due to the small amounts of GAC used in the catalyst preparation. The surface area of 20% Fe-TiO2 loading was found to be the highest value compared to the other loading percentages. The lower loading amount of 10% Fe-TiO₂

Fig. 6. SEM images of pure GAC (a) 10% (b) 20% (c) and 30% Fe–TiO₂ on GAC (d) at 500× magnification.

Fig. 7. (a) Alachlor and (b) TOC removal by adsorption and photocatalysis under UV and visible light irradiation. Initial alachlor concentration = 50 mg/L, 20% Fe–TiO₂-GAC dose = 1 g/10 mL, and pH = 6.0.

resulted in the insertion of the particles of the catalysts into the GAC pores, leading to a lower surface area. For the 20% Fe–TiO₂-GAC catalyst, the pseudo-pores of the powder catalysts seen in Fig. 6(c) enhanced the surface area. On the other hand, the surface area of the 30% Fe–TiO₂-GAC also has a lower value since these pseudo-pores were not present and that a smooth surface can be observed in Fig. 6(d).

The most significant observation in terms of the Fe– TiO₂ loading on the GAC can be explained through the physical characteristics of the catalysts. All catalysts have been able to significantly remove alachlor from the solution whether irradiation was provided by UV or visible light. Aside from the substantial increase in the BET surface areas, GAC was also able to act as an adsorbent, which enhanced alachlor removal.

Under both UV and visible light irradiation, the highest alachlor removal percentages of 99.74% and 99.96% were observed using 10% Fe–TiO₂-GAC. The catalyst with 10% Fe–TiO₂-GAC was chosen as an

optimum parameter in alachlor degradation. Thus, it can be said that for the catalysts with 10% Fe–TiO₂ on GAC, the mechanism of alachlor removal is mostly a combination of adsorption and photocatalysis. The same thing cannot be said with the catalyst with 30% Fe–TiO₂ on GAC. For this catalyst, there was a slight decrease in surface area due to the reduced amount of GAC added. Thus, the immediate action of adsorption has also slightly decreased. Since a corresponding decrease in photoactivity has not been observed, the catalyst was still able to effectively remove alachlor. The activity of the catalyst can then be attributed to photocatalysis than adsorption, as there is a greater amount of Fe–TiO₂ and lesser amount of GAC as compared to the other two catalysts.

In Fig. 7(a), it can be observed that both photocatalytic processes achieved 100% removal of the 50 ppm alachlor solution after 120 min of reaction, while it took adsorption 150 min. During the initial 20 min, adsorption is faster than photocatalysis. UV and visible light irradiation may not be sufficient to generate adequate quantities of electron and hole pairs. Tolosa et al. [37] also reported that adsorption occurs more readily than photocatalysis. However, from 30 min to 120 min, the photocatalytic experiments already showed faster degradation rates compared to adsorption. Eventhough adsorption plays a larger role in alachlor removal using Fe-TiO₂-GAC, the photocatalytic processes were still able to enhance the overall alachlor removal efficiency. In addition, the degradation rates of the photocatalytic processes under UV and visible light do not significantly differ past the 30 min point in the reaction. During the first 30 min, the removal under UV light irradiation is only slightly faster than under visible light irradiation.

Additionally, TOC removal was analyzed at 0, 60, and 90 min of reaction time and the results were displayed in Fig. 7(b). Results showed that TOC was found to be decreased in all processes, thus confirming the mineralization of alachlor. TOC removal by UV photocatalysis has the highest removal percentage at 92.44% followed by that for visible light photocatalysis at 66.49% and adsorption at 48.39%. Compared with alachlor removal, all processes demonstrated complete removal at 90 min of reaction time. Thus, the Fe–TiO₂-GAC photocatalysts may be used effectively in alachlor removal under both UV and visible light irradiation.

4. Conclusions

 $Fe-TiO_2$ catalysts on GAC support can be synthesized via hydrothermal method without calcination. Photocatalytic degradation of alachlor was carried out using static reactors under UV and visible light irradiation. Under UV light irradiation, alachlor removal ranged from 72.94 to 99.74%, whereas it ranged from 83.64 to 99.96% under visible light irradiation. ANOVA determined that both regression models for photocatalysis under UV and visible light irradiation are significant with R^2 values of 0.9445 and 0.9526, respectively. BBD determined that only the interaction effect between of Fe-TiO₂ loading on GAC and initial alachlor concentration and their respective quadratic effects are significant in UV photocatalysis. On the other hand, under visible light photocatalysis, the significant factors are the main effects of Fe-TiO₂ loading and initial alachlor concentration, the interaction effects of initial solution pH with Fe-TiO2 loading and initial alachlor concentration, and the quadratic effects of the initial alachlor concentration and initial solution pH. The optimum conditions for alachlor photocatalytic degradation under UV and visible light irradiation are 10% Fe-TiO₂ loading on GAC, 30 ppm initial alachlor concentration, and initial solution pH of 4.

Acknowledgments

The authors would like to thank the National Research Council of Thailand (NRCT) Fund and the Department of Science and Technology, Philippines through the Engineering Research and Development for Technology (ERDT) for the financial support given to this research.

References

- S. Galassi, A. Provini, S. Mangiapan, E. Benfenati, Alachlor and its metabolites in surface water, Chemosphere 32(2) (1996) 229–237.
- [2] A. Ramesh, S.T. Maheswari, Dissipation of alachlor in cotton plant, soil, and water and its bioaccumulation in fish, Chemosphere 54 (2004) 647–652.
- [3] C.W. Knapp, D.W. Graham, G. Berardesco, F. de Noyelles Jr., B.J. Cutak, C.K. Larive, Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems, Water Res. 37(19) (2003) 4761–4769.
- [4] J.A. Gabaldon, J.M. Cascales, A. Maquieira, R. Puchades, Rapid trace analysis of alachlor in water and vegetable samples, J. Chromatogr. A 963 (2002) 125–136.
- [5] S. Baup, C. Jaffre, D. Wolbert, A. Laplanche, Adsorption of pesticides onto granular activated carbon: Determination of surface diffusivities using simple batch experiments, Adsorption 6 (2000) 219–228.
- [6] B.N. Badriyha, V. Ravindran, W. Den, M. Pirbazari, Bioadsorber efficiency, design and performance forecasting for alachlor removal, Water Res. 37 (2003) 4051–4072.
- [7] D. Choi, O.M. Lee, S. Yu, S.W. Jeong, Gamma radiolysis of alachlor aqueous solutions in the presence of hydrogen peroxide, J. Hazard. Mater. 184 (2010) 308–312.

- [8] X. Wang, Y. Zhang, Degradation of alachlor in aqueous solution by using hydrodynamic cavitation, J. Hazard. Mater. 161 (2009) 202–207.
- [9] J.H. Zhu, X.L. Yan, Y. Liu, B. Zhang, Improving alachlor biodegradability by ferrate oxidation, J. Hazard. Mater. B135 (2006) 94–99.
- [10] H. Li, J.H. Qu, H.J. Liu, Decomposition of alachlor by ozonation and its mechanism, J. Environ. Sci. 19 (2007) 769–775.
- [11] Z. Qiang, C. Liu, B. Dong, Y. Zhang, Degradation mechanism of alachlor during direct ozonation and O₃/H₂O₂ advanced oxidation process, Chemosphere 78 (2010) 517–526.
- [12] J. Qu, H. Li, H. Liu, H. He, Ozonation of alachlor by Cu/Al₂O₃ in water, Catal. Today 90 (2004) 291–296.
- [13] F. Beltran, B. Acedo, J. Rivas, Use of ozone and hydrogen peroxide to remove alachlor from surface water, J. Environ. Contam. Toxicol. 63 (1999) 9–14.
- [14] M.M. Ballesteros Martin, J.A. Sanchez Perez, J.L. Garcia Sanchez, L. Montes de Oca, J.L. Casas Lopez, I. Oller, S. Malato Rodriguez, Degradation of alachlor and pyrimetharil by combined photo-Fenton and biological oxidation, J. Hazard. Mater. 155 (2008) 342–349.
- [15] M. Slaba, R. Szewczyk, M.A. Piatek, J. Dlogonski, Alachlor oxidation by the filamentous fungus *Paecilomyces marquandii*, J. Hazard. Mater. 261 (2013) 443–450.
- [16] M.V. Bagal, P.R. Gogate, Sonochemical degradation of alachlor in the presence of process intensifying additives, Sep. Purif. Technol. 90 (2012) 92–100.
- [17] R.A. Torres, R. Mosteo, C. Petrier, C. Pulgarin, Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability, Ultrason. Sonochem. 16 (2009) 425–430.
- [18] C.C. Wong, W. Chu, The direct photolysis and photocatalytic degradation of alachlor at different TiO₂ and UV sources, Chemosphere 50 (2003) 981–987.
- [19] Y. Xin, H. Liu, L. Han, Y. Zhou, Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology of TiO₂/Ti photoelectrodes, J. Hazard. Mater. 192 (2011) 1812–1818.
- [20] C.L. Bahena, S.S. Martinez, Photodegradation of chlorbromuron, atrazine, and alachlor in aqueous systems under solar irradiation, Int. J. Photoenergy 2006 (2006) 1–6.
- [21] W. Chu, C.C. Wong, Study of herbicide alachlor removal in a photocatalytic process through the examination of the reaction mechanism, Ind. Eng. Chem. Res. 43 (2004) 5027–5031.
- [22] C.C. Wong, W. Chu, The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO₂ suspensions, Environ. Sci. Technol. 37 (2003) 2310–2316.
- [23] S. Yao, J. Li, Z. Shi, Immobilization of TiO₂ nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants, Particuology 8 (2010) 272–278.
- [24] C.A. Castro-Lopez, A. Centeno, S.A. Giraldo, Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants, Catal. Today 157 (2010) 119–124.
- [25] K. Wantala, L. Laokiat, P. Khemthong, N. Grisdanurak, K. Fukaya, Calcination temperature effect on solvothermal Fe-TiO₂ and its performance under visible light irradiation, J. Taiwan Inst. Chem. E 41 (2010) 612–616.

- [26] X. Wang, Y. Tang, M.Y. Leiw, T.T. Lim, Solvothermal synthesis of Fe-C co-doped TiO₂ nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water, Appl. Catal. A: Gen. 409–410 (2011) 257–266.
- [27] N.A. Jamalludin, A.Z. Abdullah, Reactive dye degradation by combined Fe(III)/TiO₂ catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature, Ultrason. Sonochem. 18 (2011) 669–678.
- [28] S. Liu, Y. Chen, Enhanced photocatalytic activity of TiO2 powders doped by Fe unevenly, Catal. Commun. 10 (2009) 894–899.
- [29] T.K. Ghorai, S.K. Biswas, P. Pramanik, Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO₂ nanophotocatalyst prepared by novel chemical method, Appl. Surf. Sci. 254 (2008) 7498–7504.
- [30] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO₂ for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res. 45 (2006) 5231–5238.
- [31] M. Asiltürk, S. Sener, TiO₂-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities, Chem. Eng. J. 180 (2012) 354–363.
- [32] S.M. Lam, J.C. Sin, A.R. Mohamed, Parameter effect on photocatalytic degradation of phenol using TiO₂-P25/activated carbon (AC), Korean J. Chem. Eng. 27 (2010) 1109–1116.
- [33] S.M. Lam, J.C. Sin, A.R. Mohamed, Optimizing photocatalytic degradation of phenol by TiO₂/GAC using response surface methodology, Korean J. Chem. Eng. 28 (2011) 84–92.

- [34] C.Y. Kuo, C.H. Wu, S.T. Chen, Decolorization of C.I. Reactive Red 2 by UV/TiO₂/PAC and visible light/TiO₂/ PAC systems, Desalin. Water Treat. 52 (2014) 834–843.
- [35] S. Yao, J. Li, Z. Shi, Immobilization of TiO₂ nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants, Particuology 8 (2010) 272–278.
- [36] Y. Li, J. Chen, J. Liu, M. Ma, W. Chen, L. Li, Activated carbon supported TiO₂-photocatalysts doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor, J. Environ. Sci. 22 (2010) 1290–1296.
- [37] N.C. Tolosa, M.C. Lu, H.D. Mendoza, A.P. Rollon, The effect of the composition of tri-elemental doping (K, Al, S) on the photocatalytic performance of synthesized TiO₂ nanoparticles in oxidizing 2-chlorophenol over visible light illumination, Appl. Catal. A: Gen. 401 (2011) 233–238.
- [38] K. Wantala, S. Neramittagapong, A. Neramittagapong, K. Kasipar, S. Khaownetr, S. Chuichucherm, Photocatalytic degradation of alachlor on Fe-TiO₂-immobilized on GAC under black light irradiation using Box– Behnken design, Mater. Sci. Forum 734 (2013) 306–316.
- [39] K. Wantala, P. Khemthong, J. Wittayakun, N. Grisdanurak, Visible light-irradiated degradation of alachlor on Fe-TiO₂ with assistance of H₂O₂, Korean J. Chem. Eng. 28(11) (2011) 2178–2183.
- [40] H. Slimen, A. Houas, J.P. Nogier, Elaboration of stable anatase TiO₂ through activated carbon addition with high photocatalytic activity under visible light, J. Photochem. Photobiol. A: Chem. 221 (2011) 13–21.
- [41] J.R. Kastner, J. Miller, K.C. Das, Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars, J. Hazard. Mater. 164(2–3) (2009) 1420–1427.