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ABSTRACT

Padé approximants are used to model physicochemical, transport, and thermodynamic
properties of seawater for industrial applications. Sophisticated mathematical models to
calculate saline solution properties are presented in the literature for applications in which
very high accuracy is needed, such as oceanographic studies. Such accuracy is not necessary
in the design and optimization of processes in which seawater is used, mainly in the mining
industry (mineral concentration, hydrometallurgy, and refining processes). The properties
studied are density, specific heat, osmotic coefficient, viscosity, thermal conductivity, surface
tension, enthalpy, entropy, vapor pressure, latent heat of vaporization, and boiling
temperature elevation. Padé approximants represent a useful tool in applied mathematics
and have not been used to model saline solutions properties in the way presented here.
Padé results are compared with Taylor series and simple polynomial expansions. The
general models obtained are of rational type and give deviations similar to those provided
by more sophisticated models presented in the literature.

Keywords: Seawater properties; Padé approximants; Taylor series; Density; Transport
properties; Thermodynamic properties

1. Introduction

Water is the most universal good in our daily life
and in the industry, and in both areas the demand for
this resource increases day by day due to the increase
in population and due to the rapid industrial develop-
ment in many countries [1]. Water scarcity is one of
the main challenging problems in industry, but it is of
special relevance in mineral processes in which water
consumption is huge and also because mining

operations are usually located where there is no water
or water is extremely scarce. Although the amount of
water used per kilogram of mineral produced varies
from mine to mine and also through the years, an
average estimate can be done. One report on water
consumption in copper production indicates that
between 200 and 500 L of water are used to produce
one kilogram of mineral [2]. Part of the water used in
a process is treated and recirculated, but still the
amount of fresh water needed is not easily available
in nature. Under this scenario, most of the new
mining projects consider the use of seawater or
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desalinated water to partially supply their needs, and
at present, most mining countries make use of seawa-
ter in their mining operations.

The main problem in using seawater in industry is
the salt content that may affect some processes. The
global concentration of salts in seawater varies
between narrow ranges (34–37 g of salts per kilogram
of solution) but important local variations (where
seawater is collected for a given process) may occur
and salinity and temperature of seawater could also
vary in a significant way, affecting the value of its
thermophysical properties [3]. Perhaps more impor-
tant is that during industrial processes in which sea-
water is used, temperature and salinity may change
and, therefore, properties of the solution will also
change. Therefore, accurate data for seawater proper-
ties are needed as function of temperature and
salinity. Experimental data of seawater properties are
available, but the data are dispersed in the literature,
are incomplete or are available for ranges of tempera-
ture and salinity outside the ranges of interest in
industrial processes. Also, obtaining experimental data
for all situations required in industrial processes is
very expensive. For process equipment design, for
material and energy balances and for simulation
processes it is convenient to express the variation of
seawater properties with temperature and salinity
using accurate mathematical models. Good-accurate
models are obtained using good-accurate data [4].

The availability of good-accurate data will clearly
have economic benefits since good data would allow:
(1) improving process conditions; (2) developing new
processes; (3) reducing oversizing in the design of
new equipment; and (4) reducing energy requirements
[4]. In other situations, aspects related to safety or to
environmental issues must be taken into consider-
ation. From an academic point of view, having good
accurate data allows corroborating theories and
correlations, and completing data bases for multiple
purposes.

In oceanographic studies, differences in salinity of
10−5 to 10−6 g of salt per kilogram of solution have
usually very small influence in the calculation of some
properties of seawater. However, such small differ-
ences may cause erroneous results and erroneous
conclusions about certain phenomena occurring in the
sea. For instance, in the determination of density field,
density values are of crucial importance, since density
plays an important role in determining where the
water will flow. For industrial applications on the sur-
face of the Earth, such very accurate measurements
and estimates are not necessary. Therefore, the interest
in this work is on the proposal of simple models for
estimating seawater properties within accuracies of

common instruments and within errors of experimen-
tal data in industrial processes; in a rough general
way, absolute deviations of the order of 0.1–1%.

The estimation of physical, chemical, and thermo-
dynamic properties of seawater is not an easy problem
to solve, considering that seawater from different
places have different temperature and salt content and
even may have different type of salts. However, there
are some concepts and assumptions that have been
developed to simplify engineering calculations. The
definition of the reference salinity concept, for
instance, is one of the major contributions and can be
used in process design and process simulation. In a
simple way, salinity is a measure of the dissolved
solids in seawater, usually expressed in grams of salt
per kilogram of solution.

Seawater properties such as density, specific heat,
osmotic coefficient, viscosity, thermal conductivity,
surface tension, enthalpy, entropy, vapor pressure,
latent heat of vaporization, and boiling temperature
elevation are widely required in several calculations,
such as pumping, fluid flow, evaporation, flotation,
leaching, reverse osmosis, solvent extraction, and
crystallization, among others. Several models for these
seawater properties have been proposed through the
years. A good recent compilation of selected models
has been presented by Sharqawy et al. [5]. These
authors recommend using the models that gives the
lowest average deviation between calculated and
experimental data, independent of the complexity of
the model. For those recommended models, deviations
are very low, so values calculated by these models can
be considered as pseudo experimental data and are
used in this work.

In all regression analysis, the optimum values of
the model parameters are those that optimize a chosen
objective function. Such an objective function must
include the experimental data and the model esti-
mates, being the most common expressions for such
objective functions the difference between the values
calculated with the model and the experimental data,
in absolute values, squared differences, root square of
differences, and other more involved definitions. From
the practical point of view, however, there are three
statistical parameters that according to literature, stud-
ies are the most appropriate ones for deciding about
the goodness and accuracy of a mathematical model:
the mean average deviation, the mean average abso-
lute deviation, and the maximum absolute deviation,
as detailed later in this paper [6].

Padé approximants are useful tools in applied
mathematics and have been frequently used in statisti-
cal mechanics, thermodynamics, and estimation of
physical properties [7–10] but has not been applied to
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correlate and estimate properties of seawater as
proposed here. In this work, application of Padé
approximants is done to correlate the following prop-
erties of seawater: density, specific heat, osmotic coef-
ficient, viscosity, thermal conductivity, surface tension,
enthalpy, entropy, vapor pressure, latent heat of
vaporization, and boiling temperature elevation.

2. Formulation

2.1. Models for seawater properties

As described above, there are several models
proposed in the literature for different properties at
different ranges of temperature (T) and salinity (S).
Although properties vary in a regular, smooth form
with these variables, the combined effect (of T and S)
is different for different properties. This has given ori-
gin to the proposal of sophisticated algebraic expres-
sion with high number of adjustable parameters,
including high degree polynomials, potential func-
tions, and logarithmic functions, among others. For
example a third degree polynomial in T and a second
degree polynomial in S with a total of 12 adjustable
parameters for the specific heat of seawater at a tem-
perature T and total salinity S has been proposed [5]:

C ¼ ½a0 þ a1Sþ a2S
2� þ ½b0 þ b1Sþ b2S

2� � T þ ½c0 þ c1S

þ c2S
2� � T2 þ ½d0 þ d1Sþ d2S

2� � T3

(1)

For the viscosity a logarithmic-type model contain-
ing 14 parameters, is recommended [5]:

logðlÞ ¼ log a1 þ ða2 t þ a3ð Þ2þa4
n o�1

� �
þ b1

c1S

1þ c2S

� �

þ b2
c1S

1þ c2S

� �2
þb3

c1S

1þ c2S

� �3

þ log a1 þ ða2 t þ a3ð Þ2þa4
n o�1

� �

� b4
c1S

1þ c2S

� �
þ b5

c1S

1þ c2S

� �2
þb6

c1S

1þ c2S

� �3( )

(2)

For the thermal conductivity, an expression con-
taining logarithmic terms, potential terms, and rational
expressions, with a total of nine parameters, has been
proposed [5]:

logðkÞ ¼ logða1 þ a2 � SÞ
þ a3 a4 � a5 þ a6 � S

T

� �
1� T

a7 þ a8 � S
� �a9

(3)

As observed, these expressions (1–3) seem to be
somewhat complex for properties that have smooth
behavior with the independent variables T and S, as
shown in Fig. 1. As shown in the figure, in the range
of temperature and salinity considered in this study,
the effect of temperature is more important for viscos-
ity than for the other properties (specific heat and
thermal conductivity). The values for the viscosity
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Fig. 1. Viscosity, specific heat, and thermal conductivity of
seawater as a function of temperature and salinity. Salinity
is 20, 40, 60, 80, 100, and 120 g/kg, from bottom to top in
viscosity and from top to bottom for specific heat and
thermal conductivity.

J.O. Valderrama and R.A. Campusano / Desalination and Water Treatment 57 (2016) 8683–8695 8685



vary up to four times (from about 0.3–1.3 kg/m s),
while for specific heat and thermal conductivity values
change by about 10–15% in the same range of temper-
ature and salinity. The effect of salinity is low in all
cases being also higher for the viscosity (50% variation
at lower temperatures).

Table 1 presents selected models for several prop-
erties of seawater as recommended by Sharqawy et al.
[5]. In the table, models are classified in an arbitrary
but convenient way as: Lin = linear, Pol = polynomial,
Log = logarithmic, Rat = rational, and Pot = potential.
The symbol * indicates that the model includes the
pressure as an independent variable. As seen in the
table, not only equations are complex for the specific

heat, the viscosity, and the thermal conductivity as
shown above, but also for density (polynomial-type
with 24 parameters) and surface tension (potential-
type with seven parameters). In this context, it seem
interesting to take advantage of some of the attractive
properties of Padé approximants to propose models
that without losing accuracy contain few parameters.
It seems that there is no reason that justify having 10
or more parameters for modeling the specific heat, the
viscosity, or the thermal conductivity of seawater to
obtain the necessary accuracy. Very high accuracy
may be required in oceanographic studies but
certainly this is not needed for process engineering
applications such as those mentioned above in which

Table 1
Summary of correlations proposed in the literature for seawater properties (Pol = Polynomial; Pot = Potential;
Rat = Rational; Lin = Linear; and Log = Logarithmic)

Property Nº par Math type Range T Range S %Δy

Density (ρ) 12 Pol 20–180 (t68) 10–160 (Sp) 0.1
15 Pol + Pot 2–40 (t68) 0–42 (Sp) 0.01
24* Pol 0–180 (t) 0–180 (S) 2.5
10 Pol 0–180 (t) 0–160 (S) 0.1

Vapor pressure (pvap) 8 Log 100–180 (t48) 35–170 (Sp) 0.07
8 Pol 25 (t48) 10–22 (Cl) 0/00 0.2
4 Log 273–313 (T48) 0–40 (Sp) 0.015
14 Pol + Pot 0–40 (t68) 0–40 (Sp) 0.02

Boiling temperature elevation (BTE) 8 Rac + Pot 273–473 (T68) 0–0.12 kg/kg (Sp) 0.1
6 Pol 20–180 (t48) 35–100 (Sp) 0.7
6 Pol 0–200 (t) 0–120 (S) 1.7

Osmotic coefficient (Ω) 7 Pol 25 (t68) 0.016–0.04 kg/kg (Sp) 0.1
18 Rac + Pot + Log 0–40 (t68) 0–0.04 kg/kg (Sp) 0.3
10 Pol 0–200 (t) 10–120 1.4

Viscosity (μ) 12 Rac + Pot + Log 20–150 (t) 15–130 (Sp) 0.4
10 Pol 10–180 (t68) 0–150 (Sp) 1
10 Pol 0–180 (t) 0–15 (S) 1.5

Thermal Conductivity (k) 9 Rac + Pot + Log 0–180 (t68) 0–160 (Sp) 3
5* Log 0–60 (t68) 0–60 (Sp) 0.5
4* Log 0–30 (t68) 35 g/kg (Sp) 0.4

Surface tension (τ) 3 Lin 0–40 (t27) 10–35 (Sk) na
3 Lin 0–40 (t27) 10–35 (Sk) na
4 Lin 15–35 (t) 5–35 (Sp) 0.1
7 Pot + Log 0–40 (t) 0–40 (S) 0.18

Specific heat (C) 12 Pol 273–453 (T48) 0–180 (Sp) 0.28
9 Pol 0–180 (t48) 0–12% (Sk) 0.001
11 Pol 5–35 (t68) 0–22 (Cl) 0.01
20* Pol 0–374 (t) 0–40 (S) 4.62

Entropy (Ψ) 34* Pol 0–375 (t) 0–120 (S) 35
14 Pol + Pot 0–40 (t68) 0–40 (Sp) 8
15 Pol 10–120 (t) 0–0.12 (S) 0.5

Enthalpy (h) 16 Pol + Pot 0–40 (t68) 0–40 (Sp) 12
14 Pol 0–120(t) 0–120(S) 0.5
7 Pol 0–30 (t68) 10–40(Sp) 0.6

Heat of vaporization (Δhvap) 5 Pol 0–200 (t) 0–120 (S) 0.01

Source: Data are from Sharkawy et al. [5].

8686 J.O. Valderrama and R.A. Campusano / Desalination and Water Treatment 57 (2016) 8683–8695



seawater can, partially, or totally, replace potable or
natural water (mineral concentration, hydrometal-
lurgy, or refining processes).

2.2. Padé approximants

In 1892, the French mathematician Henri Eugène
Padé presented a systematic study on the approximate
representation of a function by rational fractions in the
Scientific Transactions of the École Normale Supérieure
in Paris, representation known nowadays as Padé
approximants. These approximants have been used in
fluid dynamics [11], in optics [12], in statistical thermo-
dynamics [7,13], in linear circuit analysis [14], in
quantum field theory [15], in material behavior [16],
and in finance calculations [17] among other applica-
tions. Padé approximants have also shown to be a
useful tool for correlating properties of substances in
particular physical, physicochemical, and transport
properties of foods [10]. To the best of the author’s
knowledge, Padé approximants have not been used to
model properties of seawater as function of tempera-
ture and salinity.

Padé approximants are rational functions in which
the numerator is a polynomial Qm(x) and the denomi-
nator is another polynomial Rn(x). If a set of data is
fitted using this rational expression Qm(x)/Rn(x),
known as Padé approximant, the accuracy of the fitted
equation would be, in general, much better that a
polynomial or an expansion in series such as Taylor
or Maclaurin series [18,19]. In other words, one would
require many terms in the series to represent the func-
tion that a Padé approximant can represent with only
few parameters.

Padé approximants are designated with the symbol
Pm,n(x), as follows:

fðxÞ ¼ Pm;nðxÞ ¼ QmðxÞ
RnðxÞ (4)

In Eq. (4) Qm(x) and Rn(x) are polynomials of
degree m and n, respectively.

Qm xð Þ ¼ qo þ q1 � xþ q2 � x2 þ q3 � x3 þ . . .þ qm � xm
Rn xð Þ ¼ ro þ r1 � xþ r2 � x2 þ r3 � x3 þ . . .þ rn � xn (5)

The simplest Padé of a function of a single vari-
able, f(x), is that in which the polynomials Q and R
are of first order, as follows:

fðxÞ ¼ aþ b � x
1þ c � x (6)

Press et al. [20] presented an interesting case
of a function that clearly shows the advantages of
Padé over analytical series expansions or simple
fitted polynomials. The function considered was
f(x) = [7 + (a + x)4/3]1/3. This case is discussed and
extended here to clarify the advantages of Padé ap-
proximants. Fig. 2 shows the results for this function
and three models: polynomial of order four, Taylor
series of order four, and a simple P2,1.

As observed in Fig. 2, Padé representation is sim-
ply remarkable, up to high values of x, much higher
than the maximum of the range in which the equa-
tions were fitted (x = 2). Why Padé behaves this way
but sometimes it does not, is until today a mystery for
the mathematicians. However, it is generally accepted
that it is difficult to know in advance how Padé is
going to work and the accuracy will depend on each
particular application. Press et al. [20] presented a nice
analysis of Padé approximants and wrote:
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Fig. 2. The function f(x) = [7 + (a + x)4/3]1/3 fitted with a polynomial, with a Taylor series and with a Padé expression.
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That is the downside of Padé approximation: it is
uncontrolled. There is, in general, no way to tell how
accurate it is, or how far out in x it can usefully be
extended. It is a powerful, but in the end still myste-
rious, technique.

There are, of course, several mathematical conditions
of the function f(x) to be well represented by a Padé
approximant. The most important is that f(x) should
be continuous in the range of x for which Padé is
going to be applied. Also, Padé approximants are
affected by some “anomalies” being one of the most
commented in the literature so called “poles” that
occurs when the denominator becomes zero [21].

The most common and accurate approximants are
those in which the polynomial Qm(x) has the same
degree or one more degree than polynomial Rn(x) [22].
If the ratio Qm(x)/Rn(x) is expanded in a Taylor or
Maclaurin series, one would need in many cases much
more terms than (n + m) in the series to give values
similar to those of the function being studied. For
example, Valderrama and Sandler [7] calculated
second virial coefficients using perturbation theory,
which is in fact an expansion in series. The authors
demonstrated that a simple P2,1 model (with three
parameters) gives more accurate results than a six
degree polynomial.

From a practical point of view, Padé approximants
represent a simple form for modeling properties that
can be represented by series. This is the case of most of
the properties of substances in which these vary in a
continuous and monotonous way with certain defined
variables. In the applications of interest in this paper,
the properties of seawater vary with temperature T and
salinity S in a smooth, continuous, and decreasing or
increasing form and they have all the characteristics of
“mathematically favorable” functions. Thus, these
properties can be represented by polynomials and most
probably by Padé expression with just few parameters.
In some cases, it may be necessary to transform the
variables to get the continuous monotonous change.
The vapor pressure of seawater, for instance, is a prop-
erty that is better modeled if the variable is represented
as Ln(p).

The extension of Padé approximants to multivari-
able functions (such as properties of seawater that
depend on two variables) has been matter of extensive
mathematical studies [23–25]. From the practical point
of view, however, the extension is more or less
straightforward and, according to one author, multi-
variate Padé approximation “is a natural generaliza-
tion of the univariate Padé approximation” [23]. The
application presented in this paper considers the sim-
ple extension of Padé, and the proposal and analysis

of approximants that include only linear expressions
for Qm(x) and Rn(x) in Eq. (4).

2.3. Proposed models

After analyzing the models available in the litera-
ture for the properties of seawater presented in Table 1
and observing the form of the curves at several tem-
peratures and salinities (such as those shown in
Fig. 1), it seems that a simple Padé considering both
variables in the polynomials Qm(T,S) and Rn(T,S)
would be good enough to represent all properties,
independent of the mathematical complexity of the
models presented in the literature (polynomial,
rational, logarithmic, or potential-type equations). The
proposed general Padé model includes a maximum of
seven parameters, but for some properties less than
the seven parameters will be required. The Padé
model is:

fðT; SÞ ¼ a1 þ a2 � T þ a3 � Sþ a4 � T � S

1þ b2 � T þ b3 � Sþ b4 � T � S
(7)

If fo is the function f(T,S) evaluated at the reference
point (To, So), and if the subindex “o” for each of the
derivatives indicating that it corresponds to the deriv-
ative evaluated at (To, So), the series expansion of the
function of two variables, T in kelvin, and S in (g of
salt per kg of solution) is [26]:

fn T; Sð Þ ¼ fo þ
@f

@T

����
o

ðT � ToÞþ
@f

@S

����
o

ðS� SoÞ
� �

þ 1

2

@2f

@T2

����
o

ðT � ToÞ2þ2
@2f

@T@S

����
o

ðT � ToÞ ðS� SoÞ
�

þ@2f

@S2

����
o

ðS� SoÞ 2
�
þ 1

6

@3f

@T3

����
o

ðT � ToÞ3
�

þ 3
@3f

@T2@S

����
o

ðT � ToÞ 2ðS� SoÞ

þ3
@3f

@T@S2

����
o

ðT � ToÞ ðS� SoÞ2 þ @3f

@S3

����
o

ðS� SoÞ 3
�

þZnðxÞ
(8)

In the application presented in this study, To = 273.
15 K and So = 0 (pure water) and the function f(T,S)
are the Padé expression (7).

What is interesting to analyze is how many terms
in the series expansion (8) would be necessary to
obtain the same value of f(T,S) than that provided by
the simple Padé of Eq. (7), in the whole range of the
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variables T and S. Literature information indicates that
a simple Padé expression, such as the one described
by Eq. (4) can represent a series of several terms. Not
only that, but it is expected that the final Padé for the
different properties can be simpler than the Padé of
Eq. (7). For those properties that vary in a regular and
monotonous way with both T and S, such as the
osmotic coefficient or the thermal conductivity shown
in Fig. 1, fewer parameters will certainly be needed.
All these will be demonstrated in the next section.

Since the model includes two independent vari-
ables (T and S), the Padé will be named according to
the number of parameters in the nominator and
denominator of the Padé expression, and not accord-
ing to the degree of the polynomial, as usually done
when there is only one independent variable. There-
fore, expression (7), for instance, is a P4,3 model in the
context of this work; four parameters in the numerator
(a1, a2, a3, a4) and three parameters in the denominator
(b2, b3, b4).

The property f(T,S) in Eq. (7) is any of the proper-
ties of seawater of interest in this work: density,
specific heat, osmotic coefficient, viscosity, thermal
conductivity, surface tension, enthalpy, entropy, vapor
pressure, latent heat of vaporization, and boiling tem-
perature elevation. Values of these properties are
directly used to evaluate the Padé coefficients except
for the vapor pressure, y = pvap. For this property, the
variation of pvap with temperature is dramatic, going
from approximately 1–200 kPa. This means that the
ratio between the highest value of a property and the
lowest value is of the order of 200. For the other prop-
erties, this ratio is smaller (from 2 to 20, depending on
the property). Therefore, for the vapor pressure, the
variable to be represented by Padé was the logarithm
of the vapor pressure, y = Ln(pvap). After changing the
variable, the ratio between the highest and the lowest
value of Ln(pvap) is reduced to 25 (instead of 200 as
using pvap values). Once the Padé parameters are
obtained, the vapor pressure is calculated (pvap = ey)
and deviations between Padé and literature values are
determined using vapor pressure values, pvap, not the
logarithm, Ln(pvap).

2.4. Data and software used

Of the several models for estimating properties of
seawater discussed by Sharqawy et al. [5], the most
accurate expressions were used to generate pseudo-
experimental values within the ranges of temperature
and salinity indicated by the authors for each model
and each property. The chosen models are those that
according to Sharqawy et al. [5] give deviations below
1%, a value which is within experimental errors [5].

Table 2 specifies the equations used for generating the
data used in the present study. The tables and
equations referred to the paper by Sharqawy et al. [5].
The ranges of temperature and salinity are presented
in Table 3. The different temperature and salinity
scales considered by the different models presented in
Table 1 for each of the properties have been standard-
ized, and all Padé models presented in this work use
absolute temperature in kelvin and salinity in grams
of salt per kilogram of water.

Differences between values of temperature defined
by the different scales are within the limits of accuracy
of most common temperature measurement devices
and certainly these differences have no practical influ-
ence within the ranges of temperature present in
industrial processes [27,28]. For salinity, however, very
different values for the same solution are found using
the different salinity scales. The correlations men-
tioned in Table 1 for the several properties studied
include Knudsen salinity (Sk), Chlorinity (Cl), and the
Practical Salinity Scale (SP). The reference-composition
salinity S defined by Millero et al. [29] is currently the
best estimate for the absolute salinity according to the
International Association for the Physical Sciences of
the Oceans (IAPSO) [5]. This salinity is designated by
S and is the one used in the models proposed in this
work. The relations between the different salinity
scales are provided in Table 4.

There are several software packages capable of
performing the type of optimization required in this

Table 2
Models used for generating the data used for each
property

Property Page Table Equation

Density 357 2 5
Vapor pressure 368 7 31
Boiling temperature elevation 368 7 35
Osmotic coefficient 375 10 49
Viscosity 364 5 16, 17, 23
Thermal conductivity 362 4 13
Surface tension 366 6 27, 28
Specific heat 360 3 9
Entropy 373 9 46
Enthalpy 371 8 43
Latent heat of vaporization 370 – 37
Pure water
Vapor pressure 377 11 53
Entropy 378 11 56
Enthalpy 378 11 55
Latent heat of vaporization 377 11 54

Source: The page, the number of table, and the equation are those

of the paper by Sharqawy et al. [5].
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work for determining the parameters of the Padé
models. The software DataFit is the tool used in this
work to perform nonlinear regression analysis and
data plotting of multivariable functions and has the
flexibility and accuracy required for this work. DataFit
is an easy-to-use mathematical tool controlled by an
intuitive graphics interface with clear instructions and
menus. Data entry can be done through a standard
spreadsheet interface or you can cut and paste data
from the clipboard. DataFit performs linear and non-
linear regression of data containing up to 20 indepen-
dent variables and it has many pre-defined equations,
but one can also propose a new model if needed [30].
For the Taylor series expansion MatlabTM software
was employed. The Padé expression was introduced
in a Matlab code that transform the expression in a
Taylor series.

3. Results and discussion

The accuracy of the models was analyzed by deter-
mining three statistical parameters that according to
literature studies are the most appropriate for decid-
ing about the goodness and accuracy of a mathemati-
cal model for a property “y” [6]: the average deviation
(%Δy), the average absolute deviation (|%Δy|), and
the maximum absolute deviation (|%Δy|max):

%Dy ¼ 100

N

XN
1

ycali � yliti
yliti

� �
(9)

%Dyj j ¼ 100

N

XN
1

ycali �yliti
yliti

����
���� (10)

max %Dyi
�� �� ¼ 100 � ycali �yliti

yliti

����
���� (11)

The average deviation %Δy indicates how corre-
lated values are dispersed around the experimental
data. If deviations are well distributed with negative
and positive values, the average deviation will be
close to zero, independent of the magnitude of the
deviations, because negative and positive deviations
would cancel each other. The average absolute devia-
tion |%Δy| gives an indication on how big are devia-
tions. If these are low, the average would be low and
most probably an acceptable model has been found.
However, the maximum absolute deviation |%Δy|max

is also important to observe because not only it high-
lights the value of this maximum during correlation,
but it also gives an indication of the maximum
deviation to be expected when the model is used for
predicting a value for a given property.

3.1. Padé results

The values of the parameters in Eq. (7) for each of
the properties were determined using the DataFit
software and are shown in Tables 5–7. The optimum
values of the parameters are those that produce the
lowest average absolute deviations between correlated
and literature values for the property studied. For

Table 3
Ranges of temperature ΔT and salinity ΔS for the development of the Padé models

Property ΔT (K) (lit) ΔT (K) (used) ΔS (g/kg) No. of data

Density 293–453 293–393 10–160 234
Vapor pressure 283–453 283–393 35–170 261
Boiling temp. elevation 293−453 293–393 35–100 130
Osmotic coefficient 273–473 273–393 10–120 217
Viscosity 293–423 293–393 15–130 208
Conductivity 273–453 273–393 0–160 279
Surface tension 273–313 273–313 0–40 205
Specific heat 273–453 273–393 0–180 310
Entropy 283–393 283–393 0–120 203
Enthalpy 283–393 283–393 0–120 203
Heat of vaporization 273–473 273–393 0–120 217

Table 4
Relations between the different salinity scales

S = 1.00557 * Sk − 0.03016
S = 1.815068 Cl
S = 1.00472 Sp
Sk = 0.99446 S + 0.02999
Cl = 0.55094 S
Sp = 0.9953 S

8690 J.O. Valderrama and R.A. Campusano / Desalination and Water Treatment 57 (2016) 8683–8695



T
ab

le
5

P
ar
am

et
er
s
o
f
P
ad

é
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each property, results for the two Padé expressions
that give the lowest absolute average deviations are
provided in the tables for comparison and discussion.
Important to notice is that, depending on the accuracy
needed, the simplest expressions can be adopted in
engineering application without altering the results
and their consequences. This is the case of the thermal
conductivity, for instance, for which, P4,3 and P3,1

models give the same average absolute deviation (see
Table 6), differing in the maximum deviation, which
in any case is low and acceptable (0.50 and 0.55%,
respectively). Thus, the P3,1 model would be accept-
able for process design and simulation of industrial
processes.

As seen in Tables 5–7, the density, the thermal con-
ductivity, and the surface tension were well correlated
using a P3,1 model, with three parameters in the
numerator and one parameter in the denominator. For
these properties, the average deviations is lower than
or equal to 0.02%, the absolute average deviations is
lower than 0.2%, and maximum deviations lower than
0.6%. The specific heat was well correlated using a
simple P3,1 model, with three parameters in the
numerator and the one parameter in the denominator.
For this property, the average deviation is 0.01%, the
absolute average deviation is 0.41%, and the maxi-
mum deviation is 1.74%. Other properties require
more complex expressions such as P4,1 for the vapor
pressure and the osmotic coefficient and P4,2 for the
boiling temperature elevation, the entropy, and the
enthalpy. These latter results are expected if one con-
siders the more complex dependency of these proper-
ties with temperature and salinity.

Important to mention is that the values of the
parameters shown in Tables 5–7 are all presented with
four significant figures and all results shown in those
tables considered these values. We also checked that
having more significant figures do not produce
changes in the final value of a property nor in the
deviations calculated for each model.

3.2. Taylor series calculations

To check the alleged superiority of Padé approxi-
mants over series expansions, the different properties
were estimated by the Taylor series with increasing
number of terms. Three cases using Taylor series were
analyzed: (1) with linear terms; (2) with linear and qua-
dratic terms, and (3) Taylor series with linear, quadratic,
and cubic term. The Taylor series for f(T,S) is:

These three Taylor series expansions were
analyzed and values of f(T,S) calculated for different
values of temperature T and salinity S. In Table 8,
comparison of the accuracy provided by the various
complex models listed by Sharqawy et al. [5] and the
result of the Taylor series (with linear, quadratic, and
cubic terms) and the simplest Padé models presented
in this paper are shown. To be fair when comparing
the results of Padé and those mentioned in Table 1,
the following considerations were taken into account:
(1) the literature models in Table 1 that include the
pressure as an independent variable were not consid-
ered (those marked with the symbol * in the second
column of Table 1); (2) the models valid in ranges
different from those used in applying Padé were not
considered; (3) if more than one literature model is
comparable, comparison is done with the literature
model that gives the lowest deviation and having the
lower number of parameters.

As seen in Table 8, in most cases, deviations pro-
vided by Padé are lower than those of more sophisti-
cated models having usually greater number of
parameters and of Taylor series expansions including
up to third-order terms (T3, S3, T2S, TS2). Remarkable
is the case of osmotic coefficient in which a P4,1 (five
parameters) gave lower deviations than polynomials
or potential functions having 10 parameters. Thermal
conductivity was well modeled with a P3,1 model
(containing four parameters and with average devia-
tion of −0.01%), while a complex potential-rational-
logarithmic expression including nine parameters has
been reported to give average deviations of 3% [5].

f3ðT; SÞ ¼ fo þ ða2 � b2a1ÞðT � ToÞ þ ða3 � b3a1ÞðS� SoÞ½ �
þ 1

2
ð2a1b22 � 2a2b2ÞðT � ToÞ2 þ 2ða4 � a2b3 � a3b2 � a1b4 þ 2a1b2b3ÞðT � ToÞðS� SoÞ þ ð2a1b23 � 2a3b3ÞðS� SoÞ2
h i

þ 1

6
ð�6a1b

3
2 þ 6a2b

2
2ÞðT � ToÞ3 þ 3ð�2a4b2 þ 4a2b2b3 � 2a2b4 þ 2a3b

2
2 þ 4a1b2b4 � 6a1b

2
2b3ÞðT � ToÞðS� SoÞ2

h i
þ 1

6
3ð�2a4b3 þ 4a3b3b2 � 2a3b4 þ 2a2b

2
3 þ 4a1b3b4 � 6a1b

2
3b2ÞðT � ToÞ2ðS� SoÞ þ ð�6a1b

3
3 þ 6a3b

2
3ÞðS� SoÞ3

h i
(12)
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The case of surface tension is interesting, since the
models proposed in the literature are linear in T and S
(with four parameters). This occurs because the ranges
of temperature and salinity for the surface tension are
much narrower than for the other properties, as
shown in Table 3. Although the linear model is sim-
pler than any Padé expression, the latter has the
advantage of keeping accuracy in case, the ranges of
temperature and salinity are wider. The parameters of
the proposed Padé should be re-calculated if more
data are available.

4. Conclusions

According to the results and the analysis presented
in this paper, the following main conclusions can be
drawn: (1) the proposed Padé model showed to be
successful for correlating the properties of seawater
studied in this paper; (2) just one type of model allows
correlating all properties of seawater; and (3) the
sophisticated equations commonly presented in the lit-
erature for estimating properties of seawater are not
necessary for process design in which seawater is
employed.

Table 7
Parameters of Padé model for thermodynamic properties of seawater

Deviations and parameters

Ψ (kJ/kg K) h (kJ/kg) Δhvap (kJ/kg)

P4,3 P4,2 P4,3 P4,2 P4,2 P3,1

%y −0.01 −0.05 −0.04 −0.02 −0.02 0.01
|%y| 0.42 0.42 0.23 0.26 0.02 0.13
|%y|max 6.39 6.59 3.15 2.70 0.05 0.59
a1 1.186E-02 1.244E-02 1.644E + 00 −1.262E-01 2.500E + 03 2.501E + 03
a2 1.490E-02 1.487E-02 4.127E + 00 4.202E + 00 −3.948E + 00 −1.507E + 00
a3 −4.709E-04 −4.797E-04 −6.162E-02 −3.182E-02 −2.500E + 00 −2.412E + 00
a4 −3.864E-05 −3.829E-05 −4.065E-03 −4.495E-03 3.948E-03
b2 1.498E-03 1.482E-03 −1.107E-04 2.758E-05 −6.690E-04 3.932E-04
b3 −1.941E-03 −1.945E-03 −1.538E-04 7.274E-05 8.055E-10
b4 −2.545E-07 2.456E-06

Table 8
Comparison of accuracy between literature correlations and this work. The cells show the absolute % deviation |%Δy|,
the number of parameters (par), and model type (Lin = linear, Pol = polynomial, Log = logarithmic, Rat = rational, and
Pot = potential)

Property
Various models
(Sharqawy et al. [5])

Taylor series
f1(T,S)

Taylor
series f2(T,S)

Taylor
series f3(T,S)

Padé
(this work)

Density 0.1% (Pol; 10 par) 0.15 0.14 0.14 0.13 (P3,1; 4 par)
Vapor pressure 0.07% (Log; 8 par) 33.35 10.93 13.59 0.10 (P4,1; 5 par)
Boiling temperature

elevation
0.7% (Pot; 6 par) 50.96 8.72 6.39 0.10 (P4,2; 6 par)

Osmotic coefficient 1.4% (Pot; 10 par) 15.52 150.47 1,085.41 1.14 (P4,1; 5 par)
Viscosity 0.4% (Rat + Pot + Log; 12

par)
1,128.13 1,583.86 2,074.18 0.82 (P4,1; 5 par)

Thermal conductivity 3% (Rat + Pot + Log; 9
par)

7.99 0.92 2.90 0.18 (P3,1; 4 par)

Surface tension 0.1% (Lin; 4 par) 0.09 0.05 0.05 0.03 (P3,1; 4 par)
Specific heat 0.28% (Pol; 12 par) 0.42 0.41 0.41 0.41 (P3,1; 4 par)
Entropy 0.5% (Pol; 15 par) 18.01 7.10 6.45 0.42 (P4,2; 6 par)
Enthalpy 0.5% (Pol; 14 par) 7.88 0.28 0.28 0.26 (P4,2; 6 par)
Latent heat of

vaporization
0.01% (Pol; 5 par) 0.42 0.17 0.17 0.13 (P3,1; 4 par)
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Symbols

ai, bi, ci, di — coefficients in Padé and other
correlations

Cl — chlorinity
C — specific heat
e — Euler’s number
f(x) — general function of x
f0 — general function f(x) evaluated in x = 0
f(T,S) — property, function of temperature, and

salinity
fn(T,S) — Taylor expansion of order n
g — gram
h — enthalpy
k — thermal conductivity
K — kelvin
kJ — kilojoule
kg — kilogram
kPa — kilopascal
m — meter
m3 — cubic meter
m, n — degree of the numerator and

denominator in Padé
mW — mili watt
mN — mili newton
N — newton
p — pressure
pvap — vapor pressure
Pm,n (x) — general Padé model
qm, rn — coefficients in Padé
Qm(x), Rn(x) — polynomials in Padé
s — second
S — salinity
S0 — zero salinity (pure water)
Sk — Knudsen salinity
SP — practical Salinity
t — temperature (˚C)

Abbreviations

BTE — boiling temperature elevation
Eq. — equation
Lin — linear
Ln — natural logarithm
Log — logarithmic
Par — parameter
Pol — polynomial
Pot — potential
Rat — rational

Greek letters

α, β, γ — coefficient of Padé
αi — coefficient in general function f(x)
@x
@y — partial derivative of “x” with respect to “y”
Δ — difference
%Δ — percent deviation
Δhvap — heat of vaporization
Σ — summation
ρ — density
μ — viscosity
η — number of points in a data-set
τ — surface tension
Ω — osmotic coefficient
Ψ — entropy

Super/subscripts

cal — calculated
lit — literature
max — maximum
m — degree of polynomial in Padé numerator
n — degree of polynomials in Padé denominator

t27 — temperature scale 1927 (˚C)
t48 — temperature scale 1948 (˚C)
t68 — temperature scale 1968 (˚C)
T0 — absolute reference temperature

(273.15 K)
T — absolute temperature (K)
T48 — absolute temperature scale 1948 (K)
W — watt
x — general variable
x0 — reference value for x
% — percentage
0/00 — parts per thousand
%Δy — average deviation of property y
|%Δy| — average absolute deviation of

property y

max |%Δy| — maximum absolute deviation of
property y

ycal — calculated property
ylit — literature property
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