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ABSTRACT

Identifying the shortwave solar radiation, R;, is very important in various fields of science
which is calculated by mathematical models if not measured experimentally. These models
depend on the coastality factor, k,. Several equations are developed to calculate k, but with
errors of estimation. The aim of this paper was to develop a local formula to calculate k,
from temperature range. Based on the 30-year climate data for 29 weather stations through-
out the Kingdom of Saudi Arabia (KSA), monthly temperature ranges were calculated. The
hyperbolic equation was derived based on the best-fit analysis and the resulted errors of
four statistical parameters were compared with any other established formula. The average
of the absolute percent error was estimated as 2.1% as compared with 6-11% of the various
published models. Results show that k, is inversely proportional to the distance from the
coast and the altitude. In addition, it was found that urbanization has a considerable effect
on k, and the noncoastal but high-population cities behaved similar as coastal cities. It is
recommended to use the proposed equation due to its accuracy for the KSA instead of
using other models. More research is needed to further investigate the effects of urbaniza-
tion on the k,.
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1. Introduction

Of the huge amount of energy emitted by the sun
into space, our earth receives a small fraction in the
form of the spectrum of light, namely solar radiation
(Rs). Measuring the amount of solar radiation is very
important for environmental, meteorological, and agri-
cultural studies. Usually, R; is measured directly using
pyranometers, actinometers, or pyrheliometers, or

*Corresponding author.

indirectly using other devices and methods. In many
cases, direct measuring devices are not available, so
mathematical methods remain the only alternatives to
estimate the R, using the climate data. One of the
earlier published works is that of Prescott [1], who
correlated and revised the Angstrom formula using
Eq. (D).

R, = (u+b%)Rﬂ )
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where R, is the solar or shortwave radiation
(MJm™d™), a is the regression constant representing
the fraction of extraterrestrial radiation reaching the
earth on overcast days, b is the regression constant,
(a+D) is the fraction of extraterrestrial radiation reach-
ing the earth on clear days, n is the actual sunshine
duration (h), N is the maximum possible sunshine
hours (h), n/N is the relative sunshine duration, and R,
is the extraterrestrial radiation (MJ m 2d!). The calcu-
lation procedure of R, is presented in the Appendix.

The values of a and b, as derived from the litera-
ture, lie in the range of 0.1-0.3 and 0.4-0.7, respec-
tively. If not measured experimentally, a value of 0.25
and 0.50 for a and b, respectively, is the recommended
value to be used [2,3].

To measure the relative sunshine duration, two
parameters i.e. n (measured) and N (calculated) are to
be acquired, at first. The N is calculated using Eq.
(A2), as described in the Appendix. The values of n
were not recorded at some of the weather stations
used in this study, so cloud cover was measured to
determine 7 using the conversion formula as proposed
by Doorenbos and Pruitt [4], using Eq. (2).

% — 0.9659 — 0.0083 - C, @

where C. is the percent of the cloud cover and is cal-
culated as: C. = Oktas/8 x 100 with Oktas being the
number of parts appear as cloud covered of a mirror
divided by eight equal parts facing the sky, i.e. Oktas
=0 if the sky is totally clear, while Oktas=8 in full-
covered cloudy sky.

Hargreaves [5] concluded that R; can be computed
between R, and n/N, similar to the Angstom’s
approach using the Eq. (3).

R, = 0.075R, % % 100 3)

The accurate calculation of R,, however, was
region-specific with limited rather invalid application
at other places. Hargreaves and Samani [6] proposed
an improved formula for calculating the R, based on
the global climate database. The modified formula
depends on the temperature range and is given by

Eq. 4.

R, =k, x TR"® x R, )

where TR is the temperature range (C, Tmax—Tmin)
with Tax and Thin being the mean daily maximum

and minimum dry-bulb temperatures, respectively,
and k, is the empirical coefficient for the curve-fit of
R;/R, vs. TR. For instance, the k, coefficient's value
was 0.16 for Senegal River Basin as reported by
Hargreaves [7]. Later, Hargreaves concluded that the
values of k, can be estimated globally as 0.190 for any
coastal region (excluding island region), and as 0.162
for noncoastal (interior) regions [8]. Because of that
the variable k, was termed as the coastality value and
several attempts were made to find its appropriate
values. Allen [9] relates k, to the atmospheric pressure
at the site using the following equation.

p
kr = kro P_o (5)

where k,, is the empirical coefficient having a value of
0.17 for interior regions, and 0.20 for coastal regions, P
is the atmospheric pressure at station level (kPa), and
P, is the mean atmospheric pressure at sea level. This
formula was not found functioning well at elevations
>1,500 m, and therefore, was no longer recommended
at such elevations [10]. However, Samani estimated an
error up to 54% for the k, based on the above formula
and recommended an interpolated formula from real
data of 25 years for 65 stations in the United States
which can reduce the error to as low as 15% [11]. The
Samani’s proposed equation can be written as:

k, = 0.00185 x TR? — 0.0433 x TR + 0.4023 (6)

However, Samani recommend localizing the above
relationship for each region/country especially for
regions with extreme altitudes and/or arid and hyper-
arid regions [11]. Several attempts were made to esti-
mate R;, k,, and other empirical parameters by many
researchers [12-14].

In the Arabian Peninsula, most of the regions suf-
fer extreme aridity especially in the Kingdom of Saudi
Arabia (KSA) which occupies about 86% of the penin-
sula’s area [15]. Additionally, direct radiation mea-
surement is not common in the KSA except at some
agricultural weather stations. The oldest recorded
weather data were available only at weather stations
located at airports for measuring the aviation related
properties, such as temperature, humidity, air pres-
sure, wind speed, wind direction, and cloud cover.
Hence, no direct measurement of solar radiation was
available and R; has to be calculated by indirect mea-
surements. In the agricultural and industrial commu-
nity, it is rare to find weather data save the
temperature records. Thus, it is essential to develop a
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Table 1
Geographical information of the meteorological stations included in this study
Radiation

Station Station location variables

Average -

Latitude Longitude Altitude Logged temperature

ID Name deg. N.  deg. East m Coastal /Interior years C a b
St:01 A’Dhahran 26.16 50.1 17 Coastal 30 26.48 +7.49 0.26 0.30
St:02 Abha 184 42.39 2,093 Interior 30 18.60 +3.72 0.31 041
5t:03 Ad Dammam 26.42 50.12 1 Coastal 10 26.72+7.86 0.26 0.30
St:04 Al Ahsa 253 49.48 179 Interior 25 27.26 £8.27 0.26 0.30
St:05 Al Baha 20.3 41.63 1,652 Interior 25 22.83+4.92 0.16 0.56
5t:06  Aljouf 29.47 40.06 671 Interior 30 22.03 +8.61 0.35 0.32
St:07 Al Madina 24.33 39.42 636 Interior 30 28.45+7.00 0.29 0.44
5t:08 Al Qaisumah 28.32 46.13 358 Interior 30 25.23+9.28 0.29 045
5t:09 Al Qassim 26.18 43.46 650 Interior 30 24.94 + 8.26 0.30 0.38
St:10 Al Quuraiat 31.5 37.5 560 Interior 5 20.04 £7.91 0.27 047
St:11 Al Wajh 26.12 36.28 21 Coastal 30 25.00 +3.98 0.29 045
St:12 Arar 31 41 600 Interior 30 22.01+9.17 0.35 0.32
St:13  ArRiyadh Middle 24.63 46.77 624 Interior 30 26.66 + 8.10 0.23 0.45
St:14 ArRiyadh North = 24.42 46.44 611 Interior 25 25.80+8.12 0.29 041
St:15  AtTa'if 21.29 40.33 1,454 Interior 30 2292 +5.12 0.21 045
St:16 Bisha 19.59 42.37 1,163 Interior 30 25.69 +5.40 0.30 0.42
5t:17 Gizan 16.54 42.35 3 Coastal 30 30.22£2.80 0.31 0.40
St:18 Hafr El-Batin 28.2 46.07 360 Interior 20 25.26 +9.21 0.29 045
St:19 Hail 27.26 41.41 1,013 Interior 30 22.47 £8.20 0.30 0.35
5t:20 Jeddah 21.3 39.12 17 Coastal 30 28.23£3.50 0.30 043
St:21 Khamis Mushait ~ 18.18 42.48 2,057 Interior 30 19.49 +3.75 0.31 041
St:22 Makkah 21.4 39.85 213 Interior 25 30.78 +4.57 0.30 0.42
St:23 Najran 17.37 44.26 1,210 Interior 30 25.51£5.54 0.36 0.50
St:24 Rafha 29.38 43.29 447 Interior 30 23.33 +£9.05 0.27 047
St:25 Sharurrah 17.47 47.11 725 Interior 25 28.57 +5.81 036 0.50
St:26 Tabuk 28.22 36.38 776 Interior 30 21.99+7.53 0.28 0.46
St:27 Turaif 31.41 38.4 818 Interior 30 19.06 + 8.27 0.27 047
St:28 Wadi Al Dawasir 20.5 45.16 652 Interior 25 28.15+7.01 0.30 0.42
5t:29 Yenbo 24.09 38.04 6 Coastal 30 27.56 £4.72 0.28 0.45

formula for calculating R, using the available weather
data. The aim of this work is to develop an empirical
formula for the KSA to calculate the solar radiation
from temperature data and to compare the accuracy
with that of the already developed R; calculation
methods.

2. Methodology
2.1. Data collection and types

In this study, weather data were obtained from the
Presidency of Meteorology and Environment (PME) in
the KSA. Data represent 29 weather stations covering
the entire KSA. The records represent 30 years of
weather data on daily basis for 20 stations, 25 years of
similar data for six stations, and remaining three

stations with daily weather data of less than 20 years,
as summarized in Table 1.

The weather data were recorded on daily basis
and the average monthly values for each parameter
were calculated. The collected data are regarded as
the most reliable one in the KSA and are used by most
of the governmental and academic groups for climate
research and prediction. These weather stations were
located at domestic and international airports and
were equipped with the most advanced monitoring
devices subjected to regular inspection and replace-
ment of defected devices (personal communication
with the PME).

Each data-set includes daily values of climatic
records comprising maximum, average, and minimum
of each dry- and wet-bulb temperatures, relative
humidity (maximum, average, and minimum), wind
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Fig. 1. Fitting k, values to TR in the studied stations.

speed (maximum and average), sky coverage, air pres-
sure at sea level and at station level (maximum, aver-
age, and minimum), mean vapor pressure, rainfall,
and wind direction.

2.2. Calculation criteria

Due to the nonavailability of direct radiation data,
R, was estimated from the available data of cloud cov-
erage and extraterrestrial radiation using Egs. (1), (2),
and (A1). Values of a and b were taken from the pub-
lished literature by Hummeida and Mohammad [16]
and Shafiqur-Rehman [17], as listed in Table 1. The
monthly average values of R; for each of the studied
stations are shown in Table 2.

The resultant R, value of each record was substi-
tuted to Eq. (4), along with average monthly values of
TR and R, as shown in Tables 2 and 3. The k, values
were calculated on daily basis using Eq. (7) and were
averaged on monthly basis for each station, as shown
in Table 3.

_(Rs ~05
k= (Rg>(TR) )

Similarly, k, was calculated on daily basis to get
the monthly average values by employing methods
developed by Hargreaves [8], Allen [9], and Samani
[11]. The average monthly values of TR were related
to the measured values of k, based on the best-fit
curve for all the studied climatic stations. One of the
simplest and best-fit models was the hyperbolic model
(Eq. (8)) with 7”=0.962. Dataplot and the best-fit curve
are shown in Fig. 1.

k, = 0.119 + 0.821/TR ®

This formula was derived from a set of 9,640
point-pairs representing the monthly averages of each
year for the studied stations. For an easier and quicker
prediction of the equation, the TR values were normal-
ized to a ceiling number of (0.1); i.e. ceiling numbers
10.3, 6.7, and 159 were assigned for TR values of
10.23, 6.69, or 15.85, respectively. These TR values
were grouped and the corresponding k, values were
averaged for calculating the coefficient of variation
(CV) of each normalized value (Fig. 1). As shown in
Fig. 1, most of the datapoints lie between TR values of
11 and 17, whereas the CV ranges from 8 to 4%. The
higher values of CV correspond to the lower values of
datapoints. This increases the reliability of the normal-
ized data-set as an acceptable representative of the ori-
ginal data-set to be in agreement with Samani [11]
(Tables 2a, 2b, 3a, 3b).

)

where x is any variable and x is the average of that
variable.

2.3. Statistical validation

Statistical comparisons were performed among the
different formulas expressing k, which in turn is com-
pared with actual records. The investigated statistical
measures, include the absolute prediction error (APE),
the standard error of estimate (SEE), the mean percent
error (MPE), and the normalized root mean squared
deviation (NRMSD), as presented in following
equations:
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Table 4
Monthly average k, values using different methods
Measured k, Calculated k, Error %
Station name Coastality Altitude Average StDv CV % A H S C A H S C
AlWajh Coastal 21 0.216 0.019 8.247 0.169 0.190 0.154 0.202 25.44 14.23 33.59 7.93
Gizan Coastal 3 0.209 0.006 2.638 0.170 0.190 0.161 0.209 21.53 10.53 26.34 0.21
Jeddah Coastal 17 0.197 0.005 2.278 0.170 0.190 0.149 0.188 15.14 4.08 26.40 4.98
Yenbo Coastal 6 0.184 0.012 2259 0.170 0.190 0.156 0.179 737 339 1492 2.69
A’Dhahran Coastal 17 0.184 0.007 3.429 0.170 0.190 0.153 0.182 741 3,50 16.83 0.64
ArRiyadh Middle Interior 611 0.181 0.007 3.837 0.159 0.162 0.153 0.182 12.00 10.24 15.16 0.51
Makkah Interior 213 0.179 0.005 2537 0.165 0.162 0.155 0.180 758 936 13.36 0.66
Ad Dammam Coastal 21 0.179 0.008 3939 0.170 0.190 0.164 0.177 462 6.16 8.09 1.16
Al Baha Interior 1,652 0.178 0.018 3.022 0.141 0.162 0.151 0.183 19.92 8.75 14.66 2.70
AlMadina Interior 636 0.178 0.005 2.684 0.160 0.162 0.156 0.179 9.69 8.75 1219 0.74
AljJouf Interior 671 0.177 0.005 2.720 0.157 0.162 0.160 0.178 1090 8.43 950 0.04
Turaif Interior 818 0.173 0.006 3.421 0.154 0.162 0.161 0.177 1030 6.16 657 2.19
AlQaisumah Interior 650 0.173 0.007 3.568 0.165 0.162 0.166 0.176 4.75 614 413 1.30
Arar Interior 600 0.173 0.006 3.324 0.160 0.162 0.166 0.175 7.13 596 3.75 1.29
Al Ahsa Interior 179 0.173 0.006 3.582 0.167 0.162 0.174 0.173 321 577 050 0.24
AtTa’if Interior 1,454 0.172 0.007 4.519 0.144 0.162 0.157 0.178 1528 5.59 8.09 3.35
Hail Interior 1,013 0.172 0.019 2.124 0.152 0.162 0.169 0.174 1099 542 158 1.11
Hafr El-Batin Interior 360 0.172 0.020 2539 0.163 0.162 0.174 0.173 454 532 1.00 0.74
Abha Interior 2,093 0.171 0.010 5.114 0.134 0.162 0.153 0.181 20.47 5.00 9.70 5.49
Tabuk Interior 776 0.170 0.007 4.332 0.156 0.162 0.173 0173 792 462 146 1.17
Rafha Interior 447 0.169 0.007 3.662 0.162 0.162 0.176 0.173 4.16 4.05 351 1.82
Khamis Mushait Interior 2,057 0.168 0.009 5.059 0.134 0.162 0.159 0.177 18.60 3.50 5.10 4.93
Sharurrah Interior 725 0.168 0.006 3.080 0.166 0.162 0.195 0.168 147 339 1440 0.03
Wadi Al Dawasir Interior 652 0.168 0.004 1.722 0.159 0.162 0.192 0.169 5.08 3.36 13.02 0.30
AlQuraiat Interior 560 0.167 0.006 3934 0.161 0.162 0.192 0.169 326 290 13,58 1.01
ArRiyadh North  Interior 611 0.167 0.006 3.113 0.159 0.162 0.179 0.172 4.63 277 637 254
AlQassim Interior 358 0.166 0.006 3.066 0.158 0.162 0.175 0.173 447 240 449 349
Najran Interior 1,210 0.166 0.006 2429 0.148 0.162 0.180 0.171 9.70 2.07 759 284
Bisha Interior 1,163 0.158 0.003 2.013 0.149 0.162 0.191 0.169 497 230 1826 5.99
Average 0.176 0.008 3.39 0.158 0.168 0.167 0.178 9.74 5.66 10.83 2.14
Maximum 0.216 0.020 8.25 0.170 0.190 0.195 0.209 25.44 14.23 33.59 7.93
Minimum 0.158 0.003 1.72 0.134 0.162 0.149 0.168 147 207 0.50 0.03
of readings, i is the counter, Amax and Apin are the
APE = M % 100 (10) maximum and minimum measured values, and the
i straight brackets round a variable (|--:|) refer to its
absolute value.
n
SEE = ¢L1 (F; — A;)? (11)
= 3. Results and discussion
n 3.1. Analysis of annual means
wpp _ 1005 (Fi — A) 12) yois of
n o= A Table 4 shows the annual average values of k,
calculated by four methods namely A, H, S, and C
1 & representing Allen [9], Hargreaves [8], Samani [11],
NRMSD = \/ —Z(F,- — Ai)2 /(Amax — Amin) (13)  and Eq. (8), respectively. The real value of k, was also
n— 24 . . .
i=1 calculated as described above and is presented in

where F and A are the forecasted (estimated) and
actual (measured) value, respectively, n is the number

Table 4.
The annual means in the KSA tend to be constant
and the average k, value was about 0.176 regardless of
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Fig. 2. Average annual values of k, of the studied stations
sorted in ascending order, the I bar shows the deviation
range out of average. Stations denoted by @ are considered
coastal stations while others as interior.
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Fig. 3. Average annual values of k, vs. the altitude of the
studied stations.

the coastality conditions. The maximum k, value of
0.216 was found for AlWajh station (st:11) which is
located along the Red Sea’s shore in northwest of the
KSA. This value reflects the maximum effect of coastal
location in the KSA. The next coastal regions accord-
ing to k, values (in descending order) were Gizan (k,=
0.209), Jeddah (k,=0.197), Yenbo and “A’Dhahran”
(k,=0.184). “Ad Dammam” was considered a coastal
station although its coastality value was only 0.179
(was a round-average value). This could be due to the
distance between the station and the seashore (38 km).
As shown in Fig. 2, although “Ar Riyadh-middle” and
Makkah are noncoastal stations, but the coastality
value of these seems to be as high as 0.181and 0.179
i.e. even higher or equal to the coastality value of “Ad
Dammam.” This could be attributed due to the urban-
ization as was evident from the location of these sta-
tions i.e. inside the heavily populated cities of the
KSA.

The urbanization effect becomes more evident
when “Ar Riyadh-middle” was compared with “Ar
Riyadh-North.” Unlike the former station, which
was located in the midst of the high populated city,
the later was located at King Khaled International
Airport, in the upper North region of Riyadh with
less population and wurbanization. The k, of “Ar
Riyadh-North” was only 0.167 compared with 0.181
for “Ar Riyadh-middle” station. The minimum value
of k, (0.158) in the KSA was found for Bisha fol-
lowed by Najran and AlQassim with k, value of
0.166 for each of these two cities. For AlQassim sta-
tion in Najd Plateau, one can understand the low
coastality value as this region was too arid. But for
Bisha and Najran, the situation was different, as
both lies at South of the KSA near Yemen. This
zone was not arid at all but the aridity of these two
stations had a common phenomenon i.e. the altitude
value which was more than 1,000 m for both cities.
This leads to a conclusion in agreement with Allen
[9] that k, is affected by the atmospheric pressure
(or altitude).

Fig. 3 shows the relationship between altitude (Z)
and k, showing that k, decreases as altitude increases.
The best-fit of this relationship can be written as
follows:

k, = 0.208 x 779029 (14)

Although, the correlation coefficient was not high
(r=0.734) but the standard error quite less (SE=
0.0086). The purpose of the above formula was to
confirm that k, was inversely proportional to the
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Fig. 4. The k, values in different months for some of the studied stations.

altitude instead of an exact value of k,. The monthly
deviation of the annual averages, expressed as CV, is
illustrated as I bars in Fig. 2. The CV values fall below
5% for most of the stations, which is a reasonable
value to let one rely on the annual average as a repre-
sentative value of the whole year. The exception
occurred for three stations, namely “AlWajh”, Abha,
and “Khamis Mushait,” with CV values of 8.24, 5.11,
and 5.06, respectively. Fig. 4 shows the k, values of
these three stations with high CV values, along with
three other stations, namely Bisha, Makkah, and “Al
Madina,” with low CV values of 2.0, 2.54, and 2.68%,
respectively.

The CV values of three stations (with high CV
values) seem to follow a quadratic curve trend with
respect to months. The quadratic curve has a positive
curvature for “Al Wajh” (the coastal station) and a
negative curvature for Abha and “Khamis Mushait”
(the interior stations). This leads to conclusion that
the coastality value increases during summer for
coastal stations while decreases for interior (noncoast-
al) stations. However, this conclusion cannot be
established for rest of the stations, used in the study,
with CV less than 5%, which is hard to be observed
in quadratic curves for other three stations, as seen
in Fig. 4.

3.2. Comparison between models” prediction patterns

Three models were established for prediction of k,
based on temperature range. These were Hargreaves
[8], Samani [11], and the current model, Eq. (8), in addi-
tion to the model developed by Allen [9] that predicts k,
from the atmospheric pressure. As shown in Fig. 5, the
APE ranges from 1.47 to 25.44% for Sharura and “Al
Wajh” stations, respectively, when using Allen’s model.

There were 10 stations with error less than 5%, 8
stations with error of 5-10%, and 11 stations with
error more than 10%. Three of the extreme wrongly
estimated stations were coastal cities, while the rest
were interior stations with extreme high altitudes.
These results were in agreement with Samani [11]
who reported that the formula of Allen [9] might not
be applicable for high altitudes. The SEE was calcu-
lated as 0.022 with MPE =9.936 and normalized root
mean square error (NRMSE) =0.646. These results are
summarized in Table 5.

Fig. 6 shows the results of H model which appear
to be a better estimate than the A model with maxi-
mum APE of 14.23% compared with 25.44% for the A
model. There were only three stations with APE >
10%, two of them were coastal (Al WAjh and Gizan)
and the one was interior (“ArRiyadh Middle”) station.



48 M.N. ElNesr et al. | Desalination and Water Treatment 57 (2016) 37-50

Prediction Error (%)

0 10 20 30
! |
- " 3 st:11
— = St:17
I - A St:2
. d St:5
y , 3 st:21
- = 5t:15
. J 5t:20
g St:13 |
g St:19 | |
T d 5t:6 |

Fig. 5. APE % of the A model, Allen (1995), for the studied
stations. Stations were expressed in numbers instead of
names to save space. See Table 1 for stations” information.

Table 5
Summary of the evaluation statistics and measures

Prediction Error (%)

d 5t:11

Fig. 6. APE (%) of the H model, Hargreaves (1994), for the
studied stations.

Num. of stations having

Model Statistic APE APE

Name Symbol SEE MPE NRMSD Avg Max Min <5% 5-10% >10%
Allen (1995) A 0.022 9.936 0.646 9.74 25.44 1.47 10 8 11
Hargreaves (1994) H 0.012 4.689 0.355 5.66 14.23 2.07 14 12 3
Samani (2000) S 0.025 4.517 0.750 10.83 33.59 0.50 8 8 13
Current, Eq. (8) C 0.005 -1.111 0.164 2.14 7.93 0.03 26 3 0

For noncoastal stations, the model appears to have
large errors when predicting for stations with high
population like “Ar Riyadh Middle,” Makkah, and
AlMadina. On the contrary, the model perfectly
represents noncoastal stations with low populations
like Bisha, Najran, and “ArRiyadh North.” The esti-
mated parameters of H model, including SEE =0.012,
MPE =4.68, and NRMSD = 0.355, were better than that
of the A model. On the other hand, the S model
appears to have the largest prediction error, as shown
in Fig. 7. A maximum APE value of 33.59% was
observed with 13 and 8 stations having APE>10%
and <5%, respectively.

There is no clear conjunction between stations with
minimum error or between stations with maximum
error. The maximum error appears mostly for coastal
stations with an APE of almost more than14% except
“Ad Dammam” having APE=8%, which is the far-
thest away coastal station and hence, may be regarded
as noncoastal. For interior stations, the situation was
not clear with respect to the altitude. “Khamis Mus-
hait” with extremely high altitude (2,057 m) resulted
APE =5.1% while both Abha and Albaha (with alti-
tudes of 2,093 and 1,652 m, respectively) resulted APE
of 9.7% and 14.66%, respectively. This leads to con-
clude the unsuitability of the S model in the prediction
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Fig. 7. APE (%) of the S model, Samani (2000), for the
studied stations.

of k, in KSA. Finally, the proposed model, Eq. (8),
seems to be the best one for estimating all parameters.
The model predicted k, for 26 stations with less than
5% APE, as seen in Fig. 8.

The overall statistics of the proposed model was
the best of all other models with SEE =0.005, MPE
=-1.111, and NRMSE =0.164. With the exception of
“Al Wajh” station, which was the most unpredict-
able station in all models, the maximum APE error
of 5.99% was seen for Bisha station, which, however,
was reasonable error if only a single accurate equa-
tion for all stations in KSA is to be considered. In
Table 5, the MPE statistic shows the amount and
direction of over/under estimation. The current
model underestimates the actual value by almost
1.11% in most of the cases, while the other three
models (S5, H, and A) overestimate the actual value
by 4.5, 4.6, and 9.9%, respectively. The NRMSD,
which expresses the residual variance, was observed
to be the minimum for the current model (0.164),
and maximum for the S model (0.75). These values
were estimated as 0.646 and 0.355 for A and H
models, respectively. Moreover, the value of SEE
was the least (0.005) when using the current model
following the same trend as of NRMSD.

Prediction Error (%)
0 10
=3 st:11

d St:16
gl St:2

d 5t:20
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Fig. 8. APE (%) of the C model, Eq. (8), for the studied
stations.

4. Conclusions

As an important parameter to calculate the short-
wave solar radiation, the coastality value, k, of 29
weather stations in the KSA was determined from the
measured data and was compared to the values
obtained from three published models, namely Har-
greaves [8], Samani [11], and Allen [9]. A new local
formula was derived through a 30-year climatic record
of 29 weather stations. Comparisons were performed
through four statistical measures. The results show
that the k, is inversely proportional to both the dis-
tance from the coastline and the altitude of the station.
Another interesting finding was regarding the urbani-
zation which had a coast-like effect. In other words,
noncoastal but highly populated cities can be regarded
as coastal cities. A local hyperbolic equation to esti-
mate the k, using the monthly average temperature
range was derived. The developed relationship
yielded the best prediction results compared with
other three models followed by Hargreaves, Allen,
and Samani models. It is recommended to use the cor-
rected values of k, as derived from the proposed equa-
tion for future investigations of solar-based studies. A
detailed investigation is also recommended for the
urbanization effect on the k,.
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Appendix

According to the FAO (1990), the extraterrestrial
radiation R, (M] m 2d™Y) is calculated as follows;

R, = 37.6 d,(ws sin ¢ sin d + sin w; cos ¢ cos o) (A1)

where d, relative distance Earth to Sun;
dr =1+ 0.033¢0s(0.0172]), ] the Julian day ranges from 1
to 366 in leap year, 6 solar declination (rad);
0 =0.409sin(0.0172] — 1.39), ¢ latitude (rad), ws; sunset
hour angle (rad); ws = arccos(— tan ¢ tan 9).

The maximum allowed daylight hours (N) is calculated
as follows [2]

24

N ="ow, (A2)
T
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