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ABSTRACT

Tomato wastewater is characterized by a large amount of suspended solids, red color, and
bad smell. In this paper, the effect of transmembrane pressure (10, 15, 20 bar), pH (4, 5, 6),
and temperature (30, 40, 50˚C) on the permeate flux, total hydraulic resistance, and chemical
oxygen demand (COD) rejection of tomato wastewater during nanofiltration treatment was
investigated. The flux was found to be approximately constant during long-period opera-
tion. The flux was reduced as the pH declined, while it was increased as the temperature
and transmembrane pressure increased. The hydraulic resistance (at pH 5 & TMP 1.5 MPa)
increased from 5.79 × 1013 to 7.25 × 1013 1/m when the temperature increased from 30 to
50˚C. The COD rejection was ranged from 75.65 to 85.35%, in which the highest value was
obtained at pH 6, TMP 2.0 MPa, and 30˚C. The response surface methodology results
demonstrated that the quadratic, the two-factor interaction (2.Fi), and the linear polynomial
models are highly significant for modeling the flux (R2 = 0.98), hydraulic resistance
(R2 = 0.96), and COD rejection (R2 = 0.90), respectively. Numerical optimization determined
the optimum conditions based on the highest flux and rejection and the lowest fouling with
transmembrane pressure of 20 bars, temperature of 30˚C, and pH of 6, respectively.
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1. Introduction

The demand for water consumption is increasing
day by day. This fact in addition to increasing scarcity
of water resources and social concerns about the
impacts of the discharge of wastewater effluent streams
on the environment has made situations which incite
industries, especially food industry, to reduce water

consumption, and to perform efficient effluent treat-
ment for water reuse [1].

Tomato processing industries consume plenty of
water; the average amount of wastewater produced in a
medium-sized tomato processing factory is about
300 M3/d. Wastewater from the tomato industry is
characterized by a large amount of suspended solids
from various stages of processing and consequently
high chemical oxygen demand (COD). In the tomato
processing industry, wastewater is comprised of water
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from tomato washing and trimming (47% total
wastewater flow), effluent from scalding and peeling
(32% total wastewater flow), canning water (19% total
wastewater flow), and concentrator wastewater flows
from tomato paste production (2% total wastewater
flow) [2]. However, it is important to mention that in
this project, wastewater is considered as the material
coming directly of cleaning, sorting, and moving toma-
toes. This effluent is red, malodorous, and polluted
mainly by organics, suspended solids, and ground
particles [3]. One of the important issues with this kind
of wastewater stream is that it is seasonal (the tomato
harvesting lasts 90 d a year) and deteriorates very
quickly. Therefore, in this project, samples, which are
free of grit material, were transported in batches and
stored at −18˚C.

Nanofiltration (NF) is a separation process which
is widely utilized for several applications such as
water softening, wastewater treatment, chemical,
pharmaceutical, food processing industries as well as
biotechnologies. NF is defined as pressure-driven
membrane processes for the separation and the con-
centration of substances having a molecular weight
between 100 and 1,000 Da [4–6]. NF is one of the
promising membrane technologies available for the
removal of small molecules without complete
desalination [7]. The selectivity factors in NF consist
of the function steric effect, electrostatic, dielectric
effect due to the fixed charged groups, and solubi-
lization effect due to the swelling capacity [8,9].
According to previous findings in literature, NF leads
to a high quality of treated effluent with rejection of
salt, color, suspended matter, and COD, respectively,
of 47–52, 100, 99.9, and 73–85%, depending on the
effluent load [10]. Spiral wound membranes (Desal
5.1 and Desal 5.2 and Filmtec NF4S) have been uti-
lized to decolorize resin-regenerated waste. The NF
process allowed 89 and 74% reduction in water and
salt consumptions [11]. Multu et al. [12] investigated
about decolorization of wastewater of a baker’s yeast
plant by the membrane process. The obtained results
showed maximum rejections of 94, 89, and 72% for
OD, color, and COD, respectively. It was noteworthy
that 0.8 μm microfiltration membrane and 400 Da NF
membrane were used in series. Luo et al. [13] per-
formed two-stage UF and NF processes for the treat-
ment of model dairy wastewater. With this attitude,
they demonstrated that most of the dairy wastewater
can be recycled to produce reusable water when
compared with a single NF process.

Modeling and optimizing are necessary for design-
ing of a new process and better understanding of the
present process. Generally, mathematical models that

were derived from physical descriptions involve com-
plex equations and need detailed information of the
membrane and the process. Therefore, direct analysis
with the intelligent systems is an alternative method for
description process [14]. One of these methods is
response surface methodology (RSM). This method
explores the relationships between several independent
variables and one or more response variables, which
was firstly introduced by Box and Wilson [15]. RSM
was successful in modeling and optimizing the mem-
brane processes [16–21]. In addition, there is no study
available in the literature exploring the use of RSM for
modeling/optimizing the permeate flux, total hydraulic
resistance, and COD rejection of NF of the tomato paste
wastewater.

The main issue of tomato wastewater treatment
lies in the seasonal nature production in the tomato
industry. It brings up a need to introduce/develop a
technique by which the steady-state condition is
reachable quickly and efficiently. It is worth to men-
tion, conventional methods such as active sludge and
anaerobic digestion have long period to colt forma-
tion, which is not acceptable due to seasonal nature
production [2]. This problem makes sense to investi-
gate about a novel technology, such as membrane
process, which can reach to the steady-state condition
fastly.

Up to now, few investigations have been made on
removing pollution from tomato wastewater, using dif-
ferent kinds of membrane technologies. One of the most
important investigations was performed by Iaquinta
et al. [3]. They optimized NF process of tomato
wastewater based on critical flux. It was shown that
purification of the wastewater to water compatible with
the municipal sewer system requirements is possible,
with the recovery rate of 90%. In addition, short-term
fouling issues may be avoided at permeate fluxes about
or below 8.2 l h−1 m2, but at this project, we optimize
NF process of tomato paste wastewater based on the
desirability function approach that performs multiple
objective optimization. The desirability function acts as
a penalty function which leads the algorithm to zone
where we can find the desired response variables at the
same time.

Therefore, the aims of this paper were: (i) to investi-
gate the performance of polyamide NF membrane for
purifying the wastewater from tomato industry, (ii) to
study the influence of some operating conditions (pH,
temperature, and transmembrane pressure) on perme-
ate flux, total hydraulic resistance, and COD rejection,
and (iii) to develop a predictive model using RSM for
simulation and optimization of the NF treatment of
tomato paste wastewater.
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2. Materials and methods

2.1. Equipment

The pilot plant membrane system used in this
study has been equipped with a feed tank, reciprocat-
ing pump, tubular module, two pressure gages, tubu-
lar heat exchanger, two control valves, and
temperature sensor (Fig. 1). The membrane was com-
posed of polyamide. The characteristics of NF mem-
brane are summarized in Table 1. The inlet and the
outlet feed pressures were monitored by two manual
pressure gages. These gages were positioned as close
to the inlet and the outlet of the membrane as physi-
cally possible. Temperature probe was attached to the
feed tank, and employed for monitoring temperature
during each run. The temperature of feed was continu-
ously being controlled by a heat exchanger. A perme-
ate collection beaker located on a digital mass balance
(±0.05 g) was used to collect permeate, and measured
permeate flux (kg/m2 h) during the experiments. The
membrane was rinsed with distilled water before and
after each run, and the permeate flux was measured.

2.2. Experimental design

This study investigates the effect of transmembrane
pressure at three levels (10, 15, 20 bar), pH at three
levels (4, 5, 6), and temperature at three levels (30, 40,
50˚C) on the permeate flux, total hydraulic resistance,

and COD rejection. A D-optimal design was con-
structed using of design expert software (version 8/0/
7/1, Stat-Ease Corporation, Minneapolis, MN, USA).
The D-optimal design maximizes information about the
polynomial coefficients. This algorithm selects points
that minimize the volume of the confidence ellipsoid
for the coefficients. In the other words, it minimizes the
determinant of X·X´ inverse matrix, where X is
the matrix of the design, and X´ is the transpose of the
matrix X [22]. The design was included of a total of 20
experimental runs (Table 2), 10 runs for determining
coefficients of model, 5 runs for estimating lack-of-fit,
and 5 replications for calculating the error. A quadratic
relationship (Eq. (1)) was used to model the responses
and the coefficient of determination (R2) and the
adjusted R2 (R2

adj) were calculated by Eqs. (2) and (3) to
assess the efficiency of models and to predict the
responses accurately.

Y ¼ b0 þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX
2
i þ

XX
i\j

bijXiXj þ e (1)

R2 ¼ 1� SSresidual
SSresidual þ SSmodel

(2)

R2
adj ¼ 1�

SSresidual
DFresidual

SSresidual
DFresidual

þ SSmodel

DFmodel

� � (3)

Fig. 1. Schematic diagram of NF pilot plant system used in this study.
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where Y is the predicted response; Xi is the variables;
β0 is the intercept; βi is the linear term; βij is the interac-
tion term, βii is the quadratic term, e is the residual, DF
is the degree of freedom, and SS is the sum of squares.
All experimental runs were carried out in duplicate,
and the results averaged. The variables were coded
based on Eq. (4) in the regression equation:

Xj ¼
Uj �Uo

j

Ij
(4)

where Xj is an independent variable coded value; Uj is
an independent variable real value; Uo

j is an

independent variable real value in the center point of
the independent variable, and Ij is the step change in Uj.

2.3. Measurements

COD method was selected to estimate the organic
component concentration in the permeate and feed
streams. The COD was measured at 620 nm and 25˚C
by a MD 200 COD VARIO Photometer (Germany)
[23]. The pH was determined by a Lutron YK-2001 pH
meter (Taiwan). Dynamic viscosity of permeate sam-
ples was measured using an Ostwald U-tube capillary
viscometer [24].

Table 1
Characteristics of NF membrane and module used in this study

Membrane type AFC40 (PCI membranes, Ltd, UK)

Effective area (cm2) 240
Diameter (mm) 63.5
Length (cm) 30
Range of pH tolerance 1.5–9.5
Maximum temperature (˚C) 60
Maximum pressure (MPa) 6
Apparent CaCl2 rejection (%) 60
Module Tubular (Micro 240, PCI membranes, Ltd, UK)

Table 2
The variables and levels used in D-optimal design for NF treatment of tomato paste wastewater

Actual value Variables coded

Pressure pH Temperature Pressure pH Temperature

1 10 6 50 −1 1 1
2 20 4 50 1 −1 1
3 15 5 40 0 0 0
4 20 5 50 1 0 1
5 20 6 50 1 1 1
6 10 4 30 −1 −1 −1
7 10 5 40 −1 0 0
8 20 5 30 1 0 −1
9 15 5 50 0 0 1
10 15 4 50 0 −1 1
11 20 6 40 1 1 0
12 10 4 50 −1 −1 1
13 15 5 50 0 0 1
14 15 5 40 0 0 0
15 15 5 30 0 0 −1
16 10 5 40 −1 0 0
17 10 6 30 −1 1 0
18 15 6 30 0 1 −1
19 15 4 40 0 −1 0
20 20 5 30 1 0 −1
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2.4. Membrane performance

The rejection of COD was calculated by the
following equation:

Rð%Þ ¼ 1� CP

CF

� �
� 100 (5)

where CP and CF are the concentration COD value
(mg l−1) in permeate and feed streams, respectively.

The permeate flux (JP) was calculated by the
following relationship:

JP ¼ W2 �W1ð Þ=ðt � AÞ (6)

The total hydraulic resistance was determined by Eq.
(5):

RT ¼ TMP=ðl � JPÞ (7)

where JP is the permeate flux (m3/m2 s), TMP is the
transmembrane pressure (Pa), and μ is the viscosity of
permeate (Pa s). TMP was measured by the following
relationship:

TMP ¼ Pi þ Poð Þ=2� PP (8)

where Pi and Po are inlet and outlet pressures, respec-
tively, and PP is the permeate pressure.

3. Result and discussions

3.1. Data normality

The normal probability plot shown in Fig. 2 indi-
cates the residuals followed a normal distribution. In
the normal distribution, the points will follow a
straight line, while in the abnormal distribution; the
points have an “S-shaped” pattern, which indicates
the necessity for data transformation [25]. It can be
seen from Fig. 2 that the points have a normal dis-
tribution. In addition, Fig. 3 helps to detect outliers in
the data. Points which are beyond the red lines are
not fitted well by the current model or are experimen-
tal errors [22]. It can be seen from Fig. 3 that all points
are in the desired range.

3.2. Permeate flux

The dynamic permeate flux of tomato wastewater
NF is shown in Fig. 4. It can be seen that the permeate

flux is approximately constant at different TMPs for a
long period of time. In addition, at low TMP (10 bar),
the permeate flux was reached to steady-state condi-
tion in the beginning of NF operation, but with
increasing TMP (15 or 20 bar), it need more operation
time to reach the steady-state condition. This phe-
nomenon may be explained by studying the effect of
increasing TMP on the total hydraulic resistance mem-
brane (Section 3.2). Similar trend was observed for
other conditions studied (data not shown). These
results suggest the low membrane fouling tendency
for this NF membrane surface because of relatively
stable flux behavior. The polyamide membranes are
inherently hydrophilic and appropriate for tomato
wastewater treatment.

The mean value of the permeate flux was
determined by Eq. (9):

Fig. 2. Normal probability plot vs. internally studentized
residuals for permeate flux.

Fig. 3. Externally studentized residual vs. run number for
permeate flux.
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JP ¼ 1

tn

Ztn
0

fdt (9)

where tn is the overall time of each run (60 min) and f
is the permeate flux at time t. The integrals were
calculated by the rectangle method by using
Matlab2010 (7.10.0).

The results indicated that the quadratic model can
acceptably fit the results of the mean permeate flux
value (R2 and R2

adj values equal to 0.98 and 0.96,
respectively). The RSM model for prediction of the

permeate flux in terms of the coded variables was
determined as follows:

JP ¼ 119:66þ 21:58x1 þ 4:32x2 þ 4:38x3 þ 1:62x1x2
þ 1:07x1x3 þ 0:27x2x3 � 1:45x21 � 3:57x22 þ 0:49x23

(10)

where x1 is the transmembrane pressure, x2 is the pH,
and x3 is the temperature. The least squares regression
was utilized to fit the data by Eq. (1). The p-value is
used to test the significance of every coefficient. The
smaller degree of p, the more significant is the corre-
sponding coefficient. Values of p less than 0.05 show
that model terms are significant. It can be seen from

Fig. 4. Dynamic permeate flux during NF process of tomato paste wastewater at various operating TMP (pH 4,
Temperature 50˚C).

Table 3
Analysis of variance (ANOVA) of factors affecting on the
permeate flux

Source dfa MSb F-value p-Value

Model 9 712.7192 62.48788 <0.0001
A-pressure 1 5,293.387 464.0994 <0.0001
B-pH 1 168.262 14.75242 0.0033
C-temperature 1 218.4546 19.15308 0.0014
AB 1 15.25183 1.337209 0.2744
AC 1 8.077297 0.70818 0.4197
BC 1 0.420496 0.036867 0.8516
A2 1 9.201184 0.806717 0.3902
B2 1 48.50425 4.252626 0.0661
C2 1 1.039513 0.09114 0.7689
Residual 10 11.40572
Lack-of-fit 5 12.20245 1.1502 0.4409
Pure error 5 10.60898
Cor total 19

aDegree of freedom.
bMean square.

Fig. 5. Correlation between model predictions and experi-
mental permeate flux of NF treatment of tomato paste
wastewater (R2 = 0.98).
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Table 3, the linear effects of all parameters and
quadratic effect pH were significant (p < 0.05).
Generally, errors are derived from two sources, lack-
of-fit and pure error. Pure error is a measure of the
variation in response at same operating condition. It is
calculated independently of the regression. The lack-
of-fit is calculated as the difference between total error
and pure error. It can be seen from Table 3, the lack-
of-fit test is not significant, suggests that the quadratic
model is desirable for prediction permeate flux.

The coefficient of determination was 0.98, which
represents the fact that the statistical model can
explain 98% of the variability in the response. A high
value of the adjusted determination coefficient (0.96)
also supports a high significance of the corresponding

model shown in Fig. 5. The high ability of model to
predict permeate flux can decrease the cost of experi-
ments and save time.

The effect of TMP and pH as well as TMP and
temperature on the permeate flux is shown in Figs. 6
and 7, respectively. It can be seen that the permeate
flux was increased by increasing the pH value. This is
due to the fact that the pH of feed can change the
ionization of particular functional group on the mem-
brane surface, e.g. carboxyl and amine. As a result,
these functional groups repel each other because of
the electrostatic force. Accordingly, the pore becomes
wider and the volume value increases. It can be found
that the permeate flux was increased by 6.07% with
one unit increase in pH.

Design-Expert® Software
Factor Coding: Actual
Flux

147.31

89.325

X1 = A: pressure
X2 = B: pH
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C: Temperature = 0.00
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Fig. 6. The combined effects of pH and pressure on the permeate flux (40˚C); (a) Contour plot and (b) Response plot.
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Transmembrane pressure enhanced the permeate
flux because of the increase in the driving force. In
this research, the permeate flux was found to be pres-
sure-dependent zone. According to Table 4, the
permeate flux was increased about 4.85% when TMP
increased 1 bar. The maximum permeate flux
(147.31 kg/m2 h) was obtained at pressure 20 bar, pH

6, and temperature 50˚C. As shown in Fig. 7, the
average permeate flux (at pH 5 and TMP 1.5 MPa)
was linearly increased from 114 to 128.5 kg/m2 h with
increase in temperature from 30 to 50˚C. In other
words, the permeate flux was increased almost 0.5%
with one degree Celsius increase in temperature
(Table 4). This is due to the fact that the fluid viscosity

Design-Expert® Software
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Fig. 7. The combined effects of temperature and pressure on the permeate flux (pH 5); (a) Contour plot and (b) Response
plot.

Table 4
Effect of increasing temperature, pH, and transmembrane pressure (TMP) on change percentage of permeate flux,
hydraulic resistance, and COD rejection in the NF treatment of tomato paste wastewater

Process variable Flux Hydraulic resistance COD rejection

Temperature (˚C) +0.50 +1.70 −0.21
pH +6.07 −3.50 +0.92
Pressure (bar) +4.85 +2.00 +0.38
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and the concentration polarization decrease, whereas
the diffusivity coefficient increases. Therefore, it can
be concluded that solutes and water can easily pass
through the membrane. These results are consistent
with the earlier observation [4,26–29].

3.3. Total hydraulic resistance

The results indicated two-factor interaction model
(2.Fi) is highly significant for prediction of the total
hydraulic resistance in the NF treatment of tomato
paste effluent. The RSM model for the RT in terms of
the coded variables was obtained as follows:

RT ¼ ð6:7þ 1:15x1 � 0:279x2 � 0:905x3 � 0:113x1x2
� 0:18x1x3 � 0:0038x2x3Þ � 1013 (11)

The R2 and R2
adj values for above equation were 0.96

and 0.94, respectively. Insignificant the lack-of-fit test
and F-value (53.65) indicate that the model is suffi-
ciently accurate for predicting the total hydraulic resis-
tance (RT). Furthermore, the coefficient of variation
value (4.25%) indicates the acceptable reproducibility.
According to Table 5, the linear effect of all parame-
ters and interaction effect pressure and temperature
were significant (p < 0.05). In addition, an excellent
agreement between prediction and experiment results
(R2=0.96) was achieved (Fig. 8). These results indicated
the desirability of D-optimal design for statistical
assessment of tomato wastewater treatment with
minimal testing.

The effect of TMP and temperature on RT is shown
in Fig. 9(a) and (b). It can be seen that RT is aug-
mented because of increase in the transmembrane

pressure and temperature. The effect of the pressure
on RT is due to the fact that increase in the pressure
augments the rate of migrating compounds toward
the membrane surface and pores. As a result, the pre-
cipitation of these compounds on the membrane
increases by the convective transport [14]. According
to Table 4, the RT value increased almost 2% when the
transmembrane pressure increased by 1 bar. On the
other hand, RT decreased about 3.5% with one unit
increase in pH. This phenomenon may be due to the
effect of pH on the ionization of carboxyl groups of
pectin in feed. Increasing pH probably prevented join-
ing of the pectin molecules; as a result, total hydraulic
resistance was decreased.

The temperature showed a significant effect on RT.
When the temperature increases, the concentration
polarization will decrease, whereas turbulent flow will
increase. These factors decrease the total hydraulic
resistance. On the contrary, the RT value increased
due to increase in the temperature. This is because the
fact that molecules in the low temperature have low
energy activation, so that these molecules are
adsorbed on the membrane with the weak bonding
such as the hydrogen bounding. However, at the high
temperature, chemical reactions influence the interac-
tion between solutes and membrane. Therefore, it can
be concluded that increasing temperature can increase
the RT [30]. Furthermore, RT (at pH 5 and TMP
1.5 MPa) was increased from 5.79 × 1013 to 7.25 × 1013

1/m with increase in temperature from 30 to 50˚C, In
other words, the total hydraulic resistance was
increased almost 1.7% with 1˚C increase in
temperature (Table 4).

Table 5
Analysis of variance (ANOVA) of factors affecting on the
total membrane hydraulic resistance

Source df MS F-value p-Value

Model 6 4.37E+26 53.6501 <0.0001
A-pressure 1 1.53E+27 188.2244 <0.0001
B-pH 1 7.25E+25 8.903044 0.0106
C-temperature 1 9.57E+26 117.5524 <0.0001
AB 1 7.73E+24 0.949182 0.3477
AC 1 2.59E+25 3.183213 0.0977
BC 1 8.78E+23 0.107812 0.7479
Residual 13 8.14E+24
Lack-of-fit 8 1.1E+25 3.129799 0.1122
Pure error 5 3.52E+24
Cor total 19

Fig. 8. Correlation between model predictions and experi-
mental total hydraulic resistance of NF treatment of
tomato paste wastewater (R2 = 0.96).
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Fig. 9. The combined effects of temperature and pressure on the overall resistance (pH 5); (a) Contour plot and
(b) Response plot.

Table 6
Analysis of variance (ANOVA) of factors affecting on the
COD rejection

Source df MS F-value p-Value

Model 3 64.7819 50.7231 <0.0001
A-pressure 1 178.6454 139.8763 <0.0001
C-pH 1 3.115078 2.439054 0.1379
B-temperature 1 5.820093 4.557035 0.0486
Residual 16 1.277167
Lack-of-fit 11 1.483929 1.804632 0.2671
Pure error 5 0.822289
Cor total 19 Fig. 10. Correlation between model predictions and experi-

mental COD rejection of NF treatment of tomato paste
wastewater (R2 = 0.90).
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3.4. COD rejection

The linear relation was obtained with high signifi-
cance and good predictive value. The R2 and adj-R2

values (0.90 and 0.88, respectively) prove the model
adequacy for describing the relation between the inde-
pendent variables and the COD rejection. The RSM
model for prediction of the COD rejection in terms of
the coded variables was determined as follows:

RCOD ¼ 80:146þ 3:875x1 þ 0:563x2 � 0:7x3 (12)

The ANOVA approach is applied to investigate
which factors significantly affect the response

parameters. According to Table 6, statistical analysis
displayed that in the linear model of the COD rejec-
tion, the linear effects of all parameters except pH are
significant (p < 0.05). “Adeq Precision” measures the
signal to noise ratio. This parameter compares the
range of the predicted values at the designed points to
the average prediction errors [25]. In this study, a ratio
greater than 4 is desirable. The ratio of 19.21 for COD
removal indicates an adequate signal. The determina-
tion coefficient value for estimation of COD rejection
was 0.90, which indicates high correlation between
predicted and experimental values (Fig. 10). The abil-
ity to predict JP, RT, and COD rejection could reduce
the computation time and the amount of practical
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work required before designing a new membrane
process.

Fig. 11(a) and (b) shows the surface plot and con-
tour plot of the interactive effect of TMP-temperature
on COD rejection. It can be seen that with increasing
the TMP and decreasing the temperature, the COD
rejection increased, and maximum rejection was
obtained at maximum TMP and minimum tempera-
ture. The effect of pressure can be explained that
permeate flux increases with the pressure more than
the solute flux (dilute effect). Also, effect of com-
paction membrane can increase COD rejection and
should not be neglected. In addition, according to
Table 4, It can be found that the COD rejection
increased by almost 0.38 and 0.92% as the TMP and
pH increased 1 bar and one unit, respectively.

Increasing temperature causes an increase in
solutes diffusion coefficient. Furthermore, such
increase in temperature can cause membrane relax-
ation (increasing membrane effective pore radius). As
a result, strict exclusion effect can be decreased and
solutes can pass through the membrane easily. The
rejection of COD decreased from 81.6 to 77.4% with
increasing the temperature from 30 to 50˚C. Further-
more, it can be found that the COD rejection
decreased approximately 0.21% with the unit change
in temperature (at constant conditions of pH 5 and
TMP 1.5 MPa) (Table 4). These results are consistent
with those reported earlier [4,28,29,31,32].

3.5. Optimization process

In this paper, the desirability function approach
was used to perform multiple optimizations. This
approach starts firstly by converting each response
variable into a desirability function di, which varies
from 0 to 1, where if the response yi is at its target,
then di = 1, and if the response is outside of an accept-
able region, di = 0. Global desirability function is
determined by Eq. (13). This method should search for
response variable values where D tends to 1.

D ¼ d1 � d2 � d3. . .dmð Þ1=m (13)

Numerical optimization determined the optimum
conditions based on the highest permeate flux and
rejection and the lowest total hydraulic resistance. The
final result of this optimization suggested that the
transmembrane pressure of 20 bar, temperature of
30˚C, and pH of 6 were the optimum conditions under
which the best performance of treatment process by
NF was achieved. The desirability function had been
achieved to be 0.86 which indicates the high accuracy
of optimization. There was no significant difference
between experimental and predicted values at opti-
mum condition (Table 7).

4. Conclusion

The NF process was presented for tomato
wastewater treatment. The permeate flux, COD rejec-
tion, and hydraulic resistance were affected by TMP,
temperature, and pH. Referred to numerical optimiza-
tion, the best performance for the treatment by NF
was achieved under the conditions with transmem-
brane pressure of 20 bars, temperature of 30 C, pH of
6. At most of the experimental runs, no serious case of
fouling was observed. From the environmental stand-
point, it seems that under a known operating condi-
tion, NF can be utilized as an efficient process for the
wastewater treatment of tomato processing plant.
Based on the results attained in this research, it is not
required to increase pH and temperature of feed to
obtain the optimal operating condition, which is very
important from an industrial point of view.
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