
Using accurate demand forecasting to improve the efficiency of water
supply-distribution chains

G. Arampatzis*, E. Kampragou, P. Scaloubakas, D. Assimacopoulos

School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece, Tel. +30 2107723135;
email: arab@chemeng.ntua.gr (G. Arampatzis), Tel. +30 2107721024; email: ekamp@chemeng.ntua.gr (E. Kampragou),
Tel. +30 2106981836; email: pskaloub@otenet.gr (P. Scaloubakas), Tel. +30 2107723218; email: assim@chemeng.ntua.gr
(D. Assimacopoulos)

Received 31 January 2015; Accepted 15 June 2015

ABSTRACT

The efficient management of water supply-distribution systems requires the use of water
demand forecasts so as to optimize the use of the resources involved (primarily water and
energy) and minimize related costs. Particularly for operational water management, fore-
casting needs to be: (i) sensitive to rapidly changing factors (usually related to the water
system management conditions), (ii) of a high level of accuracy and (iii) of high temporal
resolution. Such a demand forecasting methodology, suitable for short-term water supply-
distribution and management, has been developed and it is presented in this article, using
the “similar days” approach. The method is based on the principle that “similar” days have
similar consumption patterns. Similarity of any two days is judged by estimating a “day
similarity index,” which is a composite measure of the difference of the day’s sets of
common day attributes (such as the day of week, weather conditions, special events, etc.).
The methodology is applied in two case studies, aimed at improving entirely different man-
agement procedures: (i) water pump operations at the distribution network of the city of
Karlsruhe (Germany) and ii) water resource allocation for the metropolitan area of
Barcelona (Spain), respectively. The case study applications confirm that the methodology is
easily configurable, it fits well for quite different water management cases, and small
forecasting errors can be achieved using readily available data.

Keywords: Water demand management; Demand forecasting; Similar days approach; Water
demand drivers

1. Introduction

The water supply-distribution chain can be aggre-
gated in three wide components [1]: (i) demand, related

to the type of users in an area; (ii) water system, refer-
ring to the institutional (e.g. priorities in use), technical
(e.g. networks) and economic (e.g. cost recovery issues)
components that define the quantity and quality of
water delivered to the users; and (iii) supply, corre-
sponding to the amount of water abstracted from each*Corresponding author.
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source in order to meet water demand. In this context,
water demand forecasts are used by water managers
for the planning, designing the infrastructure, operat-
ing and managing water supply systems, so as to opti-
mize the use of the resources (mainly water and
energy) and to minimize the related costs.

Water demand forecasting can be short-term
(e.g. a few days), medium-term (e.g. monthly and up
to 2–3 y) or long-term (several years), and can be
performed at different levels of aggregation (e.g. a
river basin, an agricultural system or a city) [2]. The
selection of a water demand forecasting methodology
is a function of three main criteria [3]: (i) planning
objectives, (ii) data requirements and (iii) the availabil-
ity of resources for the data collection, model set-up,
development and calibration. The planning objectives
are the most important criteria and define the level of
detail needed by the decision-makers, who will
utilize the water demand forecast information in their
activities. Long-term management procedures (e.g.
planning of large-scale investment for water supply
enhancement) need forecasting to analyse the impact
of changes in the demand drivers (e.g. water user
population attributes, technology, price, income
and climate) on water demand [4]. On the other hand,
short-term management procedures (i.e. operational
management) need forecasting to minimize the use of
resource inputs and increase the reliability in water
use delivery. They typically use different determinants
for describing the water demand pattern.

Increasing importance is given to improving
the efficiency of short-term management procedures,
particularly for operational water management that
may provide more immediate, certain and measurable
benefits to the water system actors, the environment
and the society. Fig. 1 shows the various stages along
the water supply-distribution chain, each having

more-or-less different short-term demand forecasting
requirements for management purposes. Conse-
quently, the development and testing of suitable water
demand short-term forecasting methodologies, which
can become part of and enhance the efficiency of these
procedures, becomes increasingly important.

The methods typically used in short-term forecast-
ing are probabilistic methods, memory-based learning
techniques, time series models, neural networks and
hybrid methods [5]. An overview of the approaches
in-use is presented in Table 1. The desired properties
of a short-term forecasting methodology are to be
practical, readily applicable to all points/procedures
along the water chain, and able to provide real
immediate benefits in terms of cost reduction and
resource efficiency.

The statistical trends analysis (time series) type of
models that are commonly used for short-term
forecasts [6–8] might provide good short-term predic-
tions, but these depend on the day-to-day stability of
water consumption and the very short-term effect of
“hidden” system variables, as explained in [9]. A
methodology that is able to encode such variables in a
flexible way and to explain day-to-day demand varia-
tion is the “similar days” method which in addition
can meet the requirements pinpointed above. The
method has been mainly used for forecasting energy
demand [10,11] and electricity prices [12] but has also
been applied in water demand forecasting [13,14]. The
method emulates the way that an expert controlling
some part of the water supply-distribution chain (e.g.
scheduling operation of pumps) does his guesswork
about what a day’s demand pattern might look like,
by looking back on what happened on a past day that
seems similar. Typically, it is used to forecast demand
for the next 1–2 d. However, it may be used as far
ahead as desired, provided that the states of the

Water sources
•How much water 
is needed from 
each source in 
order to meet 
demand?

Abstraction -
Storage
•How much water 
should be 
allocated to the 
different 
(downstream) 
actors?

Treatment -
Distribution
•How should the 
distribution 
network be 
operated in order 
to reduce energy 
use and losses, 
while meeting 
demand?

Water use
•What is the 
sectoral demand 
for water?

Disposal
•What are the  
options for 
wastewater 
reuse/ recycling?

Fig. 1. Guiding questions related to water demand forecasts along the water supply-distribution chain.
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system variables can be forecasted. Besides using
relatively easy to find data, the methodology is quite
extensible, since the forecast time step (day, hour and
minutes) can be parametric and the system variables
themselves can be also parametric. Thus, system
experts using the model may continuously improve its

predictive power and fit it to changing conditions and
system events.

The aim of this article was to develop a model
for short-term water demand forecasting based on the
“similar days” methodological approach. Emphasis
is given to the methodological steps required to

Table 1
Methods typically used in short-term forecasting

Approach Advantages Disadvantages

Time series analysis

(1) The method is relatively
cheap to implement [1]

(2) It is based on records of
past uses

(3) Rather low data require-
ments

(4) Depending on data avail-
ability, demand forecasting
can be related to different
use categories [1]

(1) Forecasting errors, due to
changes in trends, do not
provide a sound basis for
future learning

(2) Forecasting accuracy varies
depending on the fitting
function

(3) The method assumes that the
historical water use pattern
is representative of future
water demand

(4) Extrapolation techniques
typically provide estimates of
aggregate demands rather
than components of demand
[1]

(Extracts statistic information about
periodicities and other trends in past
observations of the forecasted (depended)
variable)

Pattern recognition

(1) Low computational
requirements [14]

(2) Easy to incorporate new
variables or states in the
model [14]

(3) Low to medium data
requirements [14]

(1) Forecasting accuracy
depends on the calibration of
the variables’ values

(Correlates consumption patterns to
patterns of daily conditions to select
periods of similar pattern)

Artificial neural networks

(1) Ability to learn from the
facts or input data and the
associated output data [15]

(2) The use of ANN does not
require a priori knowledge
of the process [16]

(3) ANN models are effective
with nonlinear data [16]

(1) ANN models are usually
difficult to automate since
ANN training may need
supervision from experts and
models may need more fre-
quent update

(2) A large number of high-qual-
ity training correlated data
sets are required to achieve
high forecasting accuracy

(3) Rather high data require-
ments

(Emulates in a fuzzy way like other types of
mathematical models, by implementing a
process for learning from a multitude of
input data sets)
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develop, calibrate and apply the model in real
situations. A probabilistic view of the model results is
also presented in order to support the risk analysis of
the estimated demand forecasts. The methodological
steps are implemented in two case studies, represent-
ing two entirely different water chain management
procedures, with quite different goals. The applica-
tions help demonstrate that the methodology is
easily configurable and it fits well in quite different
water management cases and operating environments.
Results from both applications show that small
forecasting errors can be achieved by utilizing readily
available data and the proposed method can be
applied in short-term management procedures at all
points along the water supply-distribution chain that
require or can potentially use demand forecasts.

2. Methodology

2.1. Model equations

The proposed methodology is based on the “simi-
lar days” pattern recognition approach, i.e. on the
principle that days having similar conditions (i.e.
levels of factors affecting demand) are expected to
exhibit also quite similar consumption levels. Future
water demand is forecasted by estimating a weighted
average of actual historic water consumption data that
refer to a set of days in the past, with attributes simi-
lar to the forecast day. Thus, the model comprises two
stages. At the first stage, a set [S] of N d from the
recent past, similar enough to the forecast day, is
selected on the basis of a number of criteria (i.e. inde-
pendent explanatory variables of the model). At the
second stage, demand is predicted by estimating a
weighted average of the recorded historic consump-
tion values for this particular set of similar days, using
the formula:

df ¼
XN

i¼1

wi � ci (1)

where df is the forecasted water demand (daily, hourly
or n-minute) for the forecast day f, ci is the observed
water consumption of similar day i for the same time
step and wi is the influence (i.e. statistical weight) of
similar day i on the demand forecasted.

Past days are included in the similarity set [S] if
they are: (i) sufficiently similar to the forecast day and
(ii) recent enough, so that the basic hypothesis of the
model, i.e. the correlation between day similarity and
water consumption, holds true.

The similarity set must be large enough to account
for sufficient statistical variation of water consumption
and small enough, so that outlier values are not
included. Past days are considered similar, if their
characteristics (similarity factors) are very close to
those of the forecast day. A quantitative expression of
this concept of similarity is provided by the similarity
index. It is calculated using the formula [14]:

ri ¼
PM

k¼1 vikvfkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
k¼1 v

2
ik �

PM
k¼1 v

2
fk

q (2)

where ri is the similarity index for day i, M is the
number of factors influencing demand, vik is the map-
ping value of factor k for day i and vfk is the mapping
value of factor k for forecast day f. Mapping values of
similarity factors are explained in the next paragraph
(Section 2.2).

The index estimated by formula (2) is a measure of
the vector distance of the days i and f in the
M-dimensional similarity factor space. It is analogous
to a correlation coefficient and its values are assessed
similarly. Past days with sufficiently high similarity
index values are considered similar to the forecast day
and they are included into the similarity set to be used
in the demand forecast estimation formula (1). Suffi-
ciently high are the values above a pre-defined thresh-
old rc (e.g. ri > 0.9 = rc). This is a model parameter,
representing the similarity condition (i), while a second
model parameter, representing condition (ii), is the
cut-off point in the consumption timeline (i.e. the num-
ber of past days tc considered for inclusion in [S]) for
the similarity set. The values of both parameters are
determined during the calibration of the model, by
varying in steps rc and tc and selecting the values that
most consistently minimize the prediction error.

The similarity indices of days included in the simi-
larity set [S] can be used to calculate the relative
weights of similar days in formula (1), i.e. weights are
linearly analogous to the degree of similarity, accord-
ing to the following formula:

wi ¼ riPN
j¼1 rj

(3)

The methodology has the advantage that, due to the
way that the similarity set is compiled, error statistics
and confidence levels of the resulting forecast can be
directly estimated using standard statistical methods
[17], taking into account that the most probable values
and their probabilities (as estimated by the weights wi
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of similar days) have already been calculated. There-
fore, risk analysis, on the use of the estimated fore-
casts in water management procedures, can be easily
performed. This can be necessary in some resource
optimization cases, where the consequences of a
wrong decision could be serious enough.

2.2. Methodological steps

The practical application of the forecasting
methodology presented in the previous paragraph can
be summarized into ten procedural steps:

(1) Identify the factors influencing water demand
to be included in the forecasting model.

(2) Establish mapping tables, to obtain the range
of values for each similarity factor.

(3) Compile a time series of data for consumption
and all related similarity factors.

(4) Obtain/estimate predictions of the mapping
values of similarity factors for the forecast
day.

(5) Calculate the similarity index for all days in
the time series database, which fall within the
cut-off time limit tc, using formula (2).

(6) Select the set [S] of similar days to the fore-
casted day, by applying threshold rc.

(7) Calculate the weights/probabilities of the simi-
lar days in [S], using formula (3).

(8) Estimate the demand for the forecast day,
using formula (1).

(9) Estimate error statistics and confidence levels.
(10) Perform sensitivity and risk analysis.

Steps 1 to 3 are implemented during the set-up and
calibration of the model in a new area, steps 3 to 8 are
regular steps performed each time a demand forecast
is required and steps 9 and 10 are part of the optional
risk analysis phase.

In step 1, a set of similarity factors is selected and
incorporated to initialize the mapping table. Such typi-
cal factors, expressing the drivers of water demand on
a day-by-day basis, are the type of day (e.g. normal
day, public holiday, strike, major sports or other
special event, etc.), day of the week, month, tempera-
ture, precipitation, etc. Selection of factors is done
either empirically or through the statistical study of
co-variance and they should satisfy two rather obvious
criteria of applicability. It should be possible to obtain
and update (up to present day) a time series of
historic data values, correlated to the corresponding
water consumption, and it should be feasible to
predict the value of each factor for the forecast day.

The main drivers of demand as expressed in the simi-
lar days model through the similarity factors and
model parameters are depicted in Fig. 2.

Similarity factors can be qualitative or quantitative,
taking nominal or numerical values. In order for all
factors to be comparable and usable in formula (2),
quantitative factors (e.g. temperature) need to be con-
verted into qualitative ones, by subdividing their
ranges into numerical intervals and correlating those
with discreet day states (nominal values). Every state
needs to be mapped to a numerical ranking value in
order to be entered in formula (2). This is done in step
2, where the mapping table is filled with numeric
values for each possible state (class) of each factor, in
such a way as to capture the importance of each factor
and provide a basis for the comparison of days. The
mapping of the factor states to ranking values is
accomplished using the statistical distribution of water
consumption values for each state of each factor from
available time series data. Fig. 3 illustrates the concept
of the mapping database (note that the numeric
ranking values are normalized in the [0…100]
interval). The final mapping values (weights of simi-
larity) are obtained by multiplying the normalized
value of each state with a normalized weighting coeffi-
cient for each similarity factor. Thus, the relative
importance of each factor on water demand prediction
is taken into account. Following that and provided
that sufficient data have been made available (step 3)
and that the factors’ values for the forecast day are
predicted (step 4), the actual calculation of the fore-
casted demand (steps 5–8) using formulas (1)–(3) is
quite straightforward.

2.3. Implementation issues

The data required to support the forecasting
procedure (steps 3 and 4) are composed of three main
datasets (water consumption, day characterization and
meteorological data). Readily available historical con-
sumption data are used, that should ideally be in a
continuous time series, ideally continuous, extending
at a minimum for one year from the present day to
the past, while a 3-y time series is recommended to
ensure that a large enough number similar days will
always exist. Note that the time resolution of the fore-
casts depends only on the resolution of the historical
consumption data; thus, the described methodology
can as easily forecast hourly or n-minute water
demand, provided that consumption data of the same
resolution (e.g. hourly) are included in the time series.

Since forecasted demand is calculated directly from
historical consumption data, the quantity estimated
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corresponds exactly to the topological frame of refer-
ence of these data. Therefore, the forecast can actually
be a prediction of the flow through some node in the
water supply-distribution network, where consump-
tion is measured. Forecasts, in addition to regular
water use, also incorporate any regular water losses

(e.g. leaks and unaccountable water use), since these
are incorporated in the historical data. One-off events,
such as breaks, unscheduled infrastructure mainte-
nance or supply restriction events, or other abnormal
conditions cannot be forecasted (they could be possi-
bly predicted as stochastic events in long-range

Similar Days
Model

Weather

Weather

Water using practices, 
demographic & land uses

Water using practices, 
demographics & land uses

Seasonality: social, water using 
practices, tourism, etc.

Seasonality: social, water using 
practices, tourism, etc.

Temperature 
similarity factor

Precipitation 
similarity factor

Day-of-week 
similarity factor

Type of day  similarity 
factor

Month / Season 
similarity factor

Cut-off time limit 
parameter

Non-periodic trends & other 
hidden influences

Similarity threshold & 
weighted averaging

Similarity factors / Model parameters Drivers of demand

Fig. 2. Similar days model variables and drivers of demand expressed by them.
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Fig. 3. Mapping similarity factor values.
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forecasting, e.g. at a yearly basis). The influence of
scheduled events on demand can potentially be pre-
dicted by the model, provided that there is sufficient
historical data available and that a specific similarity
factor is included for this purpose into the model.

The model could be used to forecast as far ahead
in time as desired. However, there is a practical lim-
itation, since the time scope is limited by the need to
have an accurate forecast of the values of the similar-
ity factors. Since these factors include meteorological
conditions, this limits the useful time scope of
the model to about 7 d ahead. This is not really a
problem, since the model is intended to be used in
short-term water management procedure, typically for
planning and/or controlling next-day of at most next
48- to 72-h operations.

3. Application in case studies

The methodology is applied in two case studies,
aimed at improving entirely different management
procedures at different points along the supply-
distribution chain and at regions exhibiting quite
different conditions: (i) water pump operations at the
downstream distribution network of the city of
Karlsruhe (Germany) and (ii) water resource allocation
at the upstream management points of the water sup-
ply system for the metropolitan area of Barcelona
(Spain), respectively.

The water utility of Karlsruhe (SWKA) serves
about 300,000 inhabitants. The supply is ensured by
four “Waterworks.” The drinking water is obtained
through well fields, pumping water from the ground
water layer into the treatment sites. The main storage
reservoir of the city of Karlsruhe works as a stabilizer
of water supply and pressure.

The water supply system of the Barcelona is
deployed in a composite river basin area comprising
of the basins of the rivers Ter, Daró, Tordera, Besòs,
Llobregat and Foix, as well as several small coastal
stream basins. The watersheds of Ter and Llobregat
typically provide 81% of the water supply, while the
remaining 19% is provided by desalination plants,
regenerated water from waste water treatment plants
and groundwater usage. The main water uses within
the river basin include the combined urban–industrial
water use (this being the primary use), irrigation
water use and environmental use.

Forecasting is incorporated as an integral part of
the two entirely different water resource management
procedures. In Karlsruhe, hourly forecasts are used to
optimize the operation of numerous pumping stations,
thus minimizing the use of energy and costs. In
Barcelona, daily forecasts are used to estimate the

water that should be supplied daily from each one of
five main water resources, in order to meet demand
and reduce the amount of excess water rejected to
the sea.

3.1. Model set-up and calibration

3.1.1. City of Karlsruhe

The model is implemented in the city of Karlsruhe
using historical data on hourly water consumption for
a range of 32 months (May 2010–December 2012).
Daily meteorological data (minimum, maximum and
average temperatures as well as precipitation height)
were also collected for the same time period. These
factors are the most significant, it is easy to obtain
historical values and feasible to predict their values
for the forecast day. Other meteorological parameters
(such as relative humidity, wind and cloudiness), that
have been shown to influence water consumption [9],
may be used as far as a reliable source of information
exists. Missing values form the meteorological data set
were not filled-in, but the whole days, including the
corresponding consumption data, were removed from
the database. Moreover, pre-processing of the con-
sumption data set helped in identifying and removing
outliers.

The daily aggregated water consumption time
series and the correlated average temperature are pre-
sented in Fig. 4. The figure reveals a weak positive
correlation between the two data sets (correlation
coefficient equal to 0.4) with higher consumption dur-
ing the summer. Unusual high water consumption
values are reported during the last week of July 2010
and the first two weeks of August 2010. These values,
as well as other unusual individual peaks shown in
Fig. 4, are attributed to abnormal conditions (network
losses) and to high amounts of water that delivered to
other town/villages surrounding Karlsruhe (external
distributors). They have been marked as outliers in
the database and were not included in the analysis.

Temperature variables were directly used as simi-
larity factors in the forecasting model while the pre-
cipitation was used to calculate a “days after rainfall”
similarity factor, which has been shown to be corre-
lated with the water consumption. Other similarity
factors used are the month, the day of week, the hour
of the day and the day type. The latter is used to cat-
egorize days into four types: normal day, public holi-
day, school holiday and public/school holiday.
Seasonal variation of water consumption is indirectly
considered in the analysis using the month as a simi-
larity factor in the model. In addition, the climate
conditions in the city are not so extreme to justify
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significant differences in consumption e.g. during
summer.

Fig. 5 presents the variation of daily water
consumption by the type of day and the day of week.
These distributions have been used to provide
the mapping values of the two similarity factors
(presented in Table 2), as explained in Section 2.2.

Fig. 5(a) reveals that the water consumed in the
city of Karlsruhe during public holidays is almost
identical to the water consumed during school holi-
days. This fact is expressed by the identical mapping
values of these two states of the “Day Type” factors,
as shown in Table 2. The same applies to “Day of
Week” factor, where identical mapping values are
used for tuesday and wednesday as well as thursday
and friday.

3.1.2. Metropolitan area of Barcelona

The application of the model to the Metropolitan
area of Barcelona uses historical data on daily water
consumption for a range of six years (January 2006–
December 2012). Meteorological data (minimum, maxi-
mum and average temperature, precipitation height)
and a day characterization data set were also provided.

Fig. 6 presents the water consumption time series
and the correlated average temperature values. A
positive correlation between the two data sets is again
obvious (correlation coefficient equal to 0.45) with
higher consumption during the summer. Some unu-
sual low water consumption values are identified, that
correspond to unscheduled infrastructure maintenance
events, due to damage of the main tube of water.
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Fig. 4. Daily water consumption and average temperature in the city of Karlsruhe.
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Fig. 5. Variation of daily water consumption in the city of Karlsruhe (a) by type of day and (b) by day of week.
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These days have been marked in the database as out-
liers and not included in the analysis.

The day characterization data set uses five discrete
day types: normal day, strike, public holiday, school

holiday and world congress. Fig. 7 presents the variation
of water consumption by the type of day and day of
week while Table 3 presents the corresponding mapping
tables. As in the case of Karlsruhe, seasonal variation of

Table 2
States and corresponding mapping values of “Day Type” and “Day of Week” similarity factors for the city of Karlsruhe

Day type Mapping value Day of week Mapping value

Normal 100 Monday 90
Public holiday 60 Tuesday 100
School holiday 60 Wednesday 100
Public/school holiday 0 Thursday 90

Friday 90
Saturday 50
Sunday 0
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Fig. 6. Daily water consumption and average temperatures in the area of Barcelona.
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Fig. 7. Variation of daily water consumption in the area of Barcelona (a) by type of day and (b) by day of week.
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water consumption is indirectly considered in the analy-
sis using the month as a similarity factor in the model.

3.2 Model implementation and validation

3.2.1. City of Karlsruhe

The hourly demand forecasting model is tested
against a data subset of 168 h (corresponding to the

last week of December 2012). These data were
excluded from the data set used in the mapping
database.The forecasted demand is compared to the
actual consumption, and the results are presented in
Fig. 8. The model performs satisfactorily with a
mean absolute percentage error (MAE) equal to
5.4% and a root mean square error (RMSE) of 0.13
thousands m3/h.

Table 3
States and corresponding mapping values of “Day Type” and “Day of Week” similarity factors for the area of Barcelona

Day type Mapping value Day of week Mapping value

Normal 50 Monday 60
Strike 100 Tuesday 75
Public holiday 10 Wednesday 90
School holiday 0 Thursday 100
World Mobile congress 80 Friday 60

Saturday 10
Sunday 0
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Fig. 8. Hourly forecasted water demand and observed consumption in the city of Karlsruhe.
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Fig. 9. Daily forecasted water demand and observed consumption in the area of Barcelona.

G. Arampatzis et al. / Desalination and Water Treatment 57 (2016) 11494–11505 11503



3.2.2. Metropolitan area of Barcelona

The model is applied to provide daily water
demand forecasts for 30 test days (December 2012).
The results presented in Fig. 9 show that the model
performs satisfactorily, with a MAE equal to 6% and a
RMSE equal to 56,000 m3/d.

A unique feature of the model is that, besides the
forecast value, it also produces a number of similar
days with their consumptions. These data can be anal-
ysed, using standard statistical methods to provide
ranges of demand or even confidence levels. As an
example, Fig. 10 presents the confidence interval for
the forecasted water demand at a 95% level.

4. Conclusions

The possibility, even need, for the improvement of
the efficiency of short-term management procedures
along the water supply-distribution chain, through
accurate and practical water demand forecasting, has
been stressed. A methodology for short-term water
demand forecasting, based on the “similar days”
approach, has been presented, as a candidate for this
role. It has many advantages, most importantly that of
requiring easily obtainable data and of providing
accurate demand forecasts at almost any resolution
(hourly or n-minute) up to daily. It is transparent, i.e.
easy to comprehend, improve and calibrate and, due
of that, has the side benefit of being able to provide,
for its users, new knowledge about the water system
they manage. It can also produce measures of confi-
dence in and variation/distribution of forecast values,
thus enabling the use of probabilistic (risk) analysis,
necessary for resource optimization.

The methodology has been applied, for demonstra-
tion and testing, to two case studies, representing two
entirely different management procedures along the

water supply-distribution chain and at regions that
have quite different attributes. Results obtained
from these applications help demonstrate that the
methodology fits well in different water supply-
distribution management procedures, which are
already in use, while no particular data collection and
data processing. Sufficiently small forecasting errors
(e.g. 4.5% in the case of Karlsruhe and 6% in the case
of Barcelona) can be achieved using readily available
data, without excessive calibration effort. It is
concluded that this methodology can potentially
provide accurate results and it could be of high value
for practical use, in cases where very short-term
forecasting with high accuracy and temporal resolu-
tion is a requirement. Applying the methodology to
other nodes and processes along the water supply-
distribution chain or even to other water chains is
straightforward.
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