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ABSTRACT

Chlorination is still the main method of disinfection worldwide. Utilization of chlorine
modeling enhances the management of water supply systems toward the reduction of the
risks of waterborne diseases and cancer from disinfection byproducts formation. In this
paper, the results of chlorine modeling efforts were presented as an extension of a project
for Konyaalti Water Distribution Network (KWDN) of Antalya City, in the south of Turkey,
using autoregressive with exogenous input (ARX) and autoregressive moving average with
exogenous input (ARMAX) model structures. The required data-sets were obtained from
the existing online monitoring stations. The ARX and ARMAX model structures modified
for time series applications were utilized to predict chlorine concentrations at the critical
point of KWDN. Non-representative data-sets were initially identified and excluded from
the database. Best fit and Akaike’s Final Prediction Error techniques were used as model
selection criteria. ARX4-5-3 and ARMAX2-3-3-4 were identified to be the best ARX and
ARMAX model structures among several structures tested to predict chlorine concentrations
at the critical point of KWDN. This study shows that ARX and ARMAX model structures
can be considered as potential for managing chlorine levels in water distribution networks
especially when the properties of the components and hydraulics of water distribution
network are unknown.

Keywords: ARX and ARMAX model structures; Chlorine modeling; Dynamic modeling;
System identification; Water distribution network

1. Introduction

Drinking water should be disinfected for both
inactivating micro-organisms and providing a residual

against possible contamination of water in water dis-
tribution networks (WDNs). Chlorination is the most
common disinfection method as it is cheap, effective,
widely available, and easy to apply. Many waterborne
diseases resulting from drinking water contamination
might be eliminated using chlorine as a disinfectant [1].*Corresponding author.
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Chlorine reacts with both organic and inorganic
substances in water. Absence of chlorine or low chlo-
rine concentration in WDNs increases the risk of
waterborne outbreaks in case of contamination while
high chlorine concentrations are associated with the
formation of disinfection byproducts that some of
them have cancer risks as well as other chronic and
acute adverse health effects to human beings and ani-
mals [2]. Consequently, chlorine concentrations should
be kept within certain limits to minimize the health
risks. Free residual chlorine (FRC) concentrations in
WDNs should not be less than 0.2 mg/L and the con-
centrations of chloroform, bromoform, dibro-
mochloromethane, and bromodichloromethane must
not exceed the values of 300, 100, 100, and 60 μg/L,
respectively [3].

Several deterministic models have been developed
for quantification of chlorine decay in WDNs, assum-
ing first-order reaction kinetics [4–9]. However, chlo-
rine reactions and their kinetics in actual distribution
systems which are not well understood cannot ade-
quately be represented by simple process-based deter-
ministic models [10,11]. Biofilm formation and
corrosion are some of the important factors of diffi-
culty and uncertainty for deterministic modeling
approach of chlorine concentrations [12]. Furthermore,
all physical properties of the components of WDNs
must be known precisely and an accurate and a well-
calibrated hydraulic model is a prerequisite for deter-
ministic water quality modeling [13–15]. Due to the
aforementioned difficulties, artificial neural networks
(ANNs), one of the data-driven methods using histori-
cal data of the system, has been utilized to predict
water quality parameters in WDNs [16,17]. System
identification is a methodology for mathematical
modeling of dynamic systems that uses input and out-
put signals of the system for prediction of chlorine
concentrations in WDNs [16]. Mathematical modeling
of dynamic systems based on system identification has
come up as an alternative to ANNs model approach
as it reduces the number of system input variables.
The aim of this approach is to estimate the values of
the parameters for selected model structure [18,19].

System identification is an iterative process where
models are identified with different model structures
from data [19]. The autoregressive with exogenous
input (ARX) and autoregressive moving average with
exogenous input (ARMAX) linear models have been
widely used for system identification processes
[20–22]. Rodriguez and Serodes [16] conducted a
study to predict chlorine concentrations using ANN
and ARX model structures in Quebec, Canada. The
study showed that ARX and ANN models had similar
prediction results in general; however, the

performance of ANN model was better for estimating
chlorine concentrations for specific conditions such as
very high and low chlorine levels. Huusom et al. [23]
reported that ARX model structures were more suit-
able than ARMAX and state—space model structures
for control issues.

Kara et al. [24] carried out a leakage modeling and
Karadirek et al. [14] carried out a chlorine modeling
study in Konyaalti Water Distribution Network
(KWDN) of Antalya City using the well-known
hydraulic and water quality model—EPANET. ARX
and ARMAX model structures based on system identi-
fication of dynamic systems were utilized to control
FRC in KWDN [22]. This study is an extension of the
previous ARX and ARMAX modeling efforts of the
authors. The primary goal of the current study was to
obtain additional information about performance and
predictive capabilities of these model structures for
full-scale WDNs using online continuous monitoring.

2. Material and methods

2.1. Study area

Konyaalti Water Distribution Network (KWDN)
which serves about 60,000 people was selected as the
study area. KWDN is operated independently from
the rest of the city and is one of the major sub-
networks of Antalya WDN. The raw water is extracted
from five groundwater wells in Bogacay region and
supplied to the network from Bogacay Pumping Station
after disinfection process using sodium hypochlorite
solution. There is no need for water treatment as the
quality of the water abstracted meets the drinking
water quality standards set by the relative legislation
in Turkey [14,25]. The KWDN has about 200 km pipe
network with different pipe materials and diameters
and only one balancing reservoir namely Hurma
Balancing Reservoir with a 15,000 m3 storage capacity
which is used to balance hourly water demand with
supply in the region [14,25].

2.2. Online monitoring

There is a supervisory control and data acquisition
system (SCADA) infrastructure in the study area
[14,25]. The study area was divided into 18 district
metered areas (DMAs) which allow easy management
applications of both water quantity and quality in the
area [25]. Each DMA was equipped with sensors for
online continuous measurements of flow rates and
water pressures. There were also additional water
quality sensors at the chlorine dosing station, balanc-
ing reservoir and at the entrance of six DMAs for
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online continuous measurements of pH, FRC, turbid-
ity, electrical conductivity, and water temperature
[14]. The water quality monitoring station, ON-68, was
used for ARX and ARMAX modeling efforts in
another publication by the authors [22]. ON-68 exhib-
ited relatively low chlorine concentrations, in compar-
ison to the other monitoring stations, because it is the
farthest online monitoring station from the chlorine
dosing station. That is why the authors considered
ON-68 as a critical point in their previous study [22].
Afterwards, deterministic modeling approach, using
the well-known hydraulic and water quality model—
EPANET, was utilized for management of chlorine
concentrations in KWDN [14]. In that particular study,
the critical point of chlorine concentrations of KWDN
was determined (pointed as “C” in Fig. 1) by applying
EPANET model taking into consideration the temporal
and spatial changes of the model parameters all
around the year [14]. The critical point, C, always
showed the lowest chlorine levels and highest water
ages in KWDN [14]. The critical point of chlorine
concentrations of KWDN was equipped with a chlo-
rine analyzer in addition to existing water quality
monitoring stations to conduct this study. The

additional chlorine analyzer was equipped with a data
logger which allows set time intervals of choice of
chlorine measurements. Main components of KWDN,
existing water quality monitoring stations and the
location of critical point are depicted in Fig. 1.

2.3. Modeling approach

The ARX and ARMAX model structures, modified
for time series applications, were utilized to predict
chlorine concentrations at the critical point of KWDN.
MATLAB R2011a System Identification Toolbox was
used for all model efforts presented in this paper.
Modeling strategy consists of the identification of
autoregressive and exogenous parameters of ARX
model structure, and of autoregressive, moving aver-
age and exogenous inputs of ARMAX model struc-
ture. Model structures were developed to predict
chlorine concentrations for five steps ahead in the
future (that is 5 × Δt = 75 min) utilizing the data-sets
collected with time step (Δt) of 15 min for subsequent
measurements.

For a single input—single output system, the ARX
model is defined as Eq. (1) [19]:

Fig. 1. Main components of KWDN with SCADA water quality monitoring stations (ON), critical point, balancing
reservoir, and pumping station [Updated from 14].
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y tð Þ þ a1y t� 1ð Þ þ :::þ anay t� nað Þ
¼ b1u t� nkð Þ þ :::þ bnbu t� nb� nkþ 1ð Þ þ e tð Þ (1)

where na and nb are the orders of the ARX model (na:
Number of poles; nb: Number of zeroes plus 1); nk is
the delay (number of input samples that occur before
the input affects the output, also called the dead time
in the system); y(t): output at time t; y(t−1) … y(t−na):
previous outputs on which the current output
depends; u(t−nk) … u(t−nk−nb+1): previous and
delayed inputs on which the current output depends
and e(t):white-noise disturbance value.

A more compact way to write the difference
equation is

A qð Þy tð Þ ¼ B qð Þu t� nkð Þ þ e tð Þ (2)

where q is the delay operator. Specifically,

A qð Þ ¼ 1þ a1q
�1 þ . . .þ anaq

�na (3)

B qð Þ ¼ b1 þ b2q
�1 þ . . .þ bnbq

�nbþ1 (4)

where q is the delay operator; A and B are polyno-
mials; a1 … ana and b1 … bnb are the parameters of the
polynomials.

For a single input—single output system, the
ARMAX model is defined as Eq. (5) [19]:

y tð Þ þ a1y t� 1ð Þ þ . . .þ anay t� nað Þ
¼ b1u t� nkð Þ þ . . .þ bnbu t� nk� nbþ 1ð Þ

þ c1e t� 1ð Þ þ . . .þ cnce t� ncð Þ þ e tð Þ (5)

where na and nb are the orders of the ARMAX model
(na: Number of poles; nb: Number of zeroes plus 1);
nc is the number of poles for the disturbance model;
nk is the delay (number of input samples that occur
before the input affects the output, also called the dead
time in the system); y(t): output at time t; y(t−1) … y
(t−na): previous outputs on which the current output
depends; u(t−nk) … u(t−nk−nb+1): previous and
delayed inputs on which the current output depends;
(a1 … an), (b1 … bn), and (c1 … cn) are the parameters
of the polynomials A, B and C; and e(t−1) … e(t−nc), e
(t): White-noise disturbance values.

The parameters na, nb, and nc are the orders of the
ARMAX model, and nk is the delay. q is the delay
operator. Specifically,

A qð Þ ¼ 1þ a1q
�1 þ . . .þ anaq

�na (6)

B qð Þ ¼ b1 þ b2q
�1 þ . . .þ bnbq

�nbþ1 (7)

C qð Þ ¼ 1þ c1q
�1 þ . . .þ cncq

�nc (8)

Data-sets obtained from continuous online measure-
ments of chlorine concentrations both at chlorine dos-
ing station and critical point of KWDN were
separated into two different data-sets for model cali-
bration and verification processes. Pre-processing of
data-sets, which is essential in modeling processes,
was applied to observed data. Non-representative data
due to inadequate monitoring response and/or
maintenance of chlorine analyzers were identified by
analyzing temporal series of data and excluded from
database. Best fit (BF) and Akaike’s Final Prediction
Error (FPE) were used as model selection criteria. FPE
provides a measure of model quality by simulating
the situation where the model is tested on a different
data-set. The most accurate model has the smallest
FPE according to the FPE theory and it is defined as
Eq. (9) [19]:

FPE ¼ V
1þ d

N

1� d
N

 !
(9)

where V represents the loss function: The value of the
identification criterion at the estimate which is equal
to the determinant of the covariance matrix of the
prediction errors.

BF is defined as Eq. (10) [19]:

BF ð%Þ ¼ 1� y� ŷj j
y� �yj j

����
����� 100 (10)

where y represents the measured output, ŷ denotes
predicted model output and �y is the mean of �y. Hun-
dred percent indicates a perfect fit while 0% indicates
that the fit is no better than guessing the output to be
a constant (ŷ = �y) [19].

3. Results and discussion

3.1. Online monitoring

Continuous online chlorine analyzers helped in
acquiring reliable numerous data-sets for system
identification dynamic models. The critical point of
chlorine concentrations in KWDN was determined by
applying deterministic modeling approach [14].
Chlorine concentrations at both chlorine dosing station
and the critical point (pointed as “C” in Fig. 1) were
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continuously measured with an interval of 15 min
from January 10–February 2, 2012 as depicted in
Fig. 2.

3.2. Modeling results

The data-sets were separated into two parts, one
part for calibration and the other part for verification
processes. As the first step of modeling efforts, ARX
and ARMAX model structures were identified. Many
model structures were tested and the most accurate
model structure was selected to predict chlorine con-
centrations at the critical point of KWDN. A compar-
ison of performance criteria of some ARX and
ARMAX model structures is given in Table 1.

ARX4-5-3 and ARMAX2-3-3-4, which are the most
accurate ARX and ARMAX model structures based on
performance criteria, were selected to predict chlorine
concentrations at the critical point of KWDN. The least
mean absolute error (MAE) of model predictions of
chlorine concentrations was found as 0.022 mg/L for

ARX4-5-3 model structure while it was found as
0.036 mg/L for ARMAX2-3-3-4 model structure. The
MAE obtained from the previously conducted deter-
ministic modeling approach by Karadirek et al. [14]
was much higher than the MAE obtained in this
study. Fig. 3 provides a comparison of ARX4-5-3 and
ARMAX2-3-3-4 model predictions and observations of
chlorine concentrations at the critical point of KWDN.
It seems that there are differences between model pre-
dictions and field observations for both models,
although they are not significant as appeared in FPEs
and MAE values. The reasons of the observed delays
for both models were attributed to the system’s com-
plexity and could not be explained by the authors
within the scope of the available information about
the system. According to the achieved results, ARX4-
5-3 model structure was more capable of predicting
chlorine concentrations than ARX2-3-3-4 at the critical
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Fig. 2. Chlorine concentrations at the chlorine dosing station and the critical point between 10 January and 2 February,
2012.

Table 1
Model performance criteria of some ARX model structures

Model structure FPE BF (%)

ARX4-5-3 0.9815 e-005 70.11
ARX4-5-1 0.9834 e-005 70.06
ARX4-7-1 0.9852 e-005 70.06
ARX4-5-2 0.9827 e-005 70.05
ARMAX2-3-3-4 0.9964 e-005 71.55
ARMAX2-3-3-3 0.9963 e-005 71.54
ARMAX2-3-3-2 0.9996 e-005 71.53
ARMAX3-2-2-2 0.9965 e-005 71.49

00:00 12:00 00:00 12:00 00:00
0

0,05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Time (February 1-2, 2012)

Fr
ee

 R
es

id
ua

l C
hl

or
in

e 
(m

g/
l)

ARX4-5-3

ARMAX2-3-3-4

Observations

Fig. 3. Comparison of ARX4-5-3 and ARMAX2-3-3-4 model
predictions with observations of chlorine concentrations at
the critical point of KWDN for 48 h.
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point of KWDN. These results indicate that there may
be a scope for better models to improve prediction
accuracy.

4. Discussion and concluding remarks

The aim of the previous study of the authors [22]
was to predict chlorine concentrations at one step
ahead in the future while the model structures pre-
sented in this paper were developed to predict chlo-
rine concentrations at five steps ahead in the future.
The performance and accuracy of ARX and ARMAX
models of this particular study and of the previous
study [22] are presented in Table 2. in a comparative
way. When the order of magnitudes of FPEs obtained
for ARX and ARMAX models are compared, the cur-
rent study yielded better precision. However, the
previous study yielded better model performances, i.e.
higher BF values. Although these conclusions seem
contradictory, the complexities of the system justify
the observed differences. Also, the calibration proce-
dures and instrumentation besides model structures
and horizons (number of steps ahead for prediction)
were not the same for the two studies. Since the
achieved results for both studies produced satisfactory
performance values and satisfactory precision levels,
both ARX and ARMAX model structures can be uti-
lized in modeling chlorine at critical points of WDNs
in the lack of information that enables deterministic
modeling.
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gressive model with exogenous inputs to identify and
analyse patterns of solar global radiation and ambient
temperature, Int. J. Ambient Energy 33(4) (2012) 177–183.

[22] S. Soyupak, H. ‘Muhammetoğlu, System identification
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