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ABSTRACT

In this study, the direct blue 71 (DB71) removal efficiency from aqueous solutions by potato
peel-based sorbent was examined. Furthermore, influences of five operating parameters
including initial pH, sorbent particle size, dose of sorbent, initial dye concentration, and con-
tact time were studied. The Taguchi approach was used to design of experiments. The experi-
ments were performed in a 200-mL batch reactor. Maximum DR% was 90% (448 mg/gr
sorption capacity) in initial pH 3, sorbent particle size 225 μm, dose of sorbent 20 g/L, initial
dye concentration 100 mg/L, and contact time 10 min. Also, maximum sorption capacity was
1,704 mg/g (85% dye removal) in initial pH 3, sorbent particle size 575 μm, dose of sorbent
5 g/L, initial dye concentration 100 mg/L, and contact time 150 min. The results revealed that
the potato peel-based sorbent is promising for the sorption of DB71. After collecting data-set
of DR%, artificial neural network (ANN) and genetic algorithm were applied for modeling
and optimization of sorption efficiency. The R2 and root mean square error of the test set
were 0.99 and 3.4 for ANN model.

Keywords: Sorption; Potato peels; Design of experiment; Artificial neural networks; Genetic
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1. Introduction

Water and wastewater pollutions including toxic
or colorful organic materials such as dyes, pesticides,
organic solvents as well as toxic inorganic materials
especially heavy metals are a great concern in recent
years [1–5]. There are several treatment technologies
that are developing. Among the numerous treatment
technologies, sorption is receiving increasing attention.
Different kinds of materials have been applied as the

sorbents. Among these materials commercial activated
carbons are more effective and applicable. However,
the high cost of the activation process limits activated
carbon applications in wastewater treatment [6–11].

Over the last few years, a number of investigations
have been conducted to explore and to produce low-
cost sorbents. The application of agricultural waste
masses as raw carbon sources for activated carbon
production is presently the most fascinating topic due
to low cost and availability that helps the agricultural
waste management. In recent studies, several kinds of
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these materials such as fruit and vegetable peels, cone,
and leaves have been employed as raw carbon sources
[12–14].

Potato peel is disposed as a zero value waste in
many countries as part of the production of French
fries, crisps, puree, instant potatoes, and similar prod-
ucts. The produced waste ratio and composition
depend on the applied steam, abrasion or lye-peeling
procedures. Fifteen to forty percent of feed potatoes is
waste, which is consisted of 55% of potato skins, 33%
starch, and 12% inert material [15,16]. Management of
potato peels is a concern of potato industries [17,18].

The objectives of this study were production of
potato peel-based sorbent, investigating the ability of
potato peel-based sorbent in the removal of the model
dye direct blue 71 (DB71) from aqueous solution,
application of design of experiment (DoE) to investi-
gate the effects of five operational parameters on the
sorption efficiency, and application and assessment of
artificial neural network (ANN) and genetic algorithm
(Ga) for modeling and optimization the sorption
process.

2. Materials and methods

2.1. Regents and instrument

The DB71 dye powder was purchased from
Alvansabet Co. (Iran). The chemical structure and
characteristics of the DB71 are shown in Table 1.
Hydrochloric acid, sulfuric acid, and sodium hydrox-
ide were obtained from Merck. Distilled water for
preparation of dye solutions was prepared by a TKA
Smart2Pureultra pure water production system
(Thermo Electron LED GmbH, Germany). A UV–vis

spectrometer model T90+ (PG Instrument Ltd) was
used for DB71 analysis by calibration curve method.

2.2. Sorbent preparation

Potato peels were collected from local restaurant
garbage of Kurdistan University of medical sciences.
Raw potato peels were washed with hot water to
remove adhering dirt. The raw potato peels decol-
orization was performed by 1 M hydrochloric acid
solution. The decolorized potato peels were rinsed
with distilled water several times. The prepared
potato peels were dried at 70˚C for 48 h. The dried
potato peels were crushed by a commercial mill
(MKM 6003 model, Bosch company, Germany) and
then were sieved through two different sieves sizes
with average size of 225 and 575 μm. The obtained
sorbent was kept in a seal bottle.

2.3. Design of experiments

In this study, the influences of five operational
parameters including average sorbent size (SZ), initial
pH (pH0), dose of sorbent (DS), initial dye concentra-
tion (C0), and contact time (tC) were examined on the
DB71 sorption efficiency on the potato peels sorbent.
The selected range and levels of these five variables
were 225–575 μm for SZ at two levels, 3–11 for pH0 at
three levels, 10–100 mg/L for C0 at three levels,
1–10 g/L DS at three levels, and 10–150 min for tC at
five levels. In order to reduce the number of experi-
ments, randomized order of L18 orthogonal array
Taguchi design were used for SZ, pH0, C0, and DS

investigation using Minitab 14. In whole 18

Table 1
The chemical properties of DB71

Chemical name DB71
Molecular formula C40H23N7Na4O13S4
CB number CB7141269
Molecular structure

Molecular weight 1,029.86
CAS number 4399-55-7
λmax

a 522 nm

aThe maximum absorption wavelength.
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experiments, the five levels of tC were investigated.
All the selected experimental conditions presented in
Table 2 [19].

2.4. Batch sorption studies

In order to investigate the DR% during the pro-
cess, the 18 designed experiments were performed in
200-mL batch reactors containing 100 mL of synthetic
wastewaters containing desired C0 (ppm), SZ, pH0 and
DS. The experiments were done at room temperature
and 150 rpm stirring condition. After determined tC,
each sample was centrifuged at 3,000 rpm. The DB71
dye concentrations were determined based on Beer’s
law and calibration curve method using a UV–visible
spectrophotometer. The wavelength resolution and the
bandwidth were 1 and 0.4 nm, respectively. The
length of the optical path in glass cell was 1 cm. The
maximum absorption wavelength was determined in
each runs to prevent the matrix effects. The DB71
concentration data sets were used to calculate the DR
% and sorption capacity of the sorbent according to
Eqs. (1) and (2).

DR% ¼ C0 � Ct

C0
� 100 ð%Þ (1)

Sorption capacity ¼ ðC0 � CtÞ
Ds

mg

g

� �
(2)

where C0, Ct, and DS are the initial concentration of
DB71, final concentration of DB71, and dose of sorbent
in the experiments.

2.5. Methodology of modeling and optimization

The 90 data of DR% together with corresponding
experimental conditions were used as a data-set for

modeling the process. Two different techniques
including ANN and multiple linear regression (MLR)
were used to model the process. The five operational
parameters were considered as independent variables,
whilst the DR% was considered as dependent vari-
able. Data-set was randomly divided into three parts;
60% as a training set, 20% as a validation set, and 20%
as testing set. The same training set was used to con-
struct the both models. Since the MLR does not need
any validation set, both the validation and test sets
were applied as test set in MLR technique. Back prop-
agation algorithm was used for ANN model, since it
is very fast and simple. The number of hidden layers
and nodes was determined via a trial and error proce-
dure for ANN model. Finally, the quality of the mod-
els was determined by some model goodness
parameters.

After constructing the models, optimization of
process to get higher DR% was performed based on
outperformed model. In this study, “Ga” toolbox of
MATLAB software was used for generating the
optimal solution for maximum DR% [20].

3. Results and discussions

3.1. Sorption process

The results of sorption experiments are presented
in Fig. 1. The different diagram in different conditions
illustrates the influences of operational parameter. In
other word, different levels of experimental parame-
ters cause different DR%. However, statistical analysis
should certify the significant influences of each
parameter on DR%. In addition, it was found that the
potato peel-based sorbent is high-performance sorbent
with maximum of 91 DR% and maximum sorbent
capacity of 1,704 mg/g.

Table 2
Details of whole 18 runs that were designed by Taguchi approach

Run SZ (μm) pH0 C0 (ppm) DS (ppm) Run SZ (μm) pH0 C0 (ppm) DS (ppm)

1 225 3 10 1 10 575 3 10 20
2 225 3 50 5 11 575 3 50 1
3 225 3 100 20 12 575 3 100 5
4 225 7 10 1 13 575 7 10 5
5 225 7 50 5 14 575 7 50 20
6 225 7 100 20 15 575 7 100 1
7 225 11 10 5 16 575 11 10 20
8 225 11 50 20 17 575 11 50 1
9 225 11 100 1 18 575 11 100 5

Note: In each run, tC was investigated at five levels including 10, 30, 60, 90, and 150 min.
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3.2. MLR modeling

In order to recognize the significant parameters, the
MLR modeling approach was applied for DR%

modeling. The best obtained model coefficients and
related statistical characteristics are presented in Table 3.

Based on unbiased standardized coefficients pre-
sented in Table 3, among linear parameters, SZ and
pH0 have negative influences on DR% but C0, DS, and
tC have positive influences on DR%. Also, it can be
said that pH0 and tC are the most important parame-
ters regarding their larger coefficients. Table 3 indi-
cates that the MLR model does not have good
predictability for DR% due to complex mechanism of
sorption process. It demonstrates new interest in using
more powerful modeling approach, especially ANN
model [21–24].

3.3. ANN model

The best ANN model was constructed with five
neurons input layer, three neurons hidden layer, and
one neuron output layer. The “tansig” transfer function
was applied for input and hidden layers and “purelin”
for output layer [25]. The model parameters including
network weights and biases were adjusted in the ANN
model during the network training. Then, the trained
network was used to examine the test set. The (5:3:1)
ANN model was trained using 54 train data by the
back propagation algorithm. The adjusted parameters
of trained ANN model were presented in Table 4.

The goodness parameters of the ANN model are
presented in Table 5 that shows the high quality of
the ANN model in predicting the test set. However,
the ANN model is so simple with only three hidden
neurons but the ANN model completely outperformed
the MLR model. Therefore, the best ANN model was
applied to optimize the process conditions to get
maximum DR%.

3.4. Ga optimization

Ga optimization process resulted in an optimal
solution set to get maximum DR% equal to 91.2%. The

Fig. 1. The obtained DR% of 90 samples and 18 runs.

Table 3
The MLR model and related statistical characteristics

Coefficients Standardized coefficients p-value

Constant 48.35 None 0.000
SZ −0.046 −0.287 0.004
pH0 −4.795 −0.537 0.000
C0 0.147 0.201 0.040
DS 0.375 0.110 0.250
tC 0.138 0.245 0.013
Data-set Train (75 data) Test (51 data)
R2 0.49 0.49
RMSE 20.2 20.3
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solution values were 418, 3.7, 91, 19, and 45 for SZ,
pH0, C0, DS, and tC, respectively. The maximum DR%
that obtained from GA–ANN approach is so close to
the maximum DR% that obtained from the experi-
ments. It approves the ability of ANN approach to
model the sorption process. Also it shows that GA
approach is successful in getting global optimum. The
interpretation of solution values for input variables is
given in next paragraphs.

3.5. Influences of SZ on the DR%

The influences of SZ were investigated at two
levels of SZ including 225 and 575 μm. The SZ can
influence on two basic parameters of sorption effi-
ciency including adsorption surface area and absorp-
tion volume area. Increase in SZ causes increase in
absorption volume area but it causes decrease in
adsorption surface area. The ANN–GA optimization
approach presents the 418 μm as the optimum value
of SZ [26].

3.6. Influences of pH0 on DR%

The pH of solution is an important factor that can
influence the DR%. Based on the ANN–GA solution,
pH0 of 3.7 is optimum value of pH. The positive influ-
ences of acidic media on sorption process are reported
frequently. The DB71 dye molecules have hydroxyl,
sulfonic, and amine chemical groups that make DB71
dependent to pH. Also, the potato peals-based

sorbents have hydroxyl and carboxyl groups that
make it dependent to pH. Since both sorbent and sor-
bate are dependent on pH then there is an optimum
pH value. In this optimum pH value, the sorbate and
sorbent have opposite charge that helps sorption pro-
cess [26].

3.7. Influences of C0 on the DR%

The sorption behavior of DB71 on potato
peel-based sorbent was investigated in the range of C0

(10–100 mg/L) at three levels. Based on ANN–GA
optimization approach, the optimum value of C0 was
91 mg/L. However, increasing C0 causes increase in
DR% until 91 mg/L but more increasing in C0 does
not improve the DR%. It is because of saturation of
sorbent sites in higher C0 than 91 mg/L [26].

3.8. Influences of DS on the DR%

The DS influences were investigated in the range
of 1–20 mg/L at three levels. As presented in optimal
values of empirical parameters, the optimum value of
DS was 19 g/L. It means that DR% increased with the
increase in DS from 1 to 19.0 g/L. More DS causes
more available site for sorption that cause to more DR
% [26].

3.9. Influences of tC on the DR%

The influences of tC were studied in the range of
0–150 min in five levels. The diagrams of Fig. 1 illus-
trate that the DR% increased with increasing the tC
until special time and then get stable. The optimum
value of 45 min for tC is in the stable area of the dia-
grams. The optimum contact time is the time that is
needed to get equilibrium [22].

4. Conclusion

The potential of potato peel-based sorbent for the
sorption of DB71 from aqueous solution was investi-
gated. The influences of five experimental parameters
were studied. The results show the high potential of
potato peels to remove the DB71. The high sorption
capacity of potato peals-based sorbent is so promising
to use it as commercial product in future. Also, pro-
ducing the high-quality sorbent from potato peels
wastes can help the potato peels waste management.
This study also shows the ANN modeling technique
and GA optimization technique potentials to model
and optimize the sorption process.

Table 4
Network weights and biases of the ANN model

Neuron

Input layer to hidden layer weights

SZ pH0 C0 DS tSC Bias

n1 −9.05 −3.06 3.24 3.56 0.261 3.629
n2 7.06 −1.652 −0.231 0.847 0.118 4.95
n3 0.134 −0.019 −0.067 0.271 19.81 19.25

Hidden layer to output layer weights
n1 n2 n3 bias

Output 11.16 11.13 9.57 −11.25

Note: n: neuron or processing elements.

Table 5
Statistical characteristics of ANN model of DR%

Data-set Train Validation Test

R2 1 0.99 0.99
RMSE 1.1 1.7 3.4
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