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ABSTRACT

Groundwater contamination with arsenic (As) is one of the major issues in the world,
especially for Southeast Asian (SEA) countries where groundwater is the major drinking
water source, especially in rural areas. Unfortunately, quantification of groundwater As
contamination is another burden for those countries because it requires sophisticated equip-
ment, expensive analysis, and well-trained technicians. Here, we collected approximately
350 groundwater samples from three different SEA countries, including Cambodia, Lao
PDR, and Thailand, in an attempt to quantify total As concentrations and conventional
water quality variables. After that, two machine learning models (i.e. artificial neural
network (ANN) and support vector machine (SVM)) were applied to predict groundwater
As contamination using conventional water quality parameters. Prior to modeling
approaches, the pattern search algorithm in MATLAB software was used to optimize the
ANN and SVM model parameters, attempting to find the best parameters set for modeling
groundwater As concentrations. Overall, the SVM showed the superior prediction
performance, giving higher Nash–Sutcliffe coefficients than ANN in both the training and
validation periods. We hope that the model developed by this study could be a suitable
quantification tool for groundwater As contamination in SEA countries.

Keywords: Groundwater; Arsenic contamination; Machine learning; Support vector machine;
Artificial neural network; Southeast Asian countries

1. Introduction

In Southeast Asian (SEA) countries, groundwater
is a major source of drinking water supplies. How-
ever, groundwater contamination with arsenic (As)

has become a critical issue in SEA. In particular, it is
regarded as a public health issue because it is a car-
cinogenic element, which typically presents as an inor-
ganic species [1–5]. Groundwater contaminated by As
through natural aquatic chemical reactions has been
monitored in tube wells/hand pump drinking water
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supplies in South and Southeast Asia including
Thailand, Vietnam, Lao PDR, Cambodia, Myanmar,
Bangladesh, India, Nepal, and Pakistan [6–15].
Sun et al. [9] reported that approximately 200 million
people are exposed to the potentially toxic effects of
As in these countries.

Long-term and intensive monitoring programs are
insufficient to characterize As contamination in SEA.
It is very challenging to provide scientific guidelines
for public health due to a lack of groundwater As
observations. Quantification of As contamination,
however, could be another aspect that needs the
substantial labor and cost burden in SEA countries.
The measurement of groundwater As needs expensive
equipment and highly experienced technicians with a
high maintenance cost. Thus, indirect quantification of
As by modeling approaches could be an alternative
way to detect As contamination and provide predic-
tive information for public health management. In
particular, machine learning approaches can be useful
for predicting As fate that has complex relationship
between structural geology, mineral chemistry, and
mobilization characteristics [16].

Among various modeling approaches, machine
learning models could be useful for predicting As con-
centration based on the analysis of non-linear relation-
ship between environmental variables and As. The
artificial neural network (ANN) is a well-known
information-processing modeling approach [17]. The
ANN is one of the powerful pattern recognition
approaches which have been widely applied in vari-
ous areas [18–27]. One of the drawbacks is that the
ANN is not only difficult to construct the model, but
also often causes over-fit problems in predictions. A
few researchers have applied ANN to the prediction
of As in groundwater [28–30]. The support vector
machine (SVM) is another machine learning algorithm
which has been widely used in various fields [31–33].
It is based on statistical learning theory using a linear
high dimensional hypothesis space. It is regarded as
the effective alternative way to overcome the

weakness of ANN modeling, having all the positive
characteristics of ANN modeling [34]. Very few
studies were found in the application of SVM for
groundwater As contamination, including the previ-
ous study by Purkait et al. [28]. For the practical
application, efforts for developing more enhanced and
more reliable prediction models than conventional
models are needed.

Therefore, the objective of this study was to
suggest enhanced statistical modeling approach for
predicting As concentrations through the comparison
of prediction performance between the ANN and
SVM, using sufficient and comprehensive dataset that
has been measured from three different SEA countries
during the years 2008–2012 with a wide range of As
concentration levels.

2. Materials and methods

2.1. Field sampling

We collected groundwater samples to investigate
the As concentrations and six different parameters
from three countries, Cambodia, Laos, and Thailand,
from 2008 to 2012. Table 1 shows mean and standard
deviation values of As concentrations and conven-
tional water quality parameters. In Cambodia, 153
groundwater samples were collected from seven
villages in Kandal, Prey Veng, Kamphong Cham, and
Kratie provinces. In Laos, 182 samples were collected
and analyzed. In Thailand, the concentrations of As in
groundwater were examined in Tambon Ongphra
(n = 10) in Suphanburi province in 2008. In the three
countries, samples were collected from tube wells by
following this sequence: (1) pumping out the standing
water in the tube wells for about 10 min, (2) rinsing
clean polyethylene bottles which were previously
washed with water drawn from the tube well, and (3)
taking tube well water without filtering (raw water).
All samples were preserved with concentrated HNO3,
kept at 4˚C, and delivered to the laboratory. During

Table 1
Mean and standard deviation of groundwater observations

Country
Total As
(ppb)

Conductivity
(μS/cm)

Temperature
(˚C) Redox (mV) pH

Well depth
(m) TDS (mg/L)

Cambodia 428.83
(278.80)

597.62
(274.01)

29.60
(1.02)

−70.71
(63.12)

7.38
(0.31)

34.82
(6.40)

203.27
(399.96)

Laos 6.55
(14.21)

389.99
(407.16)

29.25
(1.45)

115.17
(66.83)

7.68
(18.00)

283.58
(452.15)

77.63
(77.63)

Thailand 1.77
(1.38)

261.84
(95.80)

29.18
(2.15)

123.45
(45.89)

5.43
(0.73)

30.35
(20.71)

138.97
(50.93)
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the sample collection in three countries, a series of
in situ measurements were conducted: pH, Eh, water
temperature (Wt) (HORIBA d-54 m), electrical conduc-
tivity, and total dissolved solids (TDS) (ORION 3
STAR, Thermo Electron Corporation).

2.2. Sample analysis

Total As concentrations in the groundwater sam-
ples were measured by an inductively coupled plasma
spectrometer (Agilent 7500ce, with a detection limit of
0.05 μg L−1). Accuracy and precision of measurements
were checked using a reagent blank, instrument
calibration standard, and standard reference material
for trace metals in natural water (SRM 1640). After
every tenth sample during analysis, the SRM sample
and calibration standards were analyzed to check the
analysis accuracy. All samples were measured at least
twice in order to assess the measurement reliability;
samples were reanalyzed if the error either from the
SRM or from the calibration standards exceeded 10%
or the relative standard deviation of the measurement
exceeded 5%. Dilution was made with 2% HNO3

when the concentration of the sample was over the
upper limit of the standard range (100 μg L−1).

2.3. Back-propagation artificial neural network and SVM

2.3.1. Back-propagation artificial neural network

The back-propagation artificial neural network
(BPANN) is one of the machine learning methods for
modeling complex and complicated relationships
between explanatory and dependent variables [30].
Basically, the BPANN consists of multiple layers of
nodes which include an input layer, hidden layer, and
output layer. These layers are sequentially connected
by links which transfer the signal to the next layers.
The signal strength is changed by multiplying the
weights and then transferred to the next node in the
network where linear or nonlinear transfer functions
are used to transform the signal. After estimating the
errors between As prediction and observation, the
learning algorithm will be activated to update weight
factors in an attempt to make a better prediction of
groundwater As concentrations. This process is contin-
ued until the model satisfies the performance goal.
The BPANN used for predicting groundwater As
concentration consists of three layers (input, hidden,
and output layers) with N input nodes, L hidden
nodes, and K output nodes. It can be expressed as
follows [17]:

OPk ¼ f1
XL
i¼1

w0
jkf2

XN
j¼1

wh
ijxPi þ b

j
1

0
@

1
Aþ bk2

0
@

1
A; k

2 1; 2; . . .;K (1)

where OPk is the output from the kth node of the out-
put layer in the network for the Pth input data vector,
xPi is the ith element of the Pth input vector (accepted
by the ith node of the input layer), w0

jk is the
connection weight between the jth node of the hidden
layer and the kth node of the output layer, wh

ij is the
connection weight between the ith node of the hidden
layer and the jth node of the input layer, b

j
1 and bk2 are

bias terms, N, L, and K are the number of nodes in the
input layer, hidden layer, and output layer,
respectively, and f1 (·) and f2 (·) are the activation
functions in the input and hidden layers, respectively.
Here, we tested log-sigmoid, pure linear, and tan-sig-
moid as transfer functions for the hidden and output
layers.

2.3.2. Support vector machine

The SVM has drawn much attention as an excellent
tool for classification and regression because of its
many attractive advantages and its generalization abil-
ity [33,35]. The advantage of an SVM over other
machine learning methods is that it has superior gen-
eralization ability with a relatively small number of
observations [36]. The main idea of the SVM is to map
the training samples from the input space into a
higher dimensional feature space using a nonlinear
mapping function Ф. The function is typically
unknown and performs linear regression in the feature
space [32]. Here, the regression addresses a problem
of estimating a function based on a given dataset G =
{(xi, di)}

l
i = 1 (xi is input vector, di is the desired value).

SVM approximates the function from the following
equation:

y ¼
Xl

i¼1

wiUi xð Þ þ b (2)

where {Фi (x)}li = 1 are the feature of inputs, {wi}
l
i = 1

and b are coefficients. They are calculated by minimiz-
ing the regularized risk function (R(C)).

RðCÞ ¼ C
1

N

XN
i¼1

Le di; yi
� �þ 1

2
jjwjj2 (3)
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where

Le d; yð Þ ¼ d� yj j � e d� yj j � e
0 others

�
(4)

where ε is a prescribed parameter. The Lε (d, y) is an
ε-insensitive loss function which does not discipline
errors less than ε. The term 1

2 jjwjj measures function
flatness. C is a regularized constant determining the
trade-off between training error and the model
flatness.

2.4. Modeling parameter optimization

The learning algorithm of the ANN contains learn-
ing and momentum rates which significantly influence
the training process and the model performance. In
addition, the size of the network (i.e. the number of
hidden nodes) has a considerable effect on the model
performance [37]. If the size of structure is set up with
too many hidden nodes, it could cause an over-fitting
process which means that the model could not be use-
ful for the prediction problem. Otherwise, the model
performance could not be satisfactory with the simpli-
fied structure and non-optimized model parameters
[38].

Just as with the ANN model, the model parame-
ters of the SVM also have a significant influence on
the model performance, implying that the parameters
need to be optimized with proper methods [39]. There
are three significant parameters in the SVM model,
including the number of C, epsilon, and sigma. As
well, we are also facing the global optimization prob-
lem when we search for the optimal model parameters
[40]. Hence, the pattern search algorithm was applied
to find the globally optimal parameters for the ANN
and SVM models. The ranges of the ANN parameters
were chosen by previous studies [30,41,42]. For the
SVM, the pattern search algorithm was applied to
determine the number of C, epsilon, and sigma within
its parameter range [43].

2.5. Model training strategy

The total dataset was divided to separate training
and validation datasets for the ANN and SVM mod-
els. A total of 10 disjoint subsets of data, which con-
tain 10% of the total data, were used to evaluate the
validation errors. The remaining 90% of the data were
randomly assigned into two different subsets of data:
training (70%) and testing (20%). The training set was
used to determine the optimal network weights (wij

h,
wjk

h), and the test set was used to decide the optimal

iterations for ANN training. After the determined
stopping point, the validation set was then used to
determine the validation error of the ANN. This pro-
cess was performed 10 times to calculate the valida-
tion errors for each of the validation subsets; these
validation errors were subsequently compared with
the errors of SVM models.

3. Results and discussion

3.1. Relationship between As and conventional parameters

Among the three countries, groundwaters in
Cambodia can be characterized by a high level of
groundwater As concentration with very low redox
potential (Table 1). For most of the samples from
Cambodia, arsenic concentrations exceeded 10 μg L−1

(the WHO drinking water guide value) and 50 μg L−1

(Cambodian drinking water legal limit), reaching to
1110.23 μg L−1. In Laos, mean As concentration does
not exceed the WHO drinking water guide value, but
samples collected from the downstream of the
Mekong River showed relatively high concentrations
ranging from 0.59 to 71.06 μg L−1. All samples from
Thailand do not exceed the WHO dirking water guide
value for arsenic. We found significant relationships
among As concentrations and conventional parameters
(Fig. 1). We see a strong negative relationship
(r = −0.72) between redox potential and total As con-
centrations which indicates that high concentrations of
As might be caused by reducing conditions [30,44,45].
As well, groundwater As concentrations are positively
correlated with TDS, which is strongly associated with
well depth.

Cho et al. [30] demonstrated that the predictive
performance of linear models is not satisfactory in
terms of Nash–Sutcliffe coefficients (NSE) values, indi-
cating that the vigorous variation of groundwater As
concentration could not be reproduced by linear mod-
els. This is the reason that we apply machine learning
theories that include nonlinear transfer or mapping
functions to reproduce the nonlinear relationship
between groundwater As concentrations and conven-
tional water quality parameters.

3.2. Optimization of ANN and SVM models

Prior to modeling approaches, the model parame-
ters in the ANN and SVM were optimized in an
attempt to construct the best model and to maximize
the model performance. The pattern search algorithm
from MATLAB, a generic algorithm, was used to
determine optimal parameters for both the ANN and
SVM models [46]. For the ANN model, learning and
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momentum rates and the number of hidden layer
nodes were optimized, while the type of Kernel func-
tion, C, epsilon, and sigma was adjusted to find the
optimal set for the SVM model. The lower and upper
limit of target parameters was selected from the previ-
ous environmental application of the ANN model
[30,41]. As well, the reported range of the SVM model
parameters from the previous study by Wang et al.
[43] was selected to determine the optimal parameters
set. Table 2 shows the optimization results of ANN
and SVM parameters for modeling groundwater As
concentration. The optimal parameter set is the

combination of pure linear and log-sigmoid transfer
functions with a learning rate of 0.8 and a momentum
rate of 0.3. Overall, NSE values in both the training
and validating steps did not change significantly with
different parameter sets. Similar to the ANN model,
we found that the performance of SVM was not
significantly influenced by the model parameters and
kernel functions. As shown in Table 2, an RPF func-
tion with C of 100, epsilon of 0.1, and sigma of 26.63
was the optimal parameter set for the SVM model
which results in 0.76 and 0.58 for each training and
validation step.

Fig. 1. Correlation matrix among total As concentration (ppb), conductivity (μS/cm), temperature (˚C), redox (mV), pH,
well depth (m), TDS (mg/L); the red line is the linear regression line; the number in each box is Pearson’s correlation
value; the gray bar means the histogram of each parameter.

Table 2
Optimization of ANN and SVM model parameters for modeling groundwater As concentration

Transfer function

Model parameter NSE
Kernel function

Model parameter NSE

Lr Mo # of hidden neuron Tr Vl C Epsilon Sigma Tr Vl

Logsig-Logsig 0.70 0.11 11 0.66 0.50 Exponential RBF 51.13 0.069 6.38 0.71 0.45
Logsig-purelin 0.90 0.90 16 0.65 0.52 Gaussian RBF 50 0.069 9.63 0.61 0.48
Logsig-Tansig 0.59 0.25 10 0.62 0.48 RBF 100 0.1 26.63 0.76 0.58
Purelin-Logsig 0.80 0.30 11 0.66 0.52
Purelin-Purelin 0.10 0.10 2 0.61 0.47
Purelin-Tansig 0.10 0.10 5 0.60 0.46
Tansig-Logsig 0.90 0.40 16 0.67 0.51
Tansig-Purelin 0.10 0.35 3 0.62 0.52
Tansig-Tansig 1.00 0.50 5 0.66 0.51
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3.3. SVM and ANN modeling results

After obtaining the optimal parameters set, ANN
and SVM models were trained to model groundwa-
ter As concentrations with conventional parameters
as input data. A total of 313 samples were used to
train and validate the two models. Fig. 2 illustrates
the training and validating results of the ANN and
SVM models. As well, the prediction accuracies of
the two models were quantified using the NSE [47].
NSEs of SVM (training = 0.76 and validation = 0.58)
are slightly higher than ANN models (training = 0.66
and validation = 0.52), showing acceptable prediction
accuracies [48]. However, both models have
limited ability to reproduce the higher level of As
concentrations which were mostly collected from
Cambodia. This can be explained by the fact that
the nonlinearity of both models cannot fully repro-
duce the high level of As concentrations. In addi-
tion, the range of groundwater As concentrations
from the three different countries is too broad to be
modeled by ANN and SVM models. The concentra-
tions measured in this study ranged from unde-
tectable to 1110.23 μg L−1, implying that As
observation is much too variable to be modeled by
two models.

3.4. The relationship between redox potential and As
concentration

Eh is significantly related to As concentration as
shown in Fig. 3 where the dataset was divided into

Fig. 2. Comparison between observed and predicted As by ANN and SVM models.

Fig. 3. Comparison between observed and predicted As by
ANN and SVM models.
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two different groups, Group A and Group B. Most of
the samples in Group A collected from Kandal
Province in Cambodia and samples in Group B were
measured from Lao PDR and Thailand. It is reported
that a reduced state of As(III) is the major species in
Kandal Province where the majority of As exist in
highly reducing aquifer regions having a low

Eh level [10,30,49,50]. Here, Group B can be
characterized by As in a reducing region, showing a
strong negative correlation with Eh. The strong
correlation might result from a combination of
low ferrous and high Eh in Lao PDR [30,51].
Consequently, we found a significantly different
dependency of As concentration in response to Eh.

Table 3
Optimization of the model parameters for modeling groundwater As concentration in Group A

Transfer function

Model parameter NSE
Kernel function

Model parameter NSE

Lr Mo # of hidden neuron Tr Vl C Epsilon Sigma Tr Vl

Logsig-Logsig 0.90 0.65 17 0.56 0.49 Linear 80.22 0.10 10.00 0.47 0.48
Logsig-purelin 0.33 0.80 16 0.56 0.52 Exponential RBF 86.41 0.05 5.14 0.87 0.59
Logsig-Tansig 0.80 0.30 10 0.51 0.47 Gaussian RBF 8.77 0.09 0.25 0.72 0.62
Purelin-Logsig 1.00 0.13 11 0.47 0.48 RBF 14.75 0.10 6.44 0.71 0.61
Purelin-Purelin 0.10 0.73 2 0.47 0.45 MLP 79.61 0.44 6.15 −0.01 0.01
Purelin-Tansig 0.30 0.30 6 0.48 0.46
Tansig-Logsig 0.87 0.93 17 0.60 0.54
Tansig-Purelin 0.10 0.10 15 0.57 0.51
Tansig-Tansig 0.32 0.30 12 0.58 0.51

Fig. 4. Comparison between observed and predicted As by ANN and SVM models in Group A.
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This is the reason that application of ANN and SVM
could not be very satisfactory to predict As
concentrations from three different countries. Here,
we only applied ANN and SVM models for
predicting As concentration in Group A where the
models show the limitation of predicting higher As
concentration levels.

3.5. Prediction of As concentration in Group A

The ANN and SVM were applied to predict
groundwater As concentration in Group A which is
characterized by high groundwater As concentrations
and low Eh. Table 3 shows the model results (NSE
values) in response to different transfer functions and
model parameters in Group A. We found that the
model performance is not very sensitive to different
learning and momentum rates. For the ANN, the
combination of Tan-sigmoid function in the hidden
layer and Log-sigmoid in the output layer showed
the highest NSE values. Relatively higher learning
and momentum rates were determined as the opti-
mal parameters. In particular, the momentum rate for
Group A is three times greater than that of the ANN
for the whole dataset. As well, the number of hidden
nodes (17) in Group A is also more than the whole
dataset (11). For the SVM model, even though the
NSE value of Group A (0.72) is slightly less than the
whole dataset (0.76) in the training step, it showed
improved predictive accuracy in the validation step
from 0.58 to 0.62. Fig. 4 compares the observed As
concentrations with predicted As concentrations. As
shown in Fig. 4(A) and (B), the ANN model could
not make a good fitting on higher As concentrations.
In particular, we clearly see the limitation in the
training step. Conversely, the SVM model demon-
strated the better performance on Group A, showing
higher NSE values compared to the ANN model.
Fig. 4 also demonstrates that the SVM could be a
superior model for predicting As concentrations in
Group A. Here, we found better performance of
SVM for modeling groundwater As concentrations,
compared to the ANN model.

Modeling works on groundwater As concentra-
tions have been conducted with geological informa-
tion and soil properties [52]. The accurate prediction
of As, however, is still a challenging task. This study
was focused on high resolution-scale prediction by
incorporating 5 years of field study and modeling
works. It will be more robust and reliable with a
new dataset from another country. The models devel-
oped in this study can be utilized by the public via
web-based services or local government offices in
different SEA countries.

4. Conclusions

Groundwater is a very important drinking water
resource in SEA countries. Comprehensive investiga-
tions of As in SEA countries have been conducted by
many researchers in the world. However, accurate
quantification of groundwater As contamination can
be a burden for SEA countries because it requires
advanced and expensive equipment and well-trained
technicians. Here, we proposed an alternative way to
quantify groundwater As contamination using conven-
tional parameters. ANN and SVM were used to model
groundwater As concentrations. Major findings in this
study are:

(1) Among three countries (Cambodia, Laos, and
Thailand), the Cambodian samples showed
the highest level of groundwater As concen-
trations with very low redox potential. It
exceeded the WHO drinking water guide
value of 10 μg L−1 and the Cambodian drink-
ing water legal limit of 50 μg L−1, reaching to
1110.23 μg L−1.

(2) Two machine learning models (i.e. ANN and
SVM) showed acceptable prediction accuracy
for modeling groundwater As concentrations
using conventional water quality parameters,
but tend to underestimate high levels of As
concentration.

(3) The total dataset was separated into two dif-
ferent groups in terms of redox potential. We
extracted a higher As concentration group
where a reduced state of As(III) is the major
species.

(4) Consequently, we found that the performance
of the SVM model is slightly better than the
ANN model for predicting the higher concen-
trations of groundwater As.

This study provides two different machine learn-
ing models for quantifying groundwater As concentra-
tions for SEA countries, including Cambodia, Laos,
and Thailand. We hope that these models could be a
useful assessment tool for establishing better strategies
for public health concerning As toxicity from consum-
ing contaminated groundwater.
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