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ABSTRACT

With fast social and economic growth, stream water pollution in Saf-Saf river basin must
consider appropriate control measures of the pollution sources. Hence, there is a need for a
better knowledge and understanding of the pressure variables influencing the total dis-
solved solids of stream water. Saf-Saf river basin was chosen as the study area, and the data
set included data on 9 variables for thirty different municipalities in the Saf-Saf river basin
for monitoring year 2012. In this study, the effective variables have been characterized and
prioritized using multi-criteria analysis with artificial neural networks (ANNs), and expert
opinion and judgment. The selected variables were classified and organized using the multi-
variate techniques of principal components analysis (PCA) and factor analysis (FA). The
results of ANN analysis indicate that domestic wastewater and industrial wastewater are
the most pressing pollution sources, which is in contrast with the results of expert opinion
in terms of ranking and prioritizing of pressure variables. The PCA/FA grouped the 30
municipalities into four groups based on their similarities, corresponding to municipalities
of urban pollution (group I), very low pollution (group II), rural pollution (group III), and
industrial pollution (group IV). Therefore, the identification of the main potential pollution
sources in different municipalities by this study will help managers make better and more
informed decisions about how to improve stream water quality degradation.

Keywords: Saf-Saf river basin; Total dissolved solids; Pressure indicators; Artificial neural
networks; Principal component analysis; Factor analysis

1. Introduction

Recently, stream water pollution has been a com-
mon problem for many regions and countries [1].

Stream water quality impairment is strongly related to
the increasing anthropologic influences in watersheds,
such as changing land use pattern, increasing
wastewater discharge and fertilizer application [2,3].
Therefore, a major issue in watershed management
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studies is the assessment of the linkage between land
use and land cover characteristics and surface water
quality [4].

Increasingly, water quality degradation from land
use conflicts, destruction of wetlands and ecosystems
and anthropogenic effects is undermining the sustain-
able management of water resources and threatening
water resource base as part of nature. Anthropogenic
effects are caused by local and diffuse sources. The
pollution sources are: urban sewage, solid waste, haz-
ardous waste, industrial waste, overuse of fertilizers
and pesticides. In addition, over-exploitation of coastal
aquifers has already led to many cases of irreversible
saltwater intrusion [5]. Toward establishing an effi-
cient watershed management system, therefore, the
first step is to distinguish the relationship between the
river water pollution and anthropologic influences at a
watershed scale [6].

In Saf-Saf river basin, land use patterns and human
activities have significant impact on the stream water
characteristics. In rural areas, stream water quality is
mainly impacted by nutrients from farming systems.
However, in urban areas, stream water quality is
mainly impacted by nutrient and organic chemical
pollutants from household wastewater and industrial
sewage [7]. To assist water planners and managers to
gain adequate knowledge and understanding of the
relationship between pressure indicators and total dis-
solved solids (TDS) of stream water, there is a need to
use a proper methodology to define the effective pres-
sure indicator influencing the increasing values of
TDS in different municipalities of Saf-Saf river basin.

The main objectives of the research were to:

(1) Characterize and prioritize the most effective
pollution source among pressure indicators
and define the municipalities which are under
pollution sources;

(2) Establish a modeling relationship between
TDS, TDS of stream water and pressure indica-
tors;

(3) Classify municipalities into groups associated
with their related pressure indicators using of
multivariate statistical techniques (principal
component analysis (PCA) and factor analysis
(FA)).

In this work, ANNs were employed to relate a set
of independent input variables (the pressure indica-
tors) with one dependent output variable (the TDS). In
addition, the artificial neural networks (ANNs) and
expert opinion are used to characterize and prioritize
the most effective variable (indicator). The selected
variables have been classified using the PCA and FA.

ANNs have been successfully used to model
groundwater, assess quality of water, forecast precip-
itation, predict stream flow, and support other hydro-
logic applications. Wang et al. [8] applied ANNs to
assess the confined groundwater vulnerability in
North of China. Raman and Chandramouli [9]
adopted similar ANNs as alternative tools for deriving
the general operating policy of reservoirs. Leket et al.
[10] applied ANNs to predict the concentration of
nitrogen in streams from watershed features. Wen and
Lee [11] addressed the multi-objective optimization of
water pollution control and river pollution planning,
for the Tou-Chen river basin in Taiwan. Rogers and
Dowla [12] employed an ANNs trained by a solute
transport model, to perform optimization of
groundwater remediation.

Diverse multivariate techniques have been used to
investigate how environmental indicators are related
to explain the dependent variable (indicator), includ-
ing several methods of ordination, canonical analysis,
and univariate or multivariate linear, curvilinear, or
logistic regressions [13,14]. Most statistical methods,
reviewed by James and McCulloch [15], assume that
relationships are smooth, continuous, and either linear
or simply polynomials.

In this research, a relation between TDS of stream
water and pressure variables in Saf-Saf river basin has
been developed based on a cause–effect relationship
tackling the life cycle of water resources management.
The Driver–Pressure–State–Impact–Response (DPSIR)
was selected as a well-established framework to
develop the possible pressure variables. The effective
variables have been characterized and prioritized
using multi-criteria analysis with ANNs and expert
opinion and judgment. The selected variables have
been classified and organized using multivariate
techniques, which are FA and PCA.

2. Materials and methods

2.1. Study area and data description

The Saf-Saf river basin is situated in the North
Eastern of Algeria. It is bordered by the Guebli river
basin from the West, the upstream of Seybouse river
basin from the south, Kebir West river basin from the
Eastern, and finally Mediterranean Sea from the north
as shown in the Fig. 1. The total area of the Saf-Saf
river basin is 1,158 km2 and contains 30 municipalities
(Fig. 1).

Water resources are also vulnerable to the fast
growing demand of urban and rural populations,
demand of economic sectors including agriculture,
industry, and public institutions [7]. The population is

12964 B. Sakaa et al. / Desalination and Water Treatment 57 (2016) 12963–12976



estimated at 474,908 capita (in 2012),and domestic
water supply ranges from 80 to 170 l per capita per
day (l c−1 d−1). The industry is concentrated in the
downstream of Saf-Saf river basin, which consumes
7.95 hm3 y−1, and finally, the important agriculture is
located along the Valley of Saf-Saf river basin with the
consumption of water estimated at 25.15 hm3 year−1.

The water resources balance of the Saf-Saf river
basin has been developed based on the estimates of all
water inputs and outputs to the river basin. Table 1
shows that the present net water balance in the Saf-Saf
river basin is negative (−6.28 hm3 year−1) which indi-
cates that there is a water deficit. This deficit results in
lowering of water resources which face an increase in
water demand [16]. The negative balance leads to
decreasing the volume of freshwater in the river basin
and degradation of water quality.

In this research work, the data of TDS and pres-
sure indicators (variables) were applied to create the
ANN model using the software package of STATIS-
TICA 8. The database used is the results of sampling
and analysis of stream water from the thirty munici-
palities (sites of sampling) and the collection of pres-
sure variables from thirty municipalities (statistic data)
for the reference year 2012. The pressure variables
were the following:

(1) Hazardous wastes (HazWas) refer to genera-
tion of domestic, industrial, medical, and agri-
cultural hazardous wastes. They are measured
in tons per day (ton d−1);

(2) Generation of domestic wastewater (DomWW)
represents the liquid waste generated by house-
holds, public institutions, schools, hospitals,
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Fig. 1. Geographical projection of Saf-Saf river basin (Sakaa et al. [16]).

Table 1
Estimated water balance of Saf-Saf river basin

Inflows (hm3 year−1) Min Max Outflows (hm3 year−1) Min Max

Ground water 29.45 31.38 Municipal mobilization 25.35 26.75
Surface water 22.55 25.75 Agricultural mobilization 23.45 25.15
Non-conventional water 1.62 3.56 Industrial mobilization 7.75 7.95
Inflow from other basin 12.20 13.50 Discharge to the sea 15.55 20.08
Totals 65.82 74.19 72.10 79.93
Net balance −6.28 −7.83
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and public places. It is approximately 80%
of the water use. It is measured by million
cubic meters per year (hm3 y−1);

(3) Pesticides (Pesticid) represent all substances
used to kill pests, whether the pests are animals
or plants. They include insecticides, herbicides,
and fungicides. They are measured in tons y−1;

(4) Chemical fertilizers (ChemFer) refer to the
amounts of chemical fertilizers used in agricul-
ture to promote the plant growth. They include
urea, ammonium, nitrate, and sulfates, ammo-
nia, phosphatic fertilizers. They are measured
in tons y−1;

(5) Organic fertilizers (OrgFer) represent the
amounts of organic nitrogen input released by
microorganisms in the soil for plants use and
growth. They are derived from animal manures
and vegetable by-products, composted organic
matter and sludges. It is measured in tons per
year (ton y−1);

(6) Petrol stations (PetrolS) refer to the number of
fuel stations that provide the vehicles with fuel.
These stations have underground storages
which are considered as source for the hydro-
carbon contamination;

(7) Industrial wastewater (IndWW) means the vol-
ume of liquid waste produced by the industrial
facilities both existing in the residential areas
and industrial states. It is measured by million
cubic meters per year (hm3 y−1);

(8) Carbon dioxide means the CO2 content in the
air due to the emissions from transport, energy
station, fuels, industrial processes, and waste. It
is measured in parts per million (ppm);

(9) Total dissolved solids (TDS) reflect the salinity
of freshwater and originate from natural
sources, sewage, urban, runoff, industrial
wastewater, and chemicals. TDS consist mainly
of inorganic salts (principally calcium, magne-
sium, potassium, sodium, carbonates, bicarbon-
ates, chlorides, sulfates, phosphates) and some
small amounts of organic matter that are dis-
solved in water. TDS are measured in milligram
per liter (mg l−1).

The variables representing pressure indicators are con-
sidered as the possible input variables, while the target
output variable is the TDS. The variables presented in
this study have been most frequently selected by the
Organization for Economic Cooperation and Develop-
ment [17]. To develop indicators, a long list of possible
indicators will be drawn up based on literature review
of indicator systems. Then, a group of different local
stakeholders including local governmental officers,

beneficiaries, and academics is asked to evaluate each
of the proposed indicators. Also, a questionnaire will
be administered to ask the participants to rank
each indicator according to their judgment on the
significance of each indicator to local sustainable
development. Many people have participated in the
formulation and development of pressure indicators.

2.2. Methods

The tools chosen for this research were ANNs,
expert opinion and judgment, basic statistics and
multivariate techniques [18–21]. The software selected
were the STATISTICA package version 8.0, STATIS-
TICA Neural Networks.

There are four steps in the proposed methodology
for developing a relationship between TDS and pres-
sure variables (Fig. 2).

Step 1: the first step expresses the creation of the
ANN model, the characterization and prioritization of
the effective variables, and the establishment of the
modeling relationships between pressure indicators
and TDS.

Step 2: this step indicates the analysis of the ques-
tionnaire undertaken to explore the expert opinion
and judgment of various stakeholders using descrip-
tive statistics. The results of Step 2 were compared
with the results of the ANNs in Step 1 to examine the
understanding and knowledge of the local experts
about the actual baseline conditions of stream water
degradation.

Data

Real field data Questionnaire data

Expert Opinion Analysis
Ranking of variables (Step 2)

Factor analysisPCA analysis

Multivariate analysis 
(Step 4)

Transformation of non-normal dataCorrelation matrix

Correlation matrix 
for selected variables (Step 3) 

ANN Analysis (Step 1)
Prediction models, Selection and 

ranking of variables 

Fig. 2. Steps of data analysis.
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Step 3: transformation of data variables that were
not normally distributed and calculation of the
correlation matrix were carried out in Step 3 for the
variables selected from Step 1.

Step 4: two techniques of multivariate analysis
were undertaken in Step 4 for the selected variables,
to classify them with the relevant municipalities.

2.2.1. Background of ANNs

Neural networks have seen an explosion of inter-
est over the last few years, and are being successfully
applied across an extraordinary range of problem
domains, in areas as diverse as, engineering, geology,
and physics. Neural networks are applicable in virtu-
ally every situation in which a relationship between
the simulator variables and simulated variables
exists, even when that relationship is very complex
and not easy to articulate in the usual terms of
correlations or differences between groups. The basic
idea of an ANN is that the network learns from the
input data and the associated output data, which is
commonly known as the generalization ability of the
ANN.

The application of ANNs and other statistical tech-
niques in this research work have some limitations
due to the limited data sets available (30 municipali-
ties). Therefore, the cross-validation was used in ANN
as a stopping criteria to determine the optimal number
of hidden layer nodes, while avoiding the risk of over
training.

A variety of validation criteria that could be used
for the evaluation and inter-comparison of different
models was proposed by the World Meteorological
Organization [22]. They fall into two groups: graphi-
cal indicators and numerical performance indicators
of the several numerical indicators [22], suitable ones
for this study are chosen. These are the root
mean square error (RMSE) and the R2 efficiency [23],
given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðTDS� TbDSÞ2
N

s
(1)

R2 ¼ 1�
PN
i¼1

ðTDS � TbDSÞ2

PN
i¼1

(TDS� T�DSÞ2
(2)

Where TDS is the observed output value, TbDS is the
simulated output value, T�DS is the mean value of TDS
values, and N is the total number of data sets. The
RMSE gives a quantitative indication for the network
error. It measures the deviation of the estimated val-
ues from the corresponding observed values of target
output which refers to the estimation accuracy [24,25].
Besides, the RMSE was used to compare the perfor-
mance of MLP with radial function basic (RBF). R2

value is an indicator of how well the network fits the
data and accounts for the variability with the variables
specified in the network. A value of R2 above 90%
refers to a very satisfactory model performance.
Values range between 80 and 90% indicates unsatisfac-
tory model [26–28]. The ideal value for RMSE is zero
and for R2 is unity.

For this purpose, we developed ANNs using
the BFGS (Broyden Fletcher Goldfarb Shanno Quasi-
Newton) and Scaled Conjugate Gradient (SCG) back
propagation, which is recommended because it is
more likely to optimize the simulation performance.
The number of neurons in a hidden layer is decided
after training and testing. Multi-layered network
trained by back propagation is currently the most
popular and proven [29]. Training of ANNs consists
of showing example inputs and target outputs to the
network and iteratively adjusting internal parameters
based on performance measures. The MLP is simple,
robust, and very powerful in pattern recognition,
classification, and mapping. MLP is capable of
approximating any measurable function from one
finite dimensional space to another within a desired
degree of accuracy [30].

In this work, the variables representing the pres-
sure variables were considered as the possible input
variables including HazWas, DomWW, Pesticid,
ChemFer, OrgFer, PetrolS, IndWW, and CO2, while
the target output variable was the TDS, which is the
major parameter in water quality assessment. The
MLP network can be represented by the following
compact form:

TDSf g ¼ ANN HazWas, DomWW, Pesticid, ChemFer, OrgFer, PetrolS, IndWW, CO2

� �
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A schematic diagram of neural network is given in
Fig. 3. It shows a typical feed forward structure with
signals flow from input nodes, forward through hid-
den nodes, eventually reaching the output node. The
input layer is not really neural at all; these nodes sim-
ply serve to introduce the standardized values of the
input variables to the neighboring hidden layer with-
out any transformation. The hidden and output layer
nodes are each connected to all of the nodes in the
preceding layer. However, the nodes in each layer are
not connected to each other. A numeric weight is
associated with each of the internode connections. Wij

represents the strength of connections of nodes
between input and hidden layer, while Wjk represents
the strength of connections of nodes between hidden
and output layers.

Each hidden node (j) receives signals from every
input node (i) which carries standardized values ð�XiÞ
of an input variable where various input variables
have different measurement units and span different
ranges. �Xi is expressed as follows:

�Xi ¼
Xi � XminðiÞ

XmaxðiÞ � XminðiÞ
(3)

Each signal comes via a connection that has a weight
(Wij). The net integral incoming signals to a receiving
hidden node ðNetjÞ is the potential of the neuron, ð�XiÞ
and the corresponding weights (Wij) plus a constant
reflecting the node threshold value (THj):

Netj ¼
Xn
i¼1

�XiWij þ THj (4)

The net incoming signals of a hidden node (Netj) are
transformed to an input (Oj) from the hidden node
using a non-linear transfer function (f) of sigmoid
type, given by the following equation form:

Oj ¼ fðNetjÞ ¼
1

1þ e�Netj
(5)

Oj passes as a signal to the output node (k). The net
entering signals of an output node (Netk):

Netk ¼
Xn
i¼1

OjWjk þ THk (6)

The net incoming signals of an output node (Netk) are
transformed using the sigmoid type function to a
standardized or scaled output ð�OkÞ that is:

�Ok ¼ f(NetkÞ ¼
1

1þ e�Netk
(7)

Then, �Ok is standardized to produce the target output:

Ok ¼ �OkðOmaxðkÞ �OminðkÞÞ þOminðkÞ (8)

Rumelhart et al. [29] explained that the sigmoid func-
tion must be continuous, differentiable, and bounded
from above and below in the range [0–1]. The calcu-
lated error between the observed actual value and the
predicted value of the dependent variable is back
propagated through the network, and the weights are
adjusted. The cyclic process of feed forward and error
back propagation is repeated until the validation error
is minimal [31].

In case that limited data sets are available, cross-
validation can be used as a stopping criteria to deter-
mine the optimal number of hidden layer nodes [32];
while avoiding the risk of over training [33]. Cross-
validation is a technique used commonly in ANN
models and has a significant impact on the division of
data [34]. It aims to train the network using one set of
data, and to check performance against a validation
set not used in training. This examines the ability of
the network to generalize properly by observing
whether the validation error is reasonably low. The
training will be stopped when the validation error
starts to increase [27]. The database was divided into
training, validation, and testing. For the ANN models
described in this study, 50% of the available data was
used for training, 25% was used for the validation and
25% to test the validity of network prediction [27,28].

Fig. 3. Schematic diagram of neural networks.
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In this study, a sensitivity analysis can be carried
out to identify the importance of the input variables;
the ranking of variables is based on backward elimina-
tion. The network is trained using all the available
inputs and the least relevant input or subset of inputs
is deleted. Castellano and Fanelli [35] show a fast
strategy to adjust the remaining weights after the
elimination of input. The sensitivity is presented by
the ratio and rank. The ratio denotes the ratio between
the error and the baseline error (i.e., the error of the
network if all variables are available). The rank simply
lists the variables in the order of their importance.

2.2.2. Correlation matrix

Correlation matrix is a table showing inter-correla-
tion among all variables analyzed. It calculates the
direction and strength of the relationship between any
two variables in the data set. Direction is indicated by
positive or negative. Strength is indicated by how
close the value of the correlation is to +1 (perfect) in a
direct relationship (if one increases then the other
increases) and −1 in an inverse relationship (if one
increases then the other decreases). The most com-
monly used measure of correlation is Pearson’s r. It is
called the linear correlation coefficient because r mea-
sures the linear association between two variables.
Pearson’s r assumes that the data follow bivariate
normal distribution [18].

2.2.3. Principal component analysis PCA

The PCA module aims at the reduction in the
number of variables to a smaller number of repre-
sentative and uncorrelated factors and the classifica-
tion of variables and cases. Two types of analyses are
available, depending upon whether the data need to
be standardized or centered. In the former case, the
analysis is carried out via the correlation matrix, while

in the latter, the analysis is carried out via the covari-
ance matrix. The basic method, however, consists of
diagonalizing the symmetric matrix (correlation or
covariance). The special feature of this module is the
graphics that provide visual aid for the classification
of variables and cases.

2.2.4. Factor analysis (FA)

FA is a generic term for statistical techniques con-
cerned with the reduction of a set of observable vari-
ables into a small number of latent factors and the
detection of the structure in the relationships between
variables that is to classify variables. This structure is
expressed in the pattern of variances and covariances
between variables and similarities between observa-
tions. The underlying assumption of FA is that there
exist a number of unobserved latent factors that
account for the correlations within a set of multivari-
ate observations.

3. Results and discussion

3.1. Summary descriptive statistics of pressure variables

Table 2 presents that all pressure variables have
positive skewness with different values (right skewed)
except TDS which have negative skewness (left
skewed). TDS, hazardous wastes, generation of
domestic waste water, pesticides, chemical fertilizers,
and organic fertilizers have substantial skewness,
small spread and normal data distribution. The vari-
ables petrol stations, industrial wastewater, and CO2

have reasonably non-normal distribution of data.

3.2. Artificial neural networks (ANN)

The types of networks considered are MLP with
two ways to calculate (Broyden Fletcher Goldfarb

Table 2
Summary descriptive statistics of pressure variables

N Mean Median Lower. quartile Upper quartile Standard deviation Skewness

TDS 30 1,120 1,177.5 871.00 1,334.40 346.770 −0.352
HazWas 30 13.51 9.00 4.200 17.80 11.754 1.228
DomWW 30 1.32 0.725 0.320 1.650 1.513 1.891
Pesticid 30 1.08 0.719 0.310 1.710 1.005 1.131
ChemFer 30 130.48 100.4 39.500 155.75 124.97 1.565
OrgFer 30 1,244.4 1,122.0 210.00 2,050 1,055.42 0.440
PertolS 30 0.63 0.000 0.000 1.000 0.964 1.324
IndWW 30 9.05 0.004 0.0005 0.005 37.457 4.962
CO2 30 460.53 377.5 372.00 509.00 132.996 2.263
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Shanno Quasi-Newton BFGS and SCG) and RBF.
During the analysis, many networks were tested. The
best optimal ANNs model found is MLP (BFGS 107)
with 09 hidden nodes and a minimal RMSE of 0.0009
compared with the other types of ANNs (Table 3).
The model has very good performance in validation
with standard deviation of 192.04 and the RMSE for
training, validation and testing is small and close,
which indicates that the data sub-sets are from the
same population (Table 4). In addition, the correlation
coefficient is higher than 95% for training, validation,
and testing, which shows an excellent agreement
between the observed and simulated TDS (Fig. 4). The model training error for the independent cases

is shown in Fig. 5. It graphs the RMSE of the network
against epochs during iterative training of the back
propagation training algorithms. In addition, it plots
separate lines for the RMSE on the training and val-
idation sub-sets of the independent cases at the end of
the last iterative training run. The graph indicates that
the range of RMSE of independent cases for both
training and validation is very small [36].

The ANN sensitivity analysis of pressure variables
in the validation phases (Table 5) indicates that
domestic wastewater is the most pressing pollution
source followed by industrial wastewater. The remain-
ing pressure variables according to their ranking in
the validation phase are hazardous waste, chemical
fertilizers, carbon dioxide, pesticides, organic fer-
tilizers, and petrol stations.

The results of the ANN model and expert opinion
(Table 6) are similar only in ranking the third variable
which is hazardous waste, while they differ in ranking
the remaining variables.

3.3. Correlation matrix

An analysis of the correlation matrix was under-
taken to explore the direction, strength, and signifi-
cance of relationship between any two variables of
data set. Transformation of any specified variable that
is not normally distributed is a prerequisite, and a
transformation to natural logs (base e) worked reason-
ably well for all intended variables. As an example,
the domestic wastewater variable is transformed to ln
(domestic wastewater) with an approximately normal
distribution.

Table 7 shows a significant and positive linear rela-
tionship between ln (domestic wastewater), ln (chemi-
cal fertilizer), ln (industrial wastewater), CO2 and
TDS. The increase in domestic and industrial
wastewater generation after pretreatment increases the
TDS of stream water. The carbon dioxide in the air
will be built-up in rain water as carbonic acid which
will break up in surface and ground water to

Table 3
RMSE in various neural networks

ANN Architecture RMSE R2

RBF 8-10-1 0.0013 0.762
MLP (CG 40) 8-12-1 0.0011 0.780
MLP (BFGS 107) 8-9-1 0.0009 0.840

Table 4
Regression statistical parameters for the target output
(TDS)

Training Validation Testing

Data Mean 1,144.65 1,170.70 1,008.36
Data SD 358.24 192.04 406.21
RMSE 0.0001 0.0009 0.0002
Correlation 0.9600 0.9871 0.9545
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carbonates, thus increasing the TDS content. The use
of chemical fertilizers is always associated with irriga-
tion and drainage water increasing the TDS of stream
water.

There are significant, positive linear relationships
between ln (hazardous waste) and ln (domestic
wastewater) and carbon dioxide. The increase in
domestic and industrial wastewater increases the
production of hazardous waste.

ln (domestic wastewater) has significant and posi-
tive linear relationships with ln (industrial wastewa-
ter). Domestic wastewater increases with the increase
in the industrial wastewater generation since the
industrial facilities are connected to the urban
wastewater systems immediately after use.

Pesticides have significant and positive linear rela-
tionships with organic fertilizers and chemical fer-
tilizers. The use of pesticides is always associated with
chemical and organic fertilizers since they are applied
for the same agriculture land but with different
proportions.

3.4. Principal component analysis (PCA)

The purpose of applying the PCA module was to
reduce the number of variables into a smaller number
of dimensions (factors) and to classify variables and
clusters of observations with similar characteristics
with respect to these factors.

Table 8 shows that there are 09 variables in the
analysis and thus, the sum of all eigenvalues is equal
to 09. The number of factors was chosen in accordance
with Kaiser’s criterion and Cattell’s scree test. It shows
that the point where the continuous drop in eigenval-
ues levels off is at Factor 3. Therefore, three factors
were chosen for analysis with a cumulative variance
of 77.310%. The remaining eigenvalues each accounts
for less than 10% of the total variance.

Table 9 presents variances of factors and their
loadings from variables. The first factor corresponds
to the largest eigenvalue (2.823) and accounts for
approximately 31.373% of the total variance. It is most
correlated with the variables: pesticide, chemical, and

Table 5
Sensitivity analysis of independent input variables

HazWas DomWW Pesticid ChemFer OrgFer PetrolS IndWW CO2

Rang 1 3 7 4 6 8 2 5
Ratio 10.511 5.320 2.866 5.078 3.867 1.088 6.512 4.294
Rang 3 1 6 4 7 8 2 5
Ratio 1.897 2.213 1.059 1.771 1.017 0.181 1.996 1.067

Table 6
Ranking of input variables via expert opinion and judgment

HazWas DomWW Pesticid ChemFer OrgFer PetrolS IndWW CO2

Rang 3 2 7 5 8 6 1 4

Table 7
Correlation matrix – pressure variables

TDS ln (HazWas) ln (DomWW) Pesticid ChemFer OrgFer PetrolS ln (IndWW) CO2

TDS 1.000
ln (HazWas) 0.649 1.000
ln (DomWW) 0.730 0.859 1.000
Pesticid −0.05 0.295 0.224 1.000
ln (ChemFer) 0.717 0.301 0.219 0.720 1.000
ln (OrgFer) −0.46 0.329 0.232 0.708 0.772 1.000
PetrolS 0.361 0.395 0.456 0.199 0.137 −0.032 1.000
ln (IndWW) 0.699 0.116 0.695 −0.067 −0.072 −0.017 0.268 1.000
CO2 0.705 0.706 0.263 0.097 0.136 0.059 0.611 0.521 1.000

Note: Correlations are significant at p < .05000.
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organic fertilizers (positive correlations). The second
factor corresponding to the second eigenvalue (2.447)
accounts for 27.188% of the total variance. It is corre-
lated with hazardous waste and domestic wastewater
(positive correlations). The third factor corresponding
to the eigenvalue 1.687 accounts for 18.749%. It is
significantly correlated with industrial wastewater
(negative correlation).

Fig. 6(a) and (b) represents coordinates for the
three factors. The graph shows a unit circle with vari-
ables that were used to compute the current factor
solution. The circle can provide a visual indication of
how well each variable is represented by the current
set of factors. Based on the magnitudes of the factor
coordinates for the variables in the analysis, the first

Table 8
Eigenvalues of correlation matrix – pressure variables

Eigenvalue (%) Total variance Cumulative eigenvalue Cumulative (%)

1 2.823 31.373 2.823 31.373
2 2.447 27.188 5.270 58.561
3 1.687 18.749 6.957 77.310
4 0.757 8.412 7.715 85.723
5 0.591 6.560 8.305 92.283
6 0.397 4.409 8.702 96.692
7 0.213 2.370 8.915 99.062
8 0.071 0.791 8.986 99.853
9 0.013 0.146 9.000 100.000

Table 9
Factor–variable correlations (factor loadings), pressure
variables (underlined loadings are >.70)

Factor 1 Factor 2 Factor 3

TDS 0.039 0.595 −0.615
HazWas 0.501 0.696 0.482
DomWW 0.345 0.740 0.522
Pesticid 0.883 −0.315 −0.175
ChemFer 0.889 −0.331 −0.146
OrgFer 0.782 −0.410 −0.153
PertolS 0.364 0.592 −0.084
IndWW −0.268 0.285 −0.692
CO2 0.254 0.515 −0.544
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Fig. 6. a, b Projection of the variables on the factor plane, (a) 1 × 2 and (b) 1 × 3.
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factor can be labeled as rural pollution. Factor two can
be labeled as urban pollution, and factor three can be
called as industrial pollution.

The projection of the cases on the factor plane
(1 × 2) and (1 × 3) demonstrates four groups of
municipalities (Fig. 7(a) and (b)). The group I gathers
the urban municipalities which are typical by the high
hazardous waste and domestic wastewater (urban
pollution), the group II (mountainous municipalities)
which are characterized by low values of hazardous
waste, domestic wastewater, and CO2, the group III
includes municipalities for agricultural purposes
distinguished with pesticides, chemical, and organic
fertilizers (rural pollution), the group IV gathers

municipalities located in the industrial area which are
characterized by the high values of industrial
wastewater and high concentrations of CO2 (industrial
pollution).

3.5. Factor analysis (FA)

FA was used for the comparison with PCA results.
It reduces the number of observed variables to a smal-
ler number of unobserved latent factors which are
uncorrelated with each other and classifies variables
within these factors. Varimax normalized rotation was
adopted to maximize the variance of factors on the
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Fig. 7. a, b Projection of the cases on the factor plane, (a) 1 × 2 and (b) 1 × 3.

Table 10
Factor loadings–pressure variables (varimax normalized) extraction: principal components (underlined loadings
are >.700000)

Factor 1 Factor 2 Factor 3

TDS −0.066 0.134 0.844
HazWas 0.084 0.972 0.007
DomWW −0.084 0.960 −0.001
Pesticid 0.952 0.063 0.011
ChemFer 0.956 0.069 −0.021
OrgFer 0.892 −0.039 −0.064
PertolS 0.116 0.550 0.417
IndWW −0.216 −0.246 0.697
CO2 0.143 0.205 0.750
Proportion of the total variance 0.301 0.257 0.214
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new axes and to obtain a pattern of variable loadings
on each factor.

Table 10 and Fig. 8 present the three-factor rotated
solution with the cross-loadings of their classified vari-
ables. The first factor represents 31.37% of the total
variance. It contains inter-correlated observed vari-
ables which are pesticides, chemical, and organic fer-
tilizers. This underlying factor explains the
determinants of rural pollution due to the intensive
agriculture.

The second factor represents 27.18% of total vari-
ance and has two inter-correlated variables which are
domestic wastewater and hazardous waste. This latent
factor represents the urban activities as a driver to
improve the urban pollution.

The third factor has 18.74% of the total variance
and contains three variables which are TDS, industrial
wastewater and CO2. This underlying factor repre-
sents the emissions from transport sector and other
industrial facilities as a source of global warming and
climate change.

Comparing the results of the FA with the PCA
results for the pressure variables (Table 9), two vari-
ables were introduced to factor 3 with factor loadings
greater than 0.7, the variables are TDS and CO2.

In comparison with the PCA results for the pres-
sure variables (Table 9), the FA introduced a new
important determinant of pollution sources which are
TDS and CO2.

4. Conclusion

This study introduces a novel methodology to
develop a relationship between pressure indicators
and TDS of stream water based on cause–effect rela-
tionship to define in the first time, the most effective
pressing pollution source on stream water quality and
monitoring besides the geographical areas under
pollution stresses on objective scientific basis.

Given the differences between the results of the
ANN model and the expert opinion about the signifi-
cance and priority of pressure variables, the research
output assists water decision-makers and planners to
gain better knowledge and understanding of the
actual baseline conditions that ensure the success of
undertaking management response measures.

Defining and prioritizing the pollution determi-
nants of stream water quality degradation assist water
managers to devise proactive and proper water pollu-
tion control measures with the objective of protecting
stream water. This strengthens the preventive
approach and mainstream environmental sustainabil-
ity into groundwater management.

The selection of the optimal model configurations
for a pressure indicators model using different ANNs
was investigated. The results obtained in this study
indicate that MLP network (BFGS 107) proved to be the
best ANN structure showing that domestic wastewater
is the most pressing pollution source on stream water
quality followed by industrial wastewater. The selected
and prioritized variables assist water managers and
planners to introduce cheap proactive- and preventive-
based water management policy measures in place of
the existing expensive engineering-based water protec-
tion actions. Focus should be given to domestic
wastewater and industrial wastewater.

The PCA supported by FA helped extract and
identifies the different latent pollution sources
responsible for variation in stream water quality at
three different groups. The result of the PCA\FA indi-
cated that the parameters responsible for stream water
quality variation were mainly related to industrial
pollution, urban, and rural pollution. Since ANN
models and multivariate techniques are easily applied
to water quality modeling, using them can be a practi-
cal approach to environmental impact assessment.

Abbreviation

TDS—Total dissolved solids measured by mg l−1

The pressure indicators are as follows:

(1) HazWas: Hazardous wastes measured in ton -
day−1

Fig. 8. Factor loadings, Factor 1 vs. Factor 2 vs. Factor
3—pressure variable (rotation: varimax normalized).
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(2) DomWW: Generation of domestic wastewater
measured by hm3 year−1

(3) Pesticid: Pesticides measured in tons.year-1
(4) ChemFer: Chemical fertilizers measured in

tons year−1

(5) OrgFer: Organic fertilizers measured in
ton year−1

(6) PetrolS: Petrol stations in numbers
(7) IndWW: Industrial wastewater measured by

hm3 year−1

(8) CO2: Carbon dioxide measured in ppm
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