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ABSTRACT

Nanoparticles of α-Fe2O3 were synthesized by simple chemical precipitation method and
characterized by X-ray diffraction study, scanning electron microscopy, and Fourier trans-
form infrared spectroscopy. Feasibility of as-synthesized nanoparticles was investigated for
adsorptive removal of methyl orange (MO) dye from aqueous solution. The effects of vari-
ous experimental parameters such as solution pH, initial MO concentration, contact time,
and α-Fe2O3 nanoparticles dose were studied in batch mode. More than 90% removal was
reported at pH 2.0 with 30 mg L−1 initial MO concentration treated with 1.00 g L−1 adsor-
bent dose. Isotherm study reveals that Langmuir isotherm model is the most efficient one in
explaining the process and maximum adsorption capacity as much as 28.90 mg g−1 is
reported. Kinetic study shows that the adsorption process is best explained by second-order
kinetic model confirming the dominancy of chemisorption in the process. Subsequently, the
experimental data were modeled by artificial neural network to predict the removal effi-
ciency of MO by α-Fe2O3 nanoparticles following conduction of 95 experimental data points.
A three-layer feed-forward back-propagation model with Levenberg–Marquardt algorithm
was developed which show that the optimal network topology is 4–10–1. Model predicted
data shows very good agreement with experimental data set with mean squared error and
coefficient of determination (R2) as 0.00152 and 0.9916, respectively.

Keywords: Artificial neural network; Dye adsorption; Iron oxide nanoparticle; Kinetic and
isotherm study

1. Introduction

The natural environment is under serious threat
due to rapidly expanding industrialization across the
globe. Availability of pure water and sustainable

water treatment technique is of great demand from
industrial, societal, and environmental point of view.
Due to the huge water pollution, increasing attention
has been paid to water treatment in the past few
decades [1,2]. Wastewater from textile, leather tanning,
food processing, paper making, plastic, ceramic, and
pharmaceutical industries is a major source of
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pollutant dye. Exposure of pollutant dyes in aqueous
media is a serious concern to the recent environmental
scientists due to their possible carcinogenicity, repro-
ductive toxicity, neurotoxicity, and other skin- and
eye-related problems [3–6]. Owing to their complex
aromatic structure and synthetic origin, dyes are stable
to light, oxidation, and biodegradable process, which
provides them a long exposure time in the environ-
ment [6,7]. Hence, removal of dyes from industrial
effluents has become imperative not only to protect
human health but also for the protection of the natural
environment [8,9].

Several conventional methods for water treatment
are in investigation such as adsorption [10–14], chemi-
cal precipitation/oxidation [15–17], ion-exchange [18],
and photo-catalytic discoloration [19], while among
them, adsorption process becomes most favorable due
to its simplicity, high efficiency, adsorbent versatility,
low operating cost, and less sludge production [4,20].
The economics and versatility of adsorption process
are largely dependent upon the adsorbent material
and various low-cost adsorbents, such as hen feather,
and egg shell powder, bottom ash, egg shell mem-
brane [6,14,21–23], which have been reported in the
literature for removal of dyes as well as heavy metals
from wastewater.

One of the recent promising ways to improve the
water treatment technology is based on nanoscience,
where the materials at the nanoscale appear with
profound functionality. Metal oxides have been stud-
ied extensively for improving their functionality and
exploring their outstanding physical properties in low
dimension [24–26]. In this study, highly crystalline
α-Fe2O3 nanoparticles were synthesized by a very sim-
ple chemical precipitation method and its applicability
was studied for removal of a pollutant anionic dye of
methyl orange (MO) from aqueous media. MO
belongs to the azo dyes family and is known to be car-
cinogenic and mutagenic organic substance, which is
widely used in textile, printing, paper manufacturing,
pharmaceutical, food industries, and also in research
laboratories as an acid–base indicator [27–29]. Iron
oxide has relatively high surface areas and surface
charges that often regulate free metal and organic mat-
ter concentration in soil or water through adsorption
reactions. The adsorption process for removal of dye
is a nonlinear complex phenomenon, and modeling of
such process permits evaluating the effect of each
experimental parameter and predicts the removal
efficiency with fewer experiments. Artificial neural
network (ANN) is an effective tool for mapping non-
linearity between large data set and has been success-
fully applied for modeling of dye adsorption process
[5,30,31].

This study was performed with the following
objectives: firstly to synthesize α-Fe2O3 nanoparticles
by simple chemical precipitation method and to
characterize its subsequent physical properties;
secondly to explore the effect of different experimental
parameters on adsorption capacity of α-Fe2O3

nanoparticles for MO removal; and finally to develop
a model based on ANN for prediction of removal (%)
of MO from aqueous solution.

2. Experimental details

2.1. Materials

All chemicals including ferric chloride hexahydrate
(FeCl3·6H2O), NaOH pellets and MO dye
(C14H14N3SO3Na, C.I. 13,025, purity 98%) powder
used in this study are of analytical grade and used
without further purification. Deionized (DI) water
(Millipore, 18 MΩ cm) was used in entire experimental
process during the synthesis of adsorbent including
MO removal process.

2.2. Synthesis of adsorbent

NaOH was used as precipitating agent for synthesis
of adsorbent in this study by employing a simple
chemical precipitation method. A homogeneous solu-
tion of NaOH was prepared by dissolving 30 g of
sodium hydroxide pellets in 1 L DI water at room tem-
perature. Brownish homogenous solution of FeCl3 was
prepared by dissolving 40 g of FeCl3·6H2O in 250 mL of
DI water by stirring at room temperature. Thereafter,
FeCl3 dissolved solution was mixed slowly to sodium
hydroxide solution maintaining pH of the reaction solu-
tion at slight alkaline condition (pH: 7.5–8.5) to facilitate
the formation of heavy brownish floc of Fe(OH)3. After
60 min, the properly settled floc was separated by filtra-
tion and was dried in oven at 85ºC for 8 h. Dried brown
particles washed several times with DI water till pH
comes close to 7.00, and then, the particles was
annealed at 400˚C for 6 h. The chemical reaction of the
synthesis process can be represented as follows:

FeCl3 þ 3NaOH ! Fe(OH)3 þ 3NaCl (1)

2Fe(OH)3 ! Fe2O3 þ 3H2O (2)

Finally the resultant brown product of iron oxide
(Fe2O3) was grinded manually to make the same in
homogenous powder and used as adsorbent for MO
adsorption study.
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2.3. Characterizations

The physical properties of the prepared Fe2O3

powder were studied by different characterizing
instruments. X-ray diffraction studies were carried out
using an X-ray diffractometer (XRD, Bruker, D–8
Advance) from 20˚ to 70˚ with Cu Kα radiation
(λ = 1.54178˚A) for structural investigation. The as-
synthesized samples were characterized by field
emission scanning electron microscope (FESEM,
Hitachi, S–4800) for morphological studies. The Fourier
transform infrared (FTIR) spectroscopic measurements
of the prepared sample were carried out by employing
FTIR (Perkin Elmer).

2.4. Dye removal method

The adsorption studies for removal of MO were
performed with batch equilibrium method. A stock
solution (100 mg L−1) of MO was prepared by dissolv-
ing 0.1 g of MO powder in DI water, and experimental
solutions of desired MO concentrations were obtained
by successive dilutions of the stock solution with DI
water. The batch experiments were carried out by tak-
ing 50 mL of MO solution of known concentration in a
125-mL flask. A total of 0.05 g adsorbent were added
to each flask, and mixture was agitated at room
temperature using a magnetic stirrer with constant
speed of 250 rpm for a predetermined time to attain
the equilibrium. After adsorption equilibrium was
achieved, the supernatant was separated from the
adsorbent by centrifugation at 5,000 rpm for 10 min
and the amount of MO uptake was monitored spec-
trophotometrically at the absorbance maximum of MO
dye viz. λmax = 464 nm using a UV–vis–NIR spec-
trophotometer (Shimadzu UV–3101PC). pH of the
aqueous solution was measured by a bench top pH
meter (Hach, SensION), and pH of the solution was
adjusted to desired values using dilute HCl/NaOH
before the addition of adsorbent.

2.5. Definition of the ANN model

Due to effectiveness of ANN to achieve relation-
ship in complex nonlinear data set, the tool has been
utilized in this study to investigate the influence of
four experimental parameters: solution pH, initial MO
concentration (mg L−1), adsorbent dose (g L−1), and
contact time (min) on removal (%) of MO as output. A
three-layer ANN model with a most commonly used
transfer function tan-sigmoid (Eq. (3)) at hidden layer
and a linear transfer function purelin (Eq. (4)) at out-
put layer were used. Single hidden layer was used in
this study as ANN has the ability to map any input to
any output to an arbitrary degree of accuracy with a

single hidden layer comprising of suitable large
number of neuron [31]. Levenberg–Marquardt (LM)
back-propagation algorithm with 1,000 epochs was
selected for training of the networks, and a number of
neurons were varied from 1 to 30 in the hidden layer.

tan sig(sum) ¼ 1� expð�sumÞ
1þ expð�sumÞ (3)

PurelinðsumÞ ¼ sum (4)

A total of 95 experimental data points were applied
for network training to optimize the network topol-
ogy. Experimental data set was divided randomly into
three subsets (70%, 67 data for training; 15%, 14 data
for testing; and 15%, 14 data for validation set). Initial
MO concentration (5.0–40.0 mg L−1), solution pH
(2.0–5.0), adsorbent dose (0.25–1.0 g L−1), and contact
time (1–120 min) were utilized as input parameters.
All the input and output data were normalized
between 0 and 1 to avoid numerical overflow due to
very large and small weights before utilizing in ANN
[32] according to following expression.

Xnorm ¼ ðX � XminÞ
ðXmax � XminÞ (5)

where X is variable, Xmax is maximum value, and Xmin

is minimum value. The performance of the ANN
model was analyzed according to mean squared error
(MSE) and coefficient of determination (R2) which can
be represented by (Eqs. (6) and (7)), respectively.

MSE ¼ 1

N

XN
i¼1

ðjyprd;i � yexp;ijÞ2 (6)

R2 ¼ 1�
PN

i¼1 ðyprd;i � yexp;iÞPN
i¼1 ðyprd;i � ymÞ

(7)

where yprd,i is the model predicted value, yexp,i is the
experimental value, N is the number of data, and ym is
the arithmetic mean of all experimental data.

3. Result and discussions

3.1. Structural characterization of adsorbent

The Fe2O3 nanoparticles were studied through
X-ray diffraction measurements for structural charac-
terizations. The peaks occurred at 24.2˚, 33.3˚, 35.8˚,
41.0˚, 49.5˚, 54.2˚, 57.6˚, 62.5˚ and 64.2˚ corresponds to
reflections from (0 1 2), (1 0 4), (1 1 0), (1 1 3), (0 2 4),
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(1 1 6), (0 1 8), (2 1 4), and (3 0 0) Miller planes. From
these studies, it has been observed that the samples
are polycrystalline and belong to the alpha (α) phase
of iron oxide (JCPDS card number 33–0664) which has
rhombohedral structure [33]. The crystallite size has
been calculated using X-ray diffraction data by
employing Scherrer’s equation:

D ¼ 0:9k
bCosh

(8)

where D is crystallite size, λ is wavelength of X-ray, β
is full width at half maximum in radian, and θ is
Bragg angle. The average crystallite size is found to be
of the order of 26 nm. This reduced size of the Fe2O3

particles increases the effective surface interaction
with MO molecule. The surface morphologies of the
as-prepared Fe2O3 nanoparticles were studied by
FESEM. It is observed that powders are of small crys-
talline grains of Fe2O3 with an average grain size of
about 60 nm.

3.2. FTIR studies

The FTIR measurements were performed for the
Fe2O3 nanoparticles, which provide information about
the bonding configuration of the compound. Fig. 1
depicts the FTIR spectra of the Fe2O3 nanoparticles as
obtained from the pellets formed by Fe2O3 powders
mixed with potassium bromide (KBr). The back-
ground correction has been made for infrared light
scattering losses in the pellet and for moisture
absorbed on the KBr by measuring on the pellet

holder with a pellet of KBr only. The mid-infrared,
approximately 4,000–400 cm−1 range, was selected for
this study which corresponds to the fundamental
vibrations and associated rotational–vibrational levels.
Significant peaks are occurred at wavenumbers 3,429,
1,634, 472, and 555 cm−1. The peak at 3,429 cm−1 is
due to –OH bond, and the peaks occurring at 472 and
555 cm−1 are due to α-Fe2O3.

3.3. Effect of pH on adsorption of MO

For adsorption studies, one of the vital factors is
its dependence on pH of the solution. On investigating
the pH dependence of the MO adsorption onto
α-Fe2O3 nanoparticles, the removal was found to
increase toward acidic pH. A plot showing the varia-
tion of MO removal (%) with time at different solution
pH (2.0–5.0) is shown in Fig. 2, which depicts that
strong acidic condition is favorable for the adsorption
of MO. The maximum MO removal (%) ~90% in equi-
librium was observed at pH 2.0. Hence, all the further
adsorption experiments were conducted at pH 2.0 in
this study. The charges of adsorbent and adsorbate
play an important role in the process of adsorption.
The surface complexation reactions and the electro-
static interactions between MO and the oxide surface
are affected by solution pH. The hetero-charge
between the adsorbent and adsorbate is in favor of
adsorbing reaction. On the other hand, at lower pH,
more protons were available to protonate oxides sur-
faces of adsorbents, which favored the adsorption
reaction. pH of the solution thus brings control over

Fig. 1. FTIR spectrum of prepared α-Fe2O3 nanoparticles.
Fig. 2. Plot showing the effect of pH on MO removal (%)
with contact time.
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the process through the protonation of the adsorbent
surface, which plays a role to influence the electro-
static interaction between the adsorbent and MO.
Decrease in removal efficiency at higher pH values
may be due to the deprotonation of the adsorbent and
competitive interaction between hydroxyl ions and
anionic part of MO molecule present in the reaction
solution.

3.4. Effect of ionic strength of dye and contact time

As the initial adsorbate concentration plays a vital
role in the adsorption process, the effect of ionic
strength of MO was studied by varying the initial con-
centration of MO and keeping other reaction condi-
tions unaltered. Fig. 3(a) represents the variation of
adsorption capacity as a function of contact time at
different initial MO concentration from 10 to
40 mg L−1. At higher concentration of MO, the adsorp-
tion capacity was recorded to be high. The higher
adsorption capacity at higher MO concentration is
because of stronger interaction with the adsorbent at
higher ionic concentration of MO.

To study the effect of contact time, MO solution of
30 mg L−1 initial concentration was treated by α–Fe2O3

nanoparticles with 1.00 g L−1 dose for different time.
The UV–vis absorption spectra for each of the solution
collected for different contact time is shown in
Fig. 3(b). Removal of MO was confirmed and esti-
mated from the characteristic absorbance peak at
464 nm with progression of time as shown in UV–vis
spectra.

3.5. Effect of adsorbent dose

The effect of adsorbent dose on the adsorption pro-
cess was studied by keeping other parameters such as
initial MO concentration, pH of the solution, and tem-
perature fixed. Fig. 4 depicts the effect of adsorbent
dose on MO removal process, where the dose amount
of α-Fe2O3 nanoparticles was varied from 0.25 to
1.0 g L−1. During this study, the initial concentration
of MO was kept constant at 30 mg L−1 and the pH of
the system was kept at 2.0 at room temperature. It
was observed that the percentage removal of MO
depends on the adsorbent dose significantly and
increases with increasing dose. From the Fig. 4, it is
noticed that percentage removal of MO approaches
nearing 90% at a dose of 1.0 g L−1 with the
above-mentioned experimental condition.

3.6. Predictive modeling with ANN

The optimal network topology was attained based
on maximum value of R2 and minimum value of
MSE of the training, testing, and validation data set.
For optimizing the network, 1–30 numbers of neu-
rons were varied in hidden layer and dependence
between the neuron number at hidden layer and cor-
responding MSE for the LM algorithm was studied
(Fig. 5). Table 1 illustrated the variation of R2 and
MSE values with change in the number of neurons
(1–30) at hidden layer. It can be suggested from
Fig. 5 and Table 1 that the maximum R2 (0.9916) and
minimum MSE (0.00152) were attained using 10
numbers of neurons at hidden layer. A correlation

(a) (b)

Fig. 3. (a) Adsorption capacity vs. contact time plot for different initial concentration of MO and (b) UV–vis–NIR
absorption spectra of MO solutions for different contact time during adsorption onto α-Fe2O3 nanoparticles.
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coefficient of such high value indicates the reliability
of the developed ANN model. Hence, the optimal
network topology of the ANN model developed in
this work involves input layer with 4 neurons, one
hidden layer with 10 neurons and one output layer
with single neuron and this architecture can be
denoted as ANN (4–10–1). The MSE vs. number of
epochs for optimal ANN structure is exhibited in
Fig. 6, which clearly depicts that training was
stopped after 10 epochs as best validation perfor-
mance was obtained at that epoch. The regression
plots of normalized predicted removal data and

normalized experimental data for training, testing,
validation, and all data are depicted in Fig. 7(a)–(d),
respectively, which clearly shows a very good agree-
ment between model predicted and experimental
data. The fitness function of the model which
correlates the input and output can be defined as
follows:

ANNoutput ¼ PurelinðLW� tan sigðIW
� ½xð1Þ; xð2Þ; xð3Þ; xð4Þ� þ b1Þ þ b2Þ (9)

where x(1), x(2), x(3), and x(4) represents the inputs,
IW and b1 are the weight and bias of hidden layer,
while the LW and b2 are the weight and bias of output
layer. The weight and bias values obtained for optimal
network topology are shown in Table 2.

3.7. Sensitivity analysis

Sensitivity analysis was carried out in order to
explore the relative importance of each input variable
on output by employing connection weight
partitioning methodology [31], which is represented
in the following equation:

V ¼
Ph

j¼1
jIWijjPm

k¼1
jIWkjj

� �
jLWjj

� �

Pm
j¼1

Ph
j¼1

jIWijjPm

k¼1
jIWkjj

� �
LWj

� �� � (10)

where V is the relative effect of the input variable x, m
and h are the neuron numbers in the input and hid-
den layer, respectively. According to Eq. (10), the rela-
tive importance of 4 input parameters was calculated
and depicted in Fig. 8. It is clear from figure that solu-
tion pH and contact time are the two key variables
and initial MO concentration is the least important
variable in MO adsorption process.

3.8. Kinetic studies

The kinetic studies are the very essential tools to
understand the adsorption mechanism. Four kinetic
models such as pseudo-first-order, pseudo-second-
order, intra-particle diffusion, and Elovich model were
used to investigate the adsorption processes of MO
onto α-Fe2O3 nanoparticles. The calculated kinetic
parameters and correlation coefficients (R2) for differ-
ent kinetic models are depicted in Table 3. The
pseudo-first-order equation is as follows:

dQt

dt
¼ kf ðQe �QtÞ (11)

Fig. 4. Plot showing the effect of α-Fe2O3 nanoparticles
dose on MO removal (%) with contact time.

Fig. 5. Plot showing the effect of the number of neurons in
the hidden layer on the performance of the neural network.
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where Qt is the amount of adsorbate adsorbed at time
t (mg g−1), Qe is the adsorption capacity at equilibrium
(mg g−1), kf is the rate constant of pseudo-first-order
model (min−1), and t is the time (min). After definite
integration by applying the initial conditions Qt = 0 at
t = 0 and Qt = Qt at t = t, the equation becomes [34].

log ðQe �QtÞ ¼ log Qe � kf
2:303

t (12)

Values of adsorption rate constant (kf) for MO adsorp-
tion on α-Fe2O3 nanoparticles can be determined from

the linear plot of log (Qe – Qt) vs. t. From Table 3, it is
observed that the values of correlation coefficients (R2)
are in the range of 0.749–0.992. Eq. (13) represents the
pseudo-second-order model [35]:

dQt

dt
¼ ksðQe �QtÞ2 (13)

where ks is the rate constant of pseudo-second-order
model (g mg−1 min−1). After integrating Eq. (13) for
boundary conditions Qt = 0 at t = 0 and Qt = Qt at
t = t, the following form of equation can be obtained:

t

Qt
¼ 1

ksQ2
e

þ 1

Qe
t (14)

The initial sorption rate, h (mg g−1 min−1), as t→0 can
be defined as

h ¼ ksQ
2
e (15)

The initial sorption rate (h), the equilibrium adsorption
capacity (Qe), and the pseudo-second-order constant
(ks) can be determined from the slope and intercept of
plot of t/Qt vs. t (Fig. 9), in which the linear plots of
the pseudo-second-order model at different initial con-
centrations of MO (5.0–30.0 mg L−1) are described.

In order to investigate the diffusion mechanisms
during adsorption of MO onto α-Fe2O3 nanoparticles,
widely used intra-particle diffusion model [36] has
been applied. An apparent diffusion coefficient can be
obtained by fitting the experimental data obtained

Table 1
Comparison of number of neurons (1–30) at hidden layer for ANN model development with LM algorithm in terms of
MSE and R2 value

No. of neurons MSE R2 No. of neurons MSE R2

1 0.02939 0.7832 16 0.00202 0.9853
2 0.01712 0.8577 17 0.00274 0.9629
3 0.01547 0.9042 18 0.00302 0.9827
4 0.01473 0.9222 19 0.00317 0.9815
5 0.00763 0.9469 20 0.0034 0.9813
6 0.00312 0.9853 21 0.00448 0.9773
7 0.00197 0.9773 22 0.00543 0.9669
8 0.00178 0.9769 23 0.00552 0.9622
9 0.00166 0.9789 24 0.00567 0.9608
10 0.00152 0.9916 25 0.00615 0.9370
11 0.00166 0.9882 26 0.00923 0.9218
12 0.00178 0.9805 27 0.00952 0.9193
13 0.00197 0.9880 28 0.01182 0.9183
14 0.00203 0.9882 29 0.01362 0.9078
15 0.00217 0.9676 30 0.01945 0.8844

Fig. 6. The MSE vs. number of epochs for optimal network
topology of ANN.
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from slope of the linear plot of Qt vs. t
1/2. The straight

line can be represented as follows:

Qt ¼ kidt
1
2 þ c (16)

where kid is the intra-particle diffusion rate constant
(mg g−1 min−1/2), and c is the intercept. The intra-
particle rate constant (kid) and c values for all initial
concentrations of MO are represented in Table 3,
which clearly depicts that in the first stage, the order
of adsorption rate is higher than that of the second
stage. The multilinear fitting of the experimental
results in this model indicates that more than one
kinetic mechanism is involved in the adsorption

process. Elovich equation [37] is another important
kinetic model and has been successfully applied for
the adsorption of solutes from a liquid solution. The
linear form of elovich models is represented as
follows:

Qt ¼ 1

b
ln ðabÞ þ 1

b
ln ðtÞ (17)

where α is the initial MO adsorption rate
(mmol g−1 min−1), and β is the desorption constant
(g mmol−1) during any one experiment. Plot of Qt vs.
ln (t) leads to a linear relationship that yields the
Elovich parameters from its slope and intercept. The

Fig. 7. Scatter plot between normalized model predicted removal and normalized experimental removal (a) for training,
(b) for testing, (c) for validation, and (d) all data; for the adsorption of MO onto α-Fe2O3 nanoparticles.
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calculated Elovich parameters for MO adsorption on
to α-Fe2O3 nanoparticles and R2 values (0.948–0.972)
are depicted in Table 3. After comparing the correla-
tion coefficients values of all four kinetic models, it is
clear that the second-order model shows highest corre-
lation coefficients (R2: 0.993 to 0.996) over whole
adsorption stage, additionally the closeness of Qe

value calculated from model and experimental data
(Qe(exp)) shows the applicability of this model for
analyzing the experimental data. Hence, it can be
summarized that the rate determining step may be a
chemical adsorption and intra-particle diffusion is also
involved in the process.

3.9. Adsorption isotherms

The equilibrium adsorption isotherm models are
fundamental tools in describing the interaction mecha-
nism of solutes and adsorbent. Adsorption experi-
ments were conducted at room temperature, and three
most commonly used adsorption isotherm models

such as Langmuir [38], Freundlich [39] and Temkin
[40] were used to fit the equilibrium data obtained
from experiments performed with different initial MO
concentrations.

The Langmuir equation is applicable to both physi-
cal and chemical adsorption, assuming a mono-
molecular layer adsorption on a uniform surface while
ignoring the lateral interactions between the adsorbed
molecules [41]. The linear form of the Langmuir iso-
therm model is described by the following equation:

Ce

Qe
¼ 1

Qmb
þ Ce

Qm
(18)

where Qm (mg g−1) is the maximum adsorption capac-
ity of the adsorbent, and b (L mg−1) is the Langmuir
constant related with the adsorption energy. The
favorability of an adsorption process can be described
by a dimensionless constant (RL), which can be
obtained from Langmuir model. Generally, RL value
lying in between 1 and 0 indicates a favorable adsorp-
tion process. The expression for RL is given by the
following equation:

RL ¼ 1

1þ bC0
(19)

The logarithmic form of the Freundlich isotherm is
expressed by the following equation:

lnQe ¼ lnKF þ 1

n
lnCe (20)

where KF and n are the Freundlich constants related
to the adsorption capacity and adsorption intensity,
respectively. Values of n, greater than unity, n > 1, are
indicative of favorable adsorption process.

Table 2
The weight and bias values of hidden and output layer for optimally trained ANN network

IW LW b1 b2

−0.67306 1.7692 1.5879 0.12979 −1.0501 2.5218 −1.0252
3.1044 1.3629 0.079032 0.028599 0.31177 −1.9781
0.011307 1.147 −3.2817 −0.41013 0.10098 −1.6482
0.82449 −2.6849 0.19053 0.29329 −0.3056 −1.2317
−1.3593 0.26416 −0.11038 0.52783 −0.79041 −0.46216
2.4903 −1.7145 0.70452 0.82587 −0.069398 0.86088
−1.9067 1.4644 −0.897 −0.74337 0.29153 −2.3249
−1.1442 1.0229 −2.3279 1.3091 0.25098 −1.1933
−0.90546 0.32241 −0.11156 −2.1691 −2.1186 −3.7695
0.47871 1.9296 1.1461 0.6249 −0.3079 2.1823

Fig. 8. Plot showing the relative importance of input vari-
ables on output variable.
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Heat of the adsorption process and the interaction
between adsorbent and adsorbate can be evaluated by
Temkin isotherm, and linear form of the same is
expressed by Eq. (21).

Qe ¼ b1 lnKT þ b1 lnCe (21)

where β1 is Temkin constant related to heat of
adsorption (J mole−1), and KT is equilibrium binding
constant (L mg−1). A plot of Qe vs. ln Ce enables the

determination of isotherm constant β1 and KT from the
slope and intercept of the straight line, respectively.

The fitting of the experimental data to the three iso-
therm models showed that the linearity of the
Langmuir isotherm model (R2: 0.999) was higher than
that of the Freuindlich (R2: 0.799) and Temkin (R2:
0.911) isotherm models. Linear fitting of experimental
data in Langmuir isotherm is illustrated in Fig. 10.
Isotherm fitting analysis indicates that the adsorption

Table 3
Kinetic parameters obtained from pseudo-first-order, pseudo-second-order, intra-particle, and Elovich kinetic model for
MO adsorption onto α–Fe2O3 nanoparticles

Models Equation Parameters

Initial MO concentration (mg L−1)

5 10 20 30

First-order kinetic log ðQe �QtÞ ¼ log Qe � kf
2:303 t kf × 102 7.89 5.59 5.39 4.97

Qe 4.42 11.14 26.46 36.59
R2 0.992 0.963 0.952 0.749

Second-order kinetic
t

Qt
¼ 1

ksQ2
e

þ 1

Qe
t ks × 103 18.29 5.06 2.26 1.18

Qe 5.29 11.12 22.62 32.67
R2 0.994 0.996 0.994 0.993
h 0.512 0.626 1.156 1.260

Intra-particle diffusion Qt ¼ kidt
1
2 þ c kid1 0.764 1.230 2.440 3.046

R2 0.997 0.994 0.984 0.986
kid2 0.101 0.359 0.660 1.364
R2 0.8174 0.9859 0.982 0.995
c 3.725 6.247 12.839 13.243

Elovich Qt ¼ 1
b ln ðabÞ þ 1

b ln ðtÞ β 0.857 0.423 0.206 0.143
α 1.023 1.360 2.468 2.786
R2 0.948 0.964 0.958 0.972

Experimental value Qe(exp) 4.59 9.834 19.472 26.982

Fig. 9. Plot showing the linear fit of second-order kinetic
model at different initial MO concentration.

Fig. 10. Plot showing the linear fit of Langmuir adsorption
isotherm with experimental results.
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of MO onto α-Fe2O3 nanoparticles is more of
monolayer adsorption rather than adsorption on a
surface having heterogeneous energy distribution. The
maximum adsorption capacity (Qm) of α-Fe2O3

nanoparticles is calculated from Langmuir model as
28.90 mg g−1. Moreover, the values of RL for all
considered initial concentrations of MO were also in
the range of 0–1; implying the favorability of the
adsorption process.

4. Conclusions

In the context of great demand of industrial
wastewater treatment, this article reports an easy syn-
thesis process of crystalline α-Fe2O3 nanoparticles. The
smaller size and crystalline structure make it as a
good adsorbent material. The adsorption of MO mole-
cule was found to depend on the pH of the solution,
initial MO concentration, and the dose amount of the
adsorbent. From the equilibrium isotherm data analy-
sis, the process of MO removal by α-Fe2O3 powder
was found to follow Langmuir isotherm model and
the kinetic process can be successfully fitted to sec-
ond-order kinetic model. More than 90% of color
removal was achieved within 100 min of contact time
with initial concentration of MO 30 mg L−1. The
removal efficiency of MO was successfully predicted
by applying a three-layer feed-forward neural network
model with 10 numbers of neurons in the hidden
layer using back-propagation LM algorithm. The scat-
terplot between experimental removal and model pre-
dicted removal shows a very good agreement
confirming the accuracy of the developed model with
the values of R2 and MSE as 0.9916 and 0.00152,
respectively. Sensitivity analysis shows that input
parameters solution pH and contact time are the two
key variables for adsorption process of MO by α-Fe2O3

nanoparticles. Therefore, it can be concluded that
application of ANN model could be an effective way
for getting optimal removal of dyes in an automated
water treatment process.
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