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ABSTRACT

The accurate prediction of the water quality of a river is very important in identifying
instream flow and water supply requirements and solving relevant environmental
problems. The purpose of the study is to develop a water quality forecasting system for
the Geum River in Korea. The water quality forecasting system was composed with the
Streamflow Synthesis and Reservoir Regulation (SSARR) for watershed runoff simulation
and Qual2E for calculation of river quality. The SSARR model was improved by
applying the Optimal Linear Correction method and was also used to predict
probabilistic streamflow with the ensemble stream prediction. The water quality forecast-
ing system was validated with data measured at the Geum River Basin in 2007 and
2008. As the results, it was found that the proposed model simulated the values of
BOD, T-N, and T-P within acceptable reliability. The developed system will contribute to
various prediction of water, and improvement of current water quality management
practice.
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1. Introduction

Water security is standing out as one of the major
issues in the world as the severity of damages and
losses caused by extreme weather events (e.g. drought,
flood, typhoon, etc.) are increasingly becoming intense
and frequent. It is important to establish management
policies that can manage uncertain and limited water
resources effectively. Thus, simulation methods are
required to precisely analyze rainfall–runoff relations

in a basin and produce highly reliable information for
streamflow prediction.

In Korea, real-time streamflow predictions have
been studied to secure immediate utilization for flood
control. However, there have been relatively little
attention and few studies on streamflow prediction for
a long-term period. Therefore, various studies and
researches are required to identify how to predict
long-term streamflow which is essential to facilitate
water supply and reservoir management for long-term
basis in Korea. One of the most important challenges
for the long-term prediction is to reflect and improve
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meteorological and hydrological uncertainty that sig-
nificantly affects streamflow prediction.

Since the ensemble streamflow prediction (ESP),
one of probabilistic streamflow prediction methods
was developed by the California–Nevada River Fore-
cast Center (RFC) of National Weather Service (NWS),
it has been used in many studies to forecast probabi-
listic prospects for water supply in river basins. Actu-
ally, the need of probabilistic forecasting in hydrology
was addressed, and the ESP method was introduced
by compiling a number of short and long term studies
[1]. The ESP method was applied for forecasting
inflow of a dam or streamflow [2–4], and was also
used to improve a runoff model [5].

Meanwhile, as industrialization and urbanization
have increased river pollutants by deteriorating the
self-purification properties of water sources, water
pollution problems have become one of the serious
issues. Water quality simulation methods are essen-
tially required to precisely forecast and effectively
improve water quality in a river. Downstream reaches
of dams are affected by tributaries’ runoff and water
quality as well as dams’ releases. Most of the river
basins located in tributaries are ungauged, and, there-
fore, runoff in the river basin is very uncertain.

The purpose of the current study is to develop a
water quality forecasting system for the Geum River

in Korea. The ESP method was applied to the Stream-
flow Synthesis and Reservoir Regulation (SSARR)
model to estimate probabilistic streamflow in each
tributary of the Geum River Basin. The Optimal Linear
Correction (OLC) was used as a post-processing to
improve the accuracy of the estimated streamflow.
The SSARR model was validated by the measured
data and was integrated with the Qual2E model using
Visual Basic to simulate water quality for lower
reaches of the Geum River located downstream of the
Daecheong Dam. A model-driven graphical user inter-
face (GUI) was designed as to effectively collect the
data required for analysis and to secure convenience
of the analysis.

The water quality forecasting system uses release
of the Daecheong Dam determined by dam opera-
tors and water quality measured at the dam. The
system also uses the runoff scenarios of tributaries
that are estimated by the ESP method and water
quality measured at each of the tributaries. The
water quality forecasting system was validated with
data measured at the Geum River Basin in 2007 and
2008. The water quality forecasting system devel-
oped in the study would be helpful in decision-mak-
ing process by providing the various profiles of
water quality based on the runoff scenarios of
tributaries.

Fig. 1. Map of the Geum River Basin. (a) Full site map and (b) SSARR model segment.
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2. Methodology

2.1. Target basin

The study area is the Geum River Basin that is
located in the Republic of Korea and has an area of
17,537.00 km2. There have been in-depth investiga-
tions and field surveys carried out for eight years
from 2003 to 2010 in the Geum River Basin to obtain
highly reliable hydrologic data. The Geum River
Basin was divided herein into 14 sub-basins based on
major runoff and water quality control points,
long-term water supply, and comprehensive basin
development.

Fig. 1(a) shows the 14 sub-basins of the Geum
River Basin as determined herein. The sub-basins can
be divided into two areas: upstream area (B01–B07)
and downstream area (B08–B14) of the Daecheong
Dam. As runoff of the upstream areas is regulated by
the Daecheong Dam, release of the dam was used in
current study. On the other hand, the runoff of the
downstream area was simulated by the SSARR model
in the study (Fig. 1(b)), which will be described in
Section 2.2.

2.2. Streamflow prediction

2.2.1. Basin streamflow model

The SSARR model was used herein as a long-term
streamflow prediction model to evaluate the effects of
reservoir operation on a basin [6]. In Korea, the
SSARR model has been used in water resources man-
agement practices since it was developed by the Uni-
ted States Army Corps of Engineers (USACE) in 1956
and, subsequently, upgraded to a Windows-based
GUI program. The model was successfully employed
in large rivers (e.g. the Columbia River in the US [7],
the Mekong River in Vietnam [8], and so on [9–11].

Relationship between soil moisture index (SMI)
and runoff percent (ROP), which is the most sensitive
parameter in the SSARR model determines total runoff
rate [3]. Relationship between Base Flow Infiltration
Index (BII) and Base Flow Percent (BFP) separates

Fig. 2. Model parameters of the SSARR. (a) SMI-ROP and (b) BII-BFP.

Fig. 3. Schematic diagram for catchment and runoff distri-
bution.
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total runoff calculated from the SMI and ROP into
direct runoff and base flow. Surface–Subsurface Sepa-
ration (S–SS) separates direct runoff into surface run-
off and subsurface runoff. The S–SS is important to
analyze in terms of flood control the characteristics of
short-term runoff during the occurrence of a flood.
Parameters used in this study include SMI–ROP, BII–
BFP, and S–SS, which had been validated based on
streamflow data observed in the Geum River for the
period 1983 through 2006 [3]. The calculated parame-
ters, including SMI–ROP and BII–BFP, must be cali-
brated to be used as initial parameters at the time of
simulation in the form of graphs (Fig. 2). In this study,
it was assumed that the calibration of the calculated
parameters with a year period could produce initial
parameters at the time of simulation. Modeling and
analysis procedures started with the collection of
input data, including rainfall, temperature, type of
water supply, intake volume, and dam discharge.
Rainfall–runoff relations for each divided basin were
characterized by parameters, and then corrected by
comparing estimated runoff results and observed run-
off results. Runoff was calculated in the SSARR model
based on the runoff system in the Geum River Basin
as shown in Fig. 3.

2.2.2. OLC

The applicability of OLC has been proven in theo-
retical studies. Especially, the OLC was used to
improve simulation accuracy of the SSARR model
[12]. The OLC is a post-processing procedure to fur-
ther improve the accuracy of the SSARR model even if
the model alone is considered sufficiently reliable. The
improvement of such accuracy requires lots of time
and efforts due to difficulties in estimating complicate
parameters (SMI–ROP, BII, BFP, etc.) of the SSARR

model and compiling input data. The correction or
combination of estimated or simulated results is one
of the most common methods to enhance the accuracy
of estimation in the field of economics. There are a
number of studies underway to apply these combina-
tion approaches to meteorological estimation. The
approaches include Multi-model Ensemble and Multi-
model Super Ensemble (MSE), in which arithmetic
and weighted averages are computed, respectively,
from the estimation of several climate models [13–15].

The OLC was introduced to show that estimated
or simulated results could be corrected in a simple lin-
ear regression equation [16]. A mean squared error
between the estimated result F and the observed result
Y over a certain period of time consists of three com-
ponents as shown in Eq. (1) below [17]:

MSE ¼ ð�Y� �FÞ2 þ ðSF � qSYÞ2 þ ð1� q2ÞS2Y (1)

where �Y and �F are the average of observed and esti-
mated results, respectively; SF and SY are the standard
deviation of the observed and estimated results,
respectively; and q is a coefficient of correlation
between the two results, ranging between −1 and 1.

In Eq. (1), the first term represents the systematic
error of a prediction approach (or a model) (i.e. the
mean bias of the estimated results), and the second
term represents the range in which the estimation
results fail to reproduce the variability of the observed
results (i.e. the regression bias of the estimated
results). The last term represents the unique variability
of the observed results (i.e. target phenomena), which
are irrelevant to the estimated results. The first and
second terms of Eq. (1) could be eliminated by the
OLC in equations as shown below [16]:

Yt ¼ âþ b̂Ft (2)

Pt ¼ âþ b̂Ft (3)

where Yt and Ft are observed and estimated results,
respectively, at the time of t; Pt is the corrected result
of estimation at the time of t; and â and b̂ are an inter-
cept and slope of the linear regression model, respec-
tively.

The analysis of estimates obtained from the
observed results in a linear regression model with cor-
responding time series Yt and Ft will give Eq. (2). If a
proper prediction approach has been employed, the
solutions of the equation will be â ¼ 0 and b̂ ¼ 1. If
there is only an average bias in the model, the
solutions must be â ¼ �bias and b̂ ¼ 1. As there is,Fig. 4. Results of analysis using the OLC method.
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however, a regression bias as well as an average bias
in typical models, b̂ is not 1 in most cases. It should
be noted that both average and regression biases will

be affected by the correction during the application of
the OLC [12]. The application of the solutions of â and
b̂, which are calculated from Eq. (2) to Eq. (3) will

Table 1
Procedure for the ESP

Step 1 Step 2 Step 3 Step 4

Historical streamflow
data

Current basin conditions ESP scenarios ESP probability

Determine initial
parameters for runoff
simulation through
the past one-year
calibration

Apply current basin conditions,
including water uses (e.g.
municipal water, industrial
water, crop water, withdrawal,
etc.), temperature, etc

Produce as many
runoff scenariosas the
number of historical
rainfall events by year

Present monthly ESP probability
for each station point by
analyzing runoff outputs using
statistical probability methods

Fig. 5. Classification of the main river basins and reaches. (a) Main river basins and (b) Reach boundary.

Table 2
Information about tributaries downstream of the Daecheong Dam

Tributary Length (km) Area (km2) Areal ratio

Gap 33.53 648.87 Sub-basin 08 × 0.864
Miho 39.13 1,855.35 Sub-basin 09 × 1.000
Daegyo 19.06 65.75 Sub-basin 10 × 0.157
Jungan 29.60 161.71 Sub-basin 11 × 0.145
Yugu 15.70 282.60 Sub-basin 11 × 0.254
Ji 17.80 250.66 Sub-basin 11 × 0.221
Geum 14.70 165.19 Sub-basin 13 × 0.283
Suksung 12.10 145.78 Sub-basin 13 × 0.261
Nonsan 21.45 667.16 Sub-basin 12 + Sub-basin 13 × 0.261
Gilsan 11.40 113.68 Sub-basin 14 × 0.213
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give the OLC model. With the estimated result Ft at a
certain time in the future, the corrected result Pt for
the corresponding period of time can be calculated in
Eq. (3).

The OLC was used herein to improve the accuracy
of simulation at Gongju. Given the seasonal character-
istics of runoff in Korea, the corrections were made in
equations that varied with different months ranging
from January to December. The value of â and b̂ in the
OLC model are estimated by the measured data in
2003 to 2006, and validated with the measured data in
2007 and 2008. Fig. 4 shows the “hit rate”, describing
the success rate of an effort of the results corrected by
the OLC in January. The comparison of runoff results
observed in Gongju, estimated in the SSARR model,
and corrected by the OLC indicated that the simulated
runoff corrected by the OLC was far closer to the actu-
ally measured runoff than the runoff estimated in the
SSARR model, which suggested that the OLC would
considerably improve the accuracy of simulated
results as shown in Eq. (4) below:

Hit rate ð%Þ ¼ 100� j 100�Qmin=Qmax � 100 j (4)

where Qmin and Qmax are determined from the com-
parison of Yt and Ft, and Yt and Pt, respectively.

2.2.3. Ensemble streamflow prediction

The ESP is a prediction approach to combine over-
all basin conditions, including snowfall, soil moisture,
temperature, water demand, dams, reservoirs, rivers,
etc., with reproducible rainfall events, and thereby

Fig. 6. Flow chart for the water quality model (as used herein).

Table 3
Discharge coefficient

Reach

V = aQb h = cQd

Roughnessa b c d

1 0.0313 0.59 0.0935 0.4907 0.027
2 0.088 0.4164 0.0927 0.4873 0.027
3 0.1089 0.3831 0.1376 0.3982 0.027
4 0.0744 0.3741 0.1693 0.3876 0.027
5 0.0234 0.5516 0.4837 0.2807 0.027
6 0.1326 0.3363 0.2372 0.3222 0.027
7 0.1506 0.3112 0.2485 0.3449 0.027
8 0.0367 0.4653 0.4084 0.3138 0.027
9 0.0426 0.4624 0.4342 0.238 0.027
10 0.005 0.7206 1.7049 0.1079 0.027
11 0.0028 0.7567 3.2566 0.0427 0.026
12 0.0023 0.7762 3.6809 0.0421 0.026
13 0.0019 0.7482 3.6809 0.0421 0.025
14 0.001 0.7545 4.345 0.0251 0.025
15 0.0006 0.7746 5.2256 0.0117 0.025
16 0.0005 0.7567 6.9449 0.0255 0.025

J.M. Ahn et al. / Desalination and Water Treatment 57 (2016) 670–683 675



enable the probabilistic prediction of time series data.
The possibility of probabilistic prediction is dependent
on the selection of appropriate probability distribution
for runoff scenarios under the assumption that the
historical meteorological events represent future phe-
nomena, in other words, will be recurrent in the
future. A probabilistic statistical analysis considers
only the probability of exceedance (or non-exceed-
ance), regardless of the chronological order of hydro-
logic events, to analyze ungrouped entire data that
have been created through an empirical frequency
analysis.

In this study, the frequency of entire annual ESP
results was analyzed without being grouped in a plot-
ting position formula, which is a graphical analysis to
estimate exceedance probability by examining fitness
of a sample to a specific probability distribution on
the probability paper. Out of many conventional plot-
ting position formulas, a formula was restructured
herein as a general formula [18]. A formula that was
proposed by Weibull was used to analyze at-site fre-
quency by probabilistic plotting [19]. A linear regres-
sion analysis was also used herein to obtain a
regression equation from data plotted on a probability

Fig. 7. Major tributaries and water quality monitoring points in the Geum River Basin.
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paper to linearize probability distribution. Table 1
shows the ESP procedure for streamflow prediction.

The ESP method was applied herein to the model
according to the procedure as shown in the table. As
mentioned above, a probabilistic statistical analysis
considers only the probability of exceedance (or non-
exceedance), regardless of the chronological order of
hydrologic events, to analyze entire ungrouped data
that have been created through an empirical frequency
analysis. In this study, annual ESP results were classi-
fied, without being grouped, into a cumulative proba-
bility density function of the entire data from 1984 to
2007 as the probability of runoff prediction in a basin.
Also, it was ensured that a cumulative probability
would simply be estimated by ranking monthly runoff
results in a descending order considering the number
of data [20].

2.3. Water quality model

2.3.1. Estimation of runoff for main river basins

Fig. 5(a) is the main river basin located downstream
of the Daecheong Dam. Discharges for the main river
basins were estimated by the basin areal ratio method
[21] given by Eq. (5). Table 2 shows the areal ratios of
the main river basins closed to tributaries.

Q ¼ A

A0
�Q0 (5)

where Q is specific discharge from a reference basin
(m3/s); A is the catchment area of a reference basin
(km2); A0 is total catchment area (km2); and Q0 is ref-
erence flow (m3/s).

2.3.2. Hydraulic and water quality coefficients

The section for simulation with the Qual2E model
is in the range from the Daecheong Dam to the Geum
River. The estuarine dam located at the outlet of the
Geum River Basin was used herein as the target sec-
tion for a simulation analysis, and the Qual2E was
used as a water quality model. And 14 reaches and
131 elements (as shown in Figs. 5(b) and 6) were iden-
tified considering major channels and tributaries as
shown in Fig. 5(a). As seen in the figure, major
tributaries consist of streams, including Gap, Miho,
Daegyo, Jungan, Yugu, Ji, Geum, Suksung, Nonsan,
and Gilsan.

A discharge coefficient method was used herein to
identify the relationship between flow volume and
flow velocity, and flow volume and water depth, so as
to analyze water quality in the Geum River Basin.
Table 3 shows parameters derived based on the
hydraulic cross section of the reaches ranging from
the lower area of the Daecheong Dam to its estuary.
The discharge coefficients in Table 3 were determined
from hydraulic simulation with measured data and
those are calibrated and verified.

It was ensured that water quality parameters
would include water temperature, BOD, COD, algae,

Fig. 8. Measured water quality of Geum River and tributaries for the recent 5 years. (a) BOD and COD in Daecheong
Dam, (b) T-N and T-P in Daecheong Dam, (c) BOD and COD in Gap stream, (d) T-N and T-P in Gap stream, (e) BOD
and COD in Miho stream, and (f) T-N and T-P in Miho stream.
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nitrogen and phosphorous-based substances, DO, etc.
For the purpose of the correction of the model to
improve its reliability of simulated results, actual val-
ues measured in the river were assumed herein as the
values of reference water quality with no error. This
aims at enhancing the accuracy of the model by
adjusting such factors as response coefficient, which
would affect the results of simulated water quality, to
minimize gaps between natural events and results of
mathematical analysis. A trial method, in which series
of calculations are repeated until a difference between
the measured results and the ones estimated from a
model has reached the smallest wherever possible,
was used herein for calibration process to determine
parameters for the water quality model. Water quality
data from the Water Quality Monitoring Station of the

Ministry of Environment was used to calibrate parame-
ters for the model; the water quality of a tributary is
one of the most important factors affecting water qual-
ity in the main stream. Time series variations in main
water quality items, including COD, BOD, T-N, and
T-P at major water quality monitoring points in tribu-
taries (Fig. 7) were analyzed from water quality data
observed through the water quality monitoring net-
work of the Ministry of Environment. The analysis
results indicated that there were seasonal variations
shown in tributaries and dams, and the water quality
was periodically deteriorated during the occurrence of
drought events as shown in Fig. 8. Other tributaries
except the Daecheong, Gap, Ji and Suksung (as shown
in Fig. 7) showed an increase in BOD, and T-N and
T-P decreased in most of them. It was found that T-P

Fig. 9. Calibration results of the Qual2E model (BOD, T-N, T-P). (a) BOD according to distance, (b) T-N according to dis-
tance, (c) T-P according to distance, (d) BOD according to time, (e) T-N according to time, and (f) T-P according to time.
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was considerably increasing in Gap, Miho, and
Nonsan, which accounted for the larger portion of the
downstream area of the Daecheong Dam. These
results and findings suggest that the water quality of
tributaries caused an increase in BOD and T-P in the
main stream.

Fig. 9 shows the calibration results of the Qual2E
for three water quality items, including BOD, T-N,
and T-P, to comparatively analyze their observed and
simulated values. The (a)–(c) in Fig. 9 are the calibra-
tion results for the model by according to distance in
April 2006, which show spatial variations. Similarly,
the (d)–(f) in Fig. 9 are the calibration results for the
model at the Gongju by the time in 2006. BOD and
T-P were mostly well simulated in the model.
Observed values for the T-N were abnormal within
the range 80–100 km in Fig. 9(b), those errors might be
caused by the inflow of other point pollutant sources
or observation errors. Table 4 shows the parameters
estimated in the study by calibration of the Qual2E.

2.4. System association or coupling

Fig. 10 shows the conceptual diagram for a hydro-
logical integration model coupled or associated with
water quality as developed herein. The model pursues
the integrated processing of the following entire proce-
dure: performing an SSARR to analyze the runoff pro-
cess of pollutants; calculating pollutant loads to
automatically create input data for a river water quality
model; estimating inflow concentration for a river
model to forecast the water quality of lakes; and fore-
casting water quality with a lake model for effective
water quality management in the downstream area of
the dam. Thus, it was ensured that the model was
equipped with functions of interlinking with database
systems, predicting ESP runoff, estimating discharge,

and forecasting water quality. A number of hydrologic
data was obtained from the interlinked database sys-
tem to predict runoff in the ESP approach. Predicted
runoff, including discharge determined through a deci-
sion-making process, was integrated into the model to
forecast water quality. It was ensured that two different
models serving different purposes would be so coupled
or associated as to provide information for effective
decision-making, and thereby facilitate a hydrologic
modeling coupled or associated with water quality:

3. Results and discussion

Historical rainfall and temperature ensemble was
entered into the SSARR model for the Geum River
Basin to create streamflow prediction ensemble. With
a warm-up period ranging from January 1 of the pre-
vious year (2006 in current study) to the time of pre-
diction, observed rainfall and temperature was used
in the SSARR model so that initial conditions, includ-
ing soil moisture, temperature, river water level, and

Table 4
Parameters calibrated by the Qual2E

Model parameters Value Model parameters Value

UPTAKE BY NH3 OXID 3.5 UPTAKE BY NO2 OXID 1.2
PROD BY ALGAE 1.6 UPTAKE BY ALGAE 2
CONTENT OF ALGAE 0.085 CONTENT OF ALGAE 0.012
ALG MAX SPEC GROWTH RATE 1 ALGAE RESPIRATION RATE 0.1
HALF SATURATION CONST 0.04 HALF SATURATION CONST 0.04
LIN ALG SHADE CO 0.0088 NLIN SHADE 0.054
LIGHT FUNCTION OPTION 1 LIGHT SATURATION COEF 0.03
DAILY AVERAGING OPTION 1 LIGHT AVERAGING FACTOR 0.92
NUMBER OF DAYLIGHT HOURS 14 TOTAL DAILY SOLAR RADTN 354.8
ALGY GROWTH CALC OPTION 1 ALGAL PREF FOR NH3-N 0.5
ALG/TEMP SOLR RAD FACTOR 0.45 NITRIFICATION INHIBITION COEF 10

Fig. 10. System association or coupling.
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snowfall, in the target basin at the time of prediction
might be reflected in the simulation process. Water
quality at Gongju in 2007 and 2008 was predicted
from runoff calculated using the developed water
quality forecasting model. Monthly water quality was
simulated under normal conditions considering
streamflow estimated for each tributary sub-basin with
the ESP approach, and five year mean pollution loads
recently observed by the Ministry of Environment to
predict water quality items, including BOD, T-N, and
T-P, at Gongju. Actual discharge from the Daecheong
Dam in 2007 and 2008 was used as streamflow from
upstream that was one of the important factors to
perform a water quality simulation. The inflow of
ten tributaries into the lower area of the Daecheong
Dam was predicted with the ESP approach. Fig. 11
shows streamflow trends at monthly ESP probability

in the sub-basin 8, and at the ESP probability of 0.5
for each sub-basin on the graphs. The calculated
streamflow for each sub-basin was converted into
inflow for each tributary using the areal ratios for each
tributary system as shown in Table 2. With derived
streamflow data as seen in Fig. 11, water quality was
simulated and compared with measured data. All the
procedures were automatically performed with the
model.

Figs. 12–14 show the results of simulation as per-
formed at Gongju in January to December in 2007 and
2008. Observed BOD was sometimes out of the ESP
rank. However, since recent five-year mean water
quality data in tributaries that lie within the range of
the BOD prediction as estimated according to ESP
weights were used herein, it can be judged that they
simulated well measured values within allowable

Fig. 11. Monthly runoff scenarios in sub-basins based on the ESP approach. (a) Streamflow in sub-basin 8 in 2007, (b)
Streamflow in sub-basin 8 in 2008, (c) Streamflow for the basins for the ESP probability 0.5 in 2007, and (d) Streamflow
for the basins for the ESP probability 0.5 in 2008.
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tolerance. Both observed and recent five-year observed
T-N and T-P lay, on the whole, within the prediction
range.

As BOD tended to rapidly increase with a rise in
temperature in April, May, and June, the model

should be corrected for the main stream of the Geum
River from downstream of the Daecheong Dam to
gradually increase discharge so that the predicted dis-
charge would meet requirements for reference water
quality.

Fig. 12. Monthly BOD (as predicted using the ESP method). (a) BOD (2007) and (b) BOD (2008).

Fig. 13. Monthly T-N (as predicted using the ESP method). (a) T-N (2007) and (b) T-N (2008).

Fig. 14. Monthly T-P (as predicted using the ESP method). (a) T-P (2007) and (b) T-P (2008).

J.M. Ahn et al. / Desalination and Water Treatment 57 (2016) 670–683 681



The results of this study showed that care should
be taken to estimate more reliable tributary stream-
flow and water quality, which, in turn, would require
the selection of an appropriate methodology to calcu-
late parameters well representing local conditions. To
select a specific value from the range of water quality
as forecasted under an ensemble scenario, in particu-
lar, it is recommended that a frequency distribution
graph under the produced tributary runoff scenarios
to classify, with a cumulative probability density func-
tion, the entire annual ESP data as a probability of
runoff prediction in a basin without grouping those
data. It’s also recommended that weather forecasting
data from the Korea Meteorological Administration be
used to predict tributary runoff later. With regard to
this, it can use the Croley’s method [22] and the PDF
ratio to improve the ESP approach [2,23].

4. Conclusion

The purpose of the study is to develop a water
quality forecasting system for lower reach of the
Geum River in Korea. ESP method that is a probabilis-
tic analysis method and is used in the field of hydro-
logical prediction practices was applied to SSARR
model to estimate probabilistic streamflow for tribu-
taries located in lower area of the Daecheong Dam.
Qual2E model was used to calculate water quality for
the downstream of the Daecheong Dam. Both SSARR
and Qual2E models were associated into an integrated
system to forecast water quality for the downstream
of the Daecheong Dam. It is expected that the inte-
grated system will enable the prediction of probabilis-
tic water quality; the standardization of analysis
procedures to provide fundamental solutions to prob-
lems linked to a lack of objectivity in simulated
results; and the effective use of time, efforts, and
money:

(1) In addition to the integration of both hydro-
logical models and water quality models, the
integrated system or model was designed as
to be coupled with database; predict ESP run-
off; estimate discharge; produce input data for
water quality forecasting; estimate inflow con-
centration with a river model to predict the
water quality of lakes; and predict water qual-
ity with a lake model.

(2) The application of the OLC model contributed
to the improvement of the accuracy of the
model. With the integrated system or model as
developed herein, monthly water quality was
simulated under normal conditions using data

produced from the recent 5 year observed aver-
age pollutant loads at Gongju in 2007 and 2008.
As a result, it was found that the recent 5 year
observed BOD, T-N, and T-P at Gongju lay
within the range of rank as classified according
to ESP weights, which suggested that the inte-
grated model simulated those observed data in
consistence with measured data.

(3) It’s judged that the use of weather forecasting
data from the Korea Meteorological Administra-
tion in predicting tributary inflow and post-
processing methods based on ESP weights
should further be addressed in the future study
to obtain more appropriate ESP probabilities.
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