
Artificial neural network and genetic algorithms for modeling of removal of
an azo dye on walnut husk
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ABSTRACT

The study dealt with an evaluating kinetic aspect of removal of Basic Red (BR) 46 by walnut
husk (WH). Artificial neural network (ANN), gene expression programming (GEP), logistic,
and pseudo-second-order kinetic models were constructed to predict the removal efficiency
of BR 46 on WH. Spectra of WH before and after the sorption process were obtained using
FTIR–ATR. Functional groups such as hydroxyl, carbonyl, and carboxyl groups had a sig-
nificant role on the interaction between WH and BR 46. Maximum sorption was determined
as 66.45 mg g−1. About 2,160 experimental mean sets were used to feed ANN structure.
ANN was found to be the best model due to its lowest error and highest determination of
coefficient values. ANN showed that contact time was the most efficient parameter, fol-
lowed by initial dye concentration for the sorption process. GEP model successfully
described the sorption kinetic process as functions of pH, adsorbent particle size, initial dye
concentration, contact time, and temperature in a single equation. Results of thermodynamic
parameters indicated that this process is being feasible, endothermic, and spontaneous.
Results revealed that WH had a great potential to remove BR 46 from aqueous solution at
different environmental conditions.

Keywords: Artificial neural network; Basic Red 46; Gene expression programming; Sorption;
Walnut husk

1. Introduction

In this twenty-first century, millions of people
throughout the world are suffering from shortage of
fresh and clean drinking water which is polluted by
waste disposal. Contamination of aquatic ecosystems
with recalcitrant compounds has become a major

global problem [1–3]. Xenobiotic in ecosystems threa-
ten earth because of their adverse effects on all forms
of life [1–3]. Therefore, great attentions have been
given for the removal of recalcitrant compounds from
wastewater, during the last few years.

Azo dyes have synthetic origin and complex
aromatic structure, which make them more stable and
resistant to heat, oxidizing agents, photodegradation,
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and biodegradation [2,3]. They account for approxi-
mately 70% of all dyestuffs, which are extensively
used in the textile, paper, food, leather, cosmetics, and
pharmaceutical industries [1–3]. About 10–15% of
industrial dyes in effluents are discharged into receiv-
ing water bodies [1–3]. They pose a threat to environ-
mental safety and affect aquatic organisms by
impeding light penetration, causing aesthetic prob-
lems, and toxicity to life [2,3]. Moreover, contaminated
stream with this effluent is sometimes used for irriga-
tion of agricultural fields. By this way, recalcitrant
compounds not only may affect the growth of these
plants, but also accumulate in them, which may lead
to their transfer into organisms and human beings [2].

Diverse physical, chemical, physicochemical, and
biological techniques have been used for the treatment
of wastewater [1–5]. These processes are complicated
and have high labor cost, moreover, some of these
methods require additional chemicals and/or produce
further toxic products [1–3]. Also, removal of recalci-
trant azo dyes completely from effluents is very hard
using treatment procedures because of their color fast-
ness, stability, and resistance to degradation [2,3].
Therefore, there is a demand for the effective, low-
cost, and eco-friendly technologies to remove these
dyes from aqueous effluents. Among treatment tech-
nologies, sorption process has received a lot of atten-
tion due to its simplicity and high efficiency, as well
as the availability of a wide range of adsorbents.

Many biological materials, especially agricultural
residues have been investigated for the removal of
dyestuffs [6–12]. For this purpose, walnut shell has
been used for the removal of chromium [13,14],
removal of cesium [15], sorption of methylene blue
[16], and sorption of Lanaset Red G [17]. In the litera-
ture, walnut husk (WH) has not been previously used
for the sorption of azo dyes.

Wastewater treatment systems consist of multi-in-
put variables and output(s) (dye adsorbed per unit of
adsorbent at t time and at equilibrium). Prediction of
water quality as output(s) from a water treatment
plant is very difficult as input water quality changes
continuously. Modeling of sorption process by the use
of ANN techniques is quite appropriate to solve these
complex issues [18–23]. ANN is a technique inspired
by biological neuron processing design as computer-
based systems [18]. In the last decade, this technique
has been successfully used for describing adsorption
systems [19–21] and biodegradation of dyes [22,24].
ANN gives information about relative importance of
parameters driving on sorption kinetics or biodegrada-
tion of dyes [20,22,24].

Genetic algorithm has been used for finding pre-
cise or approximate solutions to optimize or search

problems. Similar to genetic algorithm, the genetic
programming needs a problem to define. Genetic pro-
gramming, empirical models, have been developed by
Ferreira [25] as gene expression programming (GEP).
Parameters derived from mathematical models can be
converted into information for the removal of pollu-
tant [26]. These parameters provide knowledge about
the adsorption behavior and they are used in the
design of wastewater treatment systems.

Basic dyes are widely used for dyeing of acrylic,
nylon, silk, and wool. Basic Red 46 (BR 46) is a syn-
thetic azo dye containing –N=N– bonds and widely
used in the textile industry. BR 46 has the positive
charge delocalized throughout the chromophoric sys-
tem and has an affinity toward the negatively charged
functional groups on materials.

Turkey ranked fourth in the world’s walnut pro-
duction in 2005. WH, available in large quantities, is
usually used as firewood, resulting air pollution. Thus,
the use of this waste for different purposes can play a
significant role for solving the disposal problems. In
addition, utilization of waste materials can contribute
to wise and efficient use of materials, to protect envi-
ronment, and to improve the balance of trade by
reducing the dependence on imported materials. Azo
dyes are the most problematic dye, as they tend to
pass through conventional treatment systems. WH
waste as an effective and low-cost adsorbent has not
been previously used for removing an azo dye, BR 46.
The objective of this study was (i) to investigate sorp-
tion efficiency at different particle size, adsorbent
dosage, initial pH value, temperature, initial dye con-
centration, and contact time for removing BR 46 on
WH, (ii) to develop three-layer ANN model, (iii) to
investigate sorption behavior using logistic and
pseudo-second-order kinetic models, and (iv) to
develop an unique model to describe whole of the
studied factors by GEP model.

2. Materials and methods

2.1. Adsorbent

WH was obtained from a field crop in the south-
eastern region of Turkey. Collected sample was
washed twice with tap water. Dried adsorbent was
grounded in a mortar, sieved using different mesh
sizes into three particles sizes (125–250, 250–500, and
>500 μm mesh sizes), and stored in air-tight polyethy-
lene bottle up to study time. Chemical pretreatment
was not applied prior to sorption experiments.

Infrared spectra of the adsorbent before and after
BR 46 sorption were taken using a Fourier transform
infrared (FTIR) spectrometer equipped with an
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attenuated total reflection (ATR) accessory (Perkin–
Elmer Spectrum 100 FTIR–ATR Spectrometer).

2.2. Adsorbate

Dye used in this study is C.I. BR 46 (CAS 12221-
69-1; C18H21N6Br, MW= 403.32 g mol−1) obtained from
a textile factory in Gaziantep, Turkey. The chemical
structure and properties of this dye is given in Table 1.
Stock dye solution (1 g L−1) was prepared by dissolv-
ing accurately weighed quantity of BR 46 in distilled
water. Desired dye solutions were prepared by dilut-
ing the stock dye solution with a suitable volume of
distilled water.

2.3. Sorption studies

Full factorial design was used to investigate whole
effects of three different particle sizes (>500–125 μm),
four different initial pHs (pH 7–10), five different ini-
tial dye concentrations (20–100 mg L−1), twelve contact
time (0–210 min), and three different temperatures
(293–313 K) on sorption of BR 46 onto WH. Sorption
experiments were performed as duplicate. The mean
sample size was 2,160.

The pH of solution was adjusted to the desired
value by adding 0.1-M HCl and/or 1.0-M NaOH solu-
tions. Experiments were carried out with 100 mL sorp-
tion solution (with desired dye concentration and pH)
and desired adsorbent concentration in 250-mL conical
flask. These flasks were agitated by placing it in the
orbital shaker at 150 rpm for 210 min.

During sorption studies, withdrawn samples were
centrifuged to precipitate suspended biomass at
5,000 rpm for 5 min. Residual BR 46 concentration in

the supernatant was analyzed using spectrophotome-
ter (Jenway 6305) at 530 nm. Each data point was the
mean of two independent samples.

In this study, qt shows the amount of BR 46
adsorbed on WH at time t (mg g−1) calculated using
Eq. (1).

qt ¼ Co � Ctð Þ � V

m
(1)

where Co and Ct represent the dye concentrations
(mg L−1) at initial and at time t, respectively. V is the
volume of solution (L) and m is the mass of adsorbent
(g L−1).

2.4. Kinetic modeling

Pseudo-second-order kinetic, logistic, ANN, and
genetic programming models were used to investigate
the sorption of BR 46 on WH. The sorption of BR 46
on WH was also studied under the aspects of thermo-
dynamic studies.

Pseudo-second-order kinetic model [27] is one of
the mostly used kinetic models to describe kinetic
sorption data. This kinetic model was used and repre-
sented as:

t

qt
¼ 1

kq2e
þ t

qe
(2)

where qe and qt show the dye adsorbed on the adsor-
bent (mg g−1) at equilibrium and at time t (min). k is
the pseudo-second-order rate constant.

Logistic, a sigmoidal, model has been proposed to
obtain more information and describe all sorption

Table 1
General characteristics of Basic Red 46

Name of dye Basic Red 46

Chemical formula C18H23N6Br
Molar mass 403.32 g mol−1

Color Index name Basic Red 46
CAS Number 12221-69-1
λmax 530 nm
Chemical structure
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process [28]. This model was fitted to the experimental
data within the sorption period and expressed as:

qt ¼ A

1þ t
B

� �Zon (3)

where A is maximum sorption value (asymptote
value) at equilibrium; t is time (min). B and Z are
logistic constants. The nonlinear fitting procedure was
performed using commercial computer software
SigmaPlot version 11 (Systat Sofware, Inc., CA, USA)
via the Marquardt–Levenberg algorithm.

ANNs are high-performance, nonlinear analytical
tools that have used a network topology weighing
relationship between inputs and output(s). A multilay-
ered network was trained to perform a particular
(activation) function by adjusting the values of the
connections (weights) between elements (neurons).
The connections (input) coming to a neuron were
summed by the summation function (NetXi) and
added the bias (bi, a constant weight of a neuron
representing the generalization error), expressed in
(Eq. (4)). The activation function (f(x)) produces an
output (Oj) using NetXi. Logistic transfer function
given in Eq. (5) was used as an activation function.

NetXi ¼
Xn
j¼1

wijxj þ bi (4)

Oi ¼ f xð Þ ¼ 1

1þ e�ðNetXiÞ (5)

where xj is value of input j at input layer and wij is
the corresponding weight of connection between each
neuron (j) in input layer and each neuron (i) in hidden
layer, and also between hidden and output layers. The
activation function held the final weights between
neurons of all network and produced a predicted
output as in Eq. (5).

Neural Network Toolbox V4.0 of the MATLAB 7
mathematical software was used for the prediction of
sorption efficiency. In this tool, logistic transfer func-
tion with back-propagation algorithm at hidden layer
and logistic transfer function at output layer activation
function were used.

Genetic algorithm is a search technique that has
been used for finding precise or approximate solutions
for optimization or search problems. Fundamental aim
of developing GEP model was to generate the mathe-
matical functions for the prediction of an azo dye
sorption on WH. GenXproTools 4.0 Advanced Edition
software by Gepsoft was used for the GEP model. The

maximum number of generations for training of the
models for the GEP model was between 5,000 and
10,000. The parameters used in the GEP model are
presented in Table 2.

2.5. Validation of the models

Applicability of models to describe the sorption
process was validated by the coefficient of determina-
tion (R2) and the sum of squares error (SSE) between
experimental and predicted data from the models. SSE
was used as an error function (Eq. (6)):

SSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

qexp � qpredict
� �2

N

s
(6)

where N is the number of data point, qexp and qpredict
are the observed experimental and predicted data
from models, respectively.

3. Results and discussion

3.1. Characterization of adsorbent

Adsorption capacity depends upon the chemical
structure of the surface consisting of various func-
tional groups such as amine, hydroxyl, carboxyl, car-
bonyl, sulfonate, and phosphate, which can bind with
dye molecules. In order to discover changes in the
surface of adsorbent, FTIR–ATR spectra of WH before
and after the sorption of BR 46 are shown in Fig. 1(a)
and (b), respectively.

Table 2
Parameters of GEP model

Parameters Value

Function set +, −, *, /, Sqrt, Ln, Sin,
Cos

Numerical constants [−10, +10]
Chromosomes 50
Head size 8
Number of genes 5
Linking function Addition
Fitness function RRSE
Mutation rate 0,044
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination

rate
0.3

Gene recombination rate 0.1
Gene transposition rate 0.1
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The plot of Fig. 1(a) indicates that several major
intense bands, around 3,347, 2,918, 1,731, 1,593, 1,233,
and 1,033 cm−1 were observed in unloaded adsorbent.
The peak at 3,347 cm−1 could be assigned to –OH and
–NH2 groups [17,29], while the peak at 2,922 cm−1

could be attributed to –OH stretching vibrations [8].
The bands at 1,731, 1,593, 1,233, and 1,033 cm−1 could
be corresponding to carbonyl (C=O) groups; C=N and
–NH2 groups; the –C–O stretching; and groups of
–C–C [16,29]. FTIR analysis revealed that WH has
various functional groups such as amine, hydroxyl,
carbonyl, and carboxyl groups.

After the sorption of BR 46 on WH, shifting of
some peaks were observed as 3,328, 2,924, 1,735, 1,603,
1,292, 1,151, and 831 cm−1 (Fig. 1(b)). These changes
could be due to new bonds formed between WH and
BR 46 molecules. Functional groups as hydroxyl, car-
bonyl, and carboxyl groups had a significant role on
the interaction between WH and BR 46. Similar results
were also found for the sorption of BR 46 on canola
hull [30] and the removal of two cationic dyes by
milled sugarcane bagasse [9].

3.2. Effects of particle size, adsorbent dose, and pH

Adsorbent particle size, dose, and solution pH play
important roles on the sorption capacity. Three parti-
cle sizes (125–250, 250–500, and >500 μm) of WH were
conducted to 50-mg L−1 BR 46 solution. Amount of
adsorbed dye increased with the decrease in particle
size due to the increase in surface area and better
accessibility of the pores for dye molecules. Grinding
of large particles into smaller ones can also open some
tiny sealed channels, which can also increase the sorp-
tion. The removal of BR 46 was carried out at four dif-
ferent adsorbent doses (0.5, 1.0, 2.0, and 3.0 g L−1). The
highest sorption was observed at 1.0-g L−1 adsorbent
dosage, followed by 0.5 g L−1. The lowest sorption at
3.0 g L−1 could be explained as a consequence of par-
tial overlapping or aggregation of adsorbent, which
caused decrease in effective surface area to interact
with dye molecules. This is in agreement with results
of Deniz and Saygıdeğer [31], in which using princess
tree leaf and activated carbon from wild olive cores
[29] for the sorption of BR 46.

Fig. 1. FTIR spectra of (a) the nature adsorbent and (b) BR 46-loaded adsorbent.
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Effect of initial pH values from 1 to 10 on the
sorption process were studied at 50-mg L−1 BR 46. A
tremendous increase (p < 0.01) in the sorption capacity
was observed at high pH values. Determination of
zero point charge (pHzpc) of the adsorbent is impor-
tant to assess the sorption mechanism. Çelekli et al.
[17] reported that pHzpc of WH was found as 6.1,
where electrostatic repulsion between WH and BR 46
was minimum. At pH > pHzpc, the surface of the
adsorbent gets negatively charged, which favored the
sorption of BR 46 on WH due to electrostatic attrac-
tion. Consequently, the highest sorption value was
found at pH 10.

3.3. Effects of contact time, initial dye concentration, and
temperature

The removal of BR 46 by WH was performed at
various contact time (t = 0–210 min) and initial dye
concentration (ranging 20 to 100 mg L−1) at 293, 303,
and 313 K (Fig. 2). The sorption of BR 46 (qt, mg g−1)
significantly increased with increasing contact time
(p < 0.01). Rapid sorption was observed during the first
60 min of contact time due to the abundance of func-
tional groups on WH surface. After that, removing
rate slowed down gradually until the equilibrium
value, where no significant difference (p > 0.05) was
observed in the amount of adsorbed dye, because of
functional groups saturation and entrance of dye
molecules into pores.

Increasing initial dye concentration significantly
increased (p < 0.01) the removal of BR 46. This could
be a consequence of increasing the driving force for
mass transfer, in agreement with results of previous
studies [8,9,22,32]. Additionally, increasing the initial
dye concentration could increase the probability of
contact between dye molecules and adsorbent.

The sorption was found to be heat dependent,
thereby indicating the process was endothermic in
nature. This could be due to increasing temperature
might have increased the adsorptive forces between
dye molecules and surface activity of adsorbent being
involved in the sorption process.

3.4. Modeling

Pseudo-second-order kinetic, logistic, ANN, and
GEP models were used to investigate sorption of BR
46 on WH.

3.4.1. ANN Modeling

A three-layer ANN with a tangent sigmoid transfer
function at hidden layer and a linear transfer function
at output layer was used in this work (Fig. 3). The
input layer had five neurons as particle size, initial pH
regime, initial dye concentration, contact time, and
temperature. The output layer had one neuron as an
amount of adsorbed BR 46 on the adsorbent. Series of
topologies were used to determine optimum number
of hidden nodes, in which the number of nodes varied
from 2 to 40. Increasing number of neurons more than
25 did not make significant difference among SSE val-
ues. Therefore, 5 input neurons, 25 hidden neurons,
and 1 output, so totally 31 neurons for network struc-
ture were selected for training and sets testing. Each
topology was repeated three times to avoid random
correlation due to random initialization of the weights.
About 2,160 experimental mean sets were used to feed
ANN structure. Samples were divided into training,
validation, and test sets that each of them contains
1,468, 346, and 346 samples, respectively. All inputs
were scaled in [−1, +1] interval and the output was
scaled in [0, 1] interval.

3.4.2. Simulation of GEP model

Maximum numbers of generations for training of
the models for GEP were between 5,000 and 10,000.

Fig. 2. Sorption of BR 46 on WH under various
environmental conditions.

Fig. 3. Optimized ANN architecture for the prediction of
sorption of azo basic dye.
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According to parameters of GEP, the GEP model was
run and the best predictive functions were obtained as
Eqs. (7)–(12). The tree expression model is shown in
Fig. 4. Results of this model indicated that the values
were c1 = 2.9357 for Sub ET1, c0 = 5.6018 for Sub ET2,
c1 = −6.2633, and c2 = 2.833 for Sub ET3, c2 = 4.0447 for
Sub ET5.

The mathematical formulation of the GEP model is
expressed as:

qpredict ¼ Sub ET1þ Sub ET2þ Sub ET3þ Sub ET4
þ Sub ET5 (7)

Sub ET1 ¼ pH= 2:9357xCo þ sizeð Þ
. ffiffi

t
p

xCo

h i
(8)

Sub ET2 ¼ 0:1785x Tð Þ þ
ffiffiffiffiffiffi
Co

p
� cos ðpHÞ (9)

Sub ET3 ¼ cos 2:833x �6:2633ð Þx Tð Þ þ
ffiffiffiffiffiffi
Co

p
� cos ðpHÞ

(10)

Sub ET4 ¼ �6:5864 (11)

Sub ET5 ¼ sin
ffiffiffiffi
T

p� �
x cos ln 0:2472x tð Þ½ � (12)

where qpredict is the dye adsorbed on the adsorbent
from the model, Co represents the initial dye concen-
tration, pH is the initial pH value, size is the adsorbent
particle size, t is the sorption time, and T is the
temperature.

3.4.3. Comparison of sorption kinetic modeling

Results of predictive modeling obtained from
pseudo-second-order kinetic, logistic, ANN, and GEP
models are given in Table 3. Fittings of kinetic models
to the experimental data are given in Fig. 5(a)–(d). A
plot of Fig. 5(a) indicated that pseudo-second-order

kinetic model had no well fitting to experiment data
of higher BR 46 concentrations. On the other hand,
logistic (Fig. 5(b)) and ANN (Fig. 5(c)) were more
competitive models with higher R2 and lower SSE val-
ues than that of other models (Table 3). Maximum
sorption of BR 46 on WH was determined as
66.45 mg g−1 from logistic model (Table 3). Maximum
adsorption capacities of various adsorbents for BR 46
reported in literature together with that of WH
obtained in the present study are represented in
Table 4. WH presented satisfactory sorption capacity
for the removal of reactive dye compared to canola
hull [30], princess tree leaf [31], and Moroccan clay
[33]. The sorption capacity of WH was lower than
those of activated carbon from wild olive cores treated
by H3PO4 [29] and boron waste [34] for the sorption
of same azo dye. This could be due to differences in
type and amount of functional groups on structures
and sorption mechanisms of various adsorbents and
experimental conditions. So, WH as a low-cost biologi-
cal material had a remarkable potential to remove BR
46 from aqueous solution at various operating
conditions.

Regression analyses were performed in order to
compare experimental (qexp) and predicted (qpredict)
data from the kinetic models. Results indicated that
values of R2 were found to be 0.9880, 0.9973, 0.9988,
and 0.9572 for pseudo-second-order kinetic, logistic,
ANN, and GEP models, respectively. Well agreement
of ANN was also reported in the literature, in which
R2 = 0.987 for the biotreatment of Malachite Green by
Cladophora species [23], R2 = 0.998 for the prediction of
Lanaset Red G on WH [17], R2 = 0.953 for the degrada-
tion of Acid Blue 92 on Lemna minor [35], R2 = 0.978 for
the removal of Reactive Red 141 by an organoclay
[36], 0.999 for the prediction of an azo-metal complex
dye onto lentil straw [37], R2 = 0.998 for the removal of
methylene blue using activated carbon [38], R2 = 0.963
for the removal of methylene blue on the lignite [39],

Fig. 4. Expression trees of the GEP model. d0, d1, d2, d3, and d4 indicate Co, temp., pH, size, and time, respectively.
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Fig. 5. Comparison of the experimental data with predicted data from (a) pseudo-second-order kinetic, (b) logistic,
(c) ANN, and (d) GEP models (pH 10, particle size = 125 μm, Co= 20–100 mg L−1, t = 0–210 min, and temperature = 313 K).

Table 4
The maximum adsorption capacities of various adsorbents for BR 46

Adsorbent pH Co (mg g−1) qm (mg g−1) Refs.

Wild olive cores 9 100 88.18 [29]
Canola hull 8 100 23.04 [30]
Princess tree leaf 8 100 46.13 [31]
Moroccan clay 12 28 49.31 [33]
Boron waste 9 300 74.73 [34]
WH 10 100 66.45 This study
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and R2 = 0.996 for the removal of reactive orange 12 by
copper sulfide nanoparticles-activated carbon [40].

Results indicated that ANN was found to be more
suitable model to describe the sorption of BR 46 on
WH. Moreover, Fig. 5(a)–(d) clearly indicate that ANN
had very well agreement with experimental qt values
at all dye concentrations than those of other used
models. The highest compatibility of ANN to describe
the experimental data was also observed in previous
studies [17,20,23,24].

3.4.4. Importance of operating factors from ANN

In order to evaluate the relative importance of vari-
ous operating variables on output variables, neural net
weight matrix [18] was used. Contact time with a rela-
tive importance of 48% appeared to be the most
influential parameter in the sorption process of BR 46
on WH, followed by initial dye concentration (40%),
particle size (5%), pH regime (4%), and temperature
(3%). The most important input variables on the sorp-
tion process varied in the literature, such as contact
time for biotreatment of Malachite Green by macro-
alga [22,23], initial dye concentration (41.43%) for
sorption of Acid Black 172 on nonviable Penicillium
YW 01 [24], contact time (31.16%) for biotreatment of
Malachite Green by Vaucheria species [41], pH (23%)
for the removal of methylene blue on the lignite [39],
and pH (43%) for the removal of Lanaset Red G on
WH [17].

3.4.5. Development of GEP equation for further
prediction areas

Sorption system having specific operating condi-
tions can be modeled by the development of an
appropriate approach. Although ANN was the best
model, all the operation conditions were not included
in a single equation. For this purpose, GEP model was
developed and applied to include effects of pH, adsor-
bent particle size, temperature, initial dye concentra-
tion, and contact time in a single equation (Eq. (7)).
Fitting result of this model is given in Fig. 5(d), which
revealed that predicted (qpredict) values were well
agreed with the experimental qexp values. The highest
deviation was found from GEP at the higher initial
dye concentrations. This case was also observed from
the values of SSE. Results of GEP are given in Table 3.
Relatively high determination coefficients (R2 = 0.957)
show that this model given in Eq. (7) can be used to
describe the effects of pH, adsorbent particle size, ini-
tial dye concentration, contact time, and temperature
on the sorption of BR 46 by WH.

The compatibility of GEP modeling to describe the
experimental data was observed in previous studies in
different works [42,43]. In these works, good coeffi-
cient of determinations were reported, in which the
R2 = 0.90 for predicting the crushing strength of cold-
bonded artificial aggregates [42], 0.90 for predicting
effect of nanoparticles on compressive strength of ash-
based geopolymers [43]. In sorption study, it was also
reported as R2 = 0.98 for the prediction of an azo-metal
complex dye onto lentil straw [37]. Additionally,
genetic algorithms were used together with ANN in
some sorption works, in which R2 = 0.97 for the
description of metal ions sorption on chitosan foamed
structure-equilibrium [44], R2 = 0.99 for the removal of
reactive orange 12 by copper sulfide nanoparticles-
activated carbon [41].

3.4.6. Thermodynamic parameters

In order to evaluate the sorption process whether
it is spontaneous or not and exothermic or endother-
mic, thermodynamic parameters [standard free energy
changes (ΔG˚, kJ mol−1), enthalpy changes (ΔH˚,
kJ mol−1), and entropy changes (ΔS˚, J mol−1 K−1)]
were determined by following equations:

DG
� ¼ �RT ln KLð Þ (13)

DG
� ¼ DH

� � TDS
�

(14)

where R is the universal gas constant (8.314 J mol−1 K),
T is temperature (K), and KL is Langmuir constant
(L mol−1). Values of ΔH˚ and ΔS˚ can be determined
from the slope and intercept of a plot of ln KL vs 1/T
(not shown). Results are given in Table 5. Positive
value of ΔH˚ indicated that the sorption process was
endothermic. Variation in free energy between −20
and 0 kJ mol−1 indicated physical sorption, whereas
the energy ranging from −80 to −400 kJ mol−1 shows
chemical sorption. Values of ΔG˚ varied from −25.875
to −29.465 kJ mol−1, indicated that the sorption process

Table 5
Thermodynamic parameters for sorption process of dye on
adsorbent at different temperatures (Co = 20–200 mg L−1,
pH 10, particle size = 125–250 μm, m = 1 g L−1, and
t = 210 min)

T (K) ΔG˚ (kJ mol−1) ΔH˚ (kJ mol−1) ΔS˚ (kJ mol−1 K−1)

293 −25.875 26.805 0.179
303 −27.426
313 −29.465
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for both the adsorbents were mainly physical. Besides,
negative value of ΔG˚ indicated in this process is
being feasible and represents spontaneous nature of
sorption.

4. Conclusions

Results revealed that WH had a great potential to
remove BR 46 from aqueous solution at different envi-
ronmental conditions. ANN was found to be the best
model which showed that contact time was the most
efficient parameter, followed by initial dye concentra-
tion for the sorption process. GEP model successfully
described the sorption process as a function of pH,
adsorbent particle size, initial dye concentration, con-
tact time, and temperature in a single equation. As a
result, ANN and GEP models can be used in design
and scale up for removing of BR 46 on the WH.
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