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ABSTRACT

In this study, artificial neural network (ANN) and adaptive neuro-fuzzy inference system
(ANFIS) models were used to predict the average permeate fluxes and sodium chloride
rejection of waste brine nanofiltration process. The ANFIS and ANN models were fed with
three inputs: feed concentration (40, 60, 80, and 100 g/l), pressure (1.0, 1.25, 1.5, 1.75, and
2.0 MPa), and temperature (30, 40, and 50˚C). Both models were trained with 30% of total
experimental data. Thirty percent of the experimental data were used to test the prediction
ability of ANFIS and ANN models. Independent permeate flux and NaCl rejection predic-
tions were calculated for the remaining of total data (40%). The results revealed that ANN
predictions agreed well with variety of experimental data. It was found that ANN with 1
hidden layer comprising 8 neurons gives the best fitting quality, which made it possible to
predict flux and rejection with acceptable correlation coefficients (r = 0.90 and r = 0.87,
respectively). A hybrid method (the combination of least squares and back propagation
algorithms) was used as the training method of the ANFIS. The overall agreement between
ANFIS predictions and experimental data was excellent for both permeate flux and salt
rejection (r = 0.96 and r = 0.94, respectively).

Keywords: Membrane; Effluent; Fuzzy inference system; Neural network; Simulation; Sodium
chloride

1. Introduction

The ion-exchange resin process is currently consid-
ered as one of the most efficient sugar liquor decol-
orizers. High molecular weight sugar liquor colorants
such as melanins, melanoidins, products of alkaline
degradation of sucrose, caramels, and polyphenols are
first adsorbed onto the resins, and finally desorbed
from the exhausted resins using an alkaline 100 g/l

sodium chloride solution at approximately pH 12.
Typical molar mass of colorants ranges from 500 to
20,000 D. Effluents resulting from this regeneration
contain mostly sodium chloride (up to 100 g/l) and
important amounts of colored organic matter, and,
therefore, constitute a major pollution source [1–3].

Nanofiltration (NF) process was often applied at
the end of the treatment procedure, accompanied by
other separation techniques. The NF process benefits
from ease of operation, reliability and comparatively
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low energy consumption as well as high efficiency of
pollutant removal [4]. NF has now been widely used
in salt removal in water treatment and fractionation of
small molecules in many other industries [5]. NF
membranes have the advantages of providing a high
water flux at low operating pressure and maintaining
a high salt and organic matter rejection [6]. The rejec-
tion mechanism of NF involves size sieving (steric hin-
drance), Donnan exclusion (electrostatic interaction of
charged solutes with charges attached to the mem-
brane matrix) and dielectric exclusion (interaction of
ions with a polarized charge) [7]. NF process allowed
the achievement of 74% reduction in salt consumption
and 89% reduction in water consumption while reduc-
ing the volume of toxic waste discharged from sugar
refineries [2].

Predicting the performance of NF process in terms
of permeate flux and components rejection is neces-
sary for the operation analysis and optimization of
present process and design of a new membrane sep-
aration [4,8]. In the last two decades, researchers
explored the potential of artificial neural networks
(ANNs) and adaptive neuro-fuzzy inference system
(ANFIS) as an analytical alternative to conventional
modeling techniques, which are often limited by strict
assumptions of normality, linearity, homogeneity, and
variable independence. Fuzzy inference systems (FIS)
and ANNs are both model-free numerical estimators.
They share the ability to improve the predictive capa-
bility of a system working in uncertain, imprecise, and
noisy environments [9].

ANNs are information processing networks consti-
tuting a set of highly interconnected neurons arranged
in multiple layers that can be trained to fit one or
more dependent variables to any degree of accuracy
using a set of independent variables as inputs [10].
During the last 15 years, ANNs have been at the focus
of much attention, largely due to their wide range of
applicability and ease by which they handle complex
and highly nonlinear problems. ANNs were success-
fully applied to problems from various areas including
business, medical and industrial fields [11]. Once the
ANN is trained using experimental data, it can be
used in a purely predictive mode to calculate the
dependent variable(s) for any values of input vari-
ables. Process modeling is an area where ANNs of
various configurations and structures have been con-
sidered as alternative modeling techniques, particu-
larly in cases where reliable mechanistic models
cannot be obtained. In the field of membrane separa-
tion processes, ANNs have successfully been applied
to different types of membranes including microfiltra-
tion, ultrafiltration, and NF [8,12–15]. For example,
ANN simulation used to predict the rejection of two

salts (NaCl and MgCl2) at typical seawater concentra-
tions in a crossflow NF membrane process. ANN
model successfully tracked the nonlinear behavior of
rejections vs. pressure and flux [4]. Salehi et al. [12]
found that ANN with one hidden layer comprising
nine neurons gives the best fitting with the experimen-
tal data, which made it possible to predict flux and
total hydraulic resistance with high correlation
coefficients (0.96 and 0.98, respectively).

FIS and ANN are complementary technologies. In
order to utilize the strengths of both, FISs and ANNs
may be combined into an integrated system called
ANFIS; the integrated system then has the advantages
of both ANNs (e.g. learning abilities, optimization
abilities, and connectionist structure) and FISs (e.g.
humanlike if-then rules, and ease of incorporating the
expert knowledge available in linguistic terms) [9].
The ANN and ANFIS models have the unique advan-
tage that no clear relationship between the input and
output variables needs to exist before the model is
applied since the relationship is identified through a
self-learning process. By utilizing data samples from
experiments, both ANN and ANFIS models can be
applied to solve problems with no (or with too com-
plex) algorithmic solutions, or in cases where the
input information is incomplete or uncertain [16].

The concepts of ANFIS were firstly proposed in
1993 by Jang; in general, an ANFIS is a feed-forward
neural network of six layers [17]. ANFIS has an excel-
lent ability of approximation and generalization.
Sugeno fuzzy model is the popular fuzzy model
applied in ANFIS. ANFIS with zero-order Sugeno
model has been proved to have universal approxima-
tion ability under certain circumstances. Because of its
good characteristics, ANFIS has been widely used in
many fields, such as system identification, fuzzy
control, and data processing [18]. For example,
Saghatoleslami et al. used ANFIS to dynamically
model the crossflow ultrafiltration of milk to predict
permeate flux and total hydraulic resistance as a
function of transmembrane pressure, pH, tempe-
rature, fat, molecular weight cut off, and processing
time [19]. In another study, fuzzy inference system
has been applied in modeling of crossflow milk
ultrafiltration [20].

Recently, a few studies have considered the
application of ANNs and ANFIS for modeling and
controlling of desalination systems and membrane
processes. In this study, the efficiency of ANN and
ANFIS models for prediction of permeate flux and
NaCl rejection of NF treatment of waste brine
obtained from sugar decolorizing resin regeneration
was investigated at different conditions of feed
concentration, pressure, and temperature.
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2. Materials and methods

2.1. Experimental setup

The experimental data employed for modeling was
collected using a NF pilot plant system. The used
polymeric tubular AFC80 membrane was purchased
from PCI membrane systems, USA, made of polya-
mide film. The MICRO 240 tubular module had
0.024 m2 membrane area and 30 cm length, which
accepts two 12.7 mm diameter membrane tubes. The
duration of each experimental run was 60 min. A
permeate collection vessel, located on a digital mass
balance (±0.05 g), was used to collect permeate and
measured permeate flux (kg/m2 s) during the
experiments.

For all experiments, the operating pressure was in
the range of 1.0–2.0 MPa (1.0, 1.25, 1.5, 1.75, and
2.0 MPa) and the temperature varied from 30 to 50˚C
(30, 40, and 50˚C). In order to investigate the effect of
feed concentration on the average flux and NaCl rejec-
tion, feeds were prepared at four concentration levels
of 40, 60, 80, and 100 g/l.

The salt concentration in the retentate and perme-
ate was determined based on the conductivity of sam-
ples which were measured using a conductivity meter
(Jenway 4010, Bibby Scientific Limited, UK) at 20˚C
[1]. NaCl rejection was also calculated using the
following equation:

R ¼ 1� Cp

Cb

� �
� 100 (1)

where Cp and Cb are the concentrations of salt in
permeate and retentate sample, respectively.

2.2. ANN simulation

The most popular ANN is the multilayer feed-for-
ward neural network, where the neurons are arranged
into layers of input, hidden, and output. A schematic
description of the three-layered network structure
used in this study is shown in Fig. 1. Feed-forward
neural network usually has one or more hidden
layers, which enable the network to model nonlinear
and complex functions [12]. In this type of ANNs,
information flows in the forward direction only. The
number of input neurons corresponds to the number
of input variables into the neural network, and the
number of output neurons is similar to the number of
desired output variables. In between the input and the
output layers, there is at least one hidden layer that
can have any number of neurons. The number of neu-
rons in the hidden layer(s) depends on the application

of the network. In the hidden and output layers, the
net input (Xj) to node j is of the form [21]:

Xj ¼
Xn
i¼1

fðWijyiÞ þ bj (2)

where yi are the inputs, Wij are the weights associated
with each input/node connection, n is the number of
nodes, and bj is the bias associated with node j. Addi-
tionally, bias is an extra input added to neurons. The
reason for adding the bias term is that it allows a repre-
sentation of phenomena having thresholds [22]. Each
neuron consists of a transfer function expressing inter-
nal activation level. Output from a neuron is determined
by transforming its input using a suitable transfer func-
tion. The transfer function can be linear or nonlinear
(commonly sigmoidal and hyperbolic tangent) functions
depending on the network topology [12].

In this work, the operational variables of NF treat-
ment of waste brine (feed concentration, pressure, and
temperature) were used as inputs and permeate flux
and NaCl rejection as output. A hyperbolic tangent
activation function (Eq. (3)) was chosen to be used as
the transfer function in the hidden and output layers,
due to lower obtained mean-squared error (MSE) val-
ues comparing to the respective sigmoid function and
linear function:

tanh ¼ ex � e�x

ex þ e�x
(3)

The network architecture refers to the number of lay-
ers in the network and the number of neurons in each
layer. The universal approximation theory suggests
that a network with a single hidden layer with
sufficient number of hidden neurons is able to map
any input to any output to any degree of accuracy

Fig. 1. Multilayer feed-forward perceptron network archi-
tecture with one hidden layer for prediction of NaCl
rejection and average flux of regeneration waste brine.
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[23,24]. The ANN used in the present work featured a
one hidden layer and bias nodes in the input and
hidden layers (Fig. 1). On the other hand, to find the
best architecture, different networks were built with
different hidden neurons. In total, 120 data were col-
lected from experiments at different feed concentra-
tions, pressures, and temperatures. The data order
was first randomized and then all data were sepa-
rated into three partitions. Thirty percent of data
were used to train the network, thirty percent of data
were used to test the prediction quality of the network
during the training, and the remaining forty percent
of data was used to validate the performance of
the trained network for prediction of unseen data. In
this study, the fast Levenberg–Marquardt (LM)
optimization technique was used to train the network
[25]. The most widely employed algorithm for training
ANNs is the back propagation approach [26]. It is
based on searching an error surface (error as a
function of ANN weights) using gradient descent for
point(s) with minimum error. Each iteration in back
propagation constitutes two sweeps: forward activa-
tion to produce a solution and the backward
propagation of the computed error to modify the
neurons’ weights [27]. Testing step was carried out
with the best weights stored during the training. Each
predicted value was compared against the experimen-
tal value to test of network performance. For this
purpose, 3 statistical parameters including the
correlation coefficient (r), Eq. (4), MSE, Eq. (6), and
mean absolute percentage error (MAPE), Eq. (7), were
used as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PN
i¼1½Oi � Ti�2PN
i¼1½Oi � Tm�2

s
(4)

Tm ¼
PN

i¼1Oi

N
(5)

MSE ¼
PN

i¼1ðOi � TiÞ2
N

(6)

MAPE ¼ 1

N

XN
i¼1

Oi � Ti

Oi

����
����� 100 (7)

where Oi is the ith actual value, Ti is the ith predicted
value, and N is the number of data.

The NeuroSolutions software (Excel software
release 6.0) was used for designing the neural
networks and simulation of NF treatment of waste
brine. This software incorporates various types of
ANN presented by NeuroDimension, Inc., USA.

2.3. ANFIS simulation

Fuzzy logic is widely used in the field of intelli-
gent control, classification, pattern matching, image
processing, etc. [28–32]. Neuro-fuzzy uses neural net-
work learning functions to refine each part of the
fuzzy knowledge separately. One approach to the
derivation of a fuzzy rule base is to use the self-
learning features of ANNs, to define the member-
ship function (MF) based on input–output data [28].

Fig. 2. The General structure of the ANFIS for the NF model with three inputs.
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In this study, the architecture of ANFIS had six lay-
ers to accomplish the tuning process of the fuzzy
modeling system (Fig. 2). ANFIS modeling was
started by obtaining a data-set (input–output data
points). The data order was first randomized and
then all data were separated into three partitions.
Thirty and forty percent of total data were used to
training, testing, and validating (unseen data) the
network, respectively. Each input/output pair con-
tained three inputs (feed concentration, pressure,
and temperature) and one output (average permeate
flux or NaCl rejection). The training data-set was
used to find the initial premise parameters for the
MFs by equally spacing each of the MFs. The num-
ber of MFs assigned to each input variable is chosen
by trial and error.

The ANFIS toolbox of Matlab 7.6 was used to
obtain the results, and to build a neuro-fuzzy model
for predicting the permeate flux and NaCl rejection of
NF treatment.

3. Results and discussion

The experimental results of NF treatment of waste
brine obtained from sugar decolorizing resin regenera-
tion have been reported previously [1]. Totally, the
permeate flux was increased by increasing the tem-
perature and pressure; however, it decreased with the
increase in feed concentration. The sodium chloride
rejection was decreased by increasing the feed concen-
tration and temperature, whereas it increased with an
increase in pressure.

3.1. ANN results

Initially, the network was trained by 18 data
points. The training process was carried out for 1,000
epochs or until the cross-validation data’s MSE did
not improve for 100 epochs to avoid overfitting of the
network. A plot of the MSE and the number of epochs
is shown in Fig. 3. A sharp drop was observed for
MSE in the first little iteration (fast training) and
training was completed after 56 epochs. This is a well-
known characteristic of the LM optimization method
[26]. LM algorithm provided faster convergence and
the lower MSE than other training algorithms such
as standard back propagation (BP), resilient BP,
conjugate gradient, and quasi-Newton methods.

The results showed that the ANN with eight hid-
den neurons had the minimum MSE values (0.9 and
3.4) for permeate flux and NaCl rejection prediction,
respectively. Table 1 illustrates the weight and bias
values of the optimum ANN, which could be used to
predict NaCl rejection and average flux of NF treat-
ment of waste brine. Figs. 4 and 5 show the results of
ANN model for the training/testing data. The correla-
tion coefficients (r) are around 0.999, meaning
that there is high linear correlations between the
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Fig. 3. MSE as a function of the number of iterations
(epochs) of ANN training process.

Table 1
Corresponding weight and bias values of each neuron for optimum ANN configuration selected to predict NaCl rejection
and permeate flux of regeneration waste brine

Hidden neurons Bias
Input neurons Output neurons

Concentration (g/l) Pressure (MPa) Temperature (˚C) Flux (kg/m2 s) Rejection (%)

1 −0.061 0.6446 0.1857 −0.3148 −0.2482 0.1618
2 – −1.4839 0.6599 −0.5733 −0.6466 0.1405
3 0.588 0.3619 −0.2244 −0.435 0.6093 −0.4239
4 0.104 0.0912 0.5956 1.2611 −0.2616 −0.0757
5 0.053 0.1332 0.5894 −0.0684 0.0995 1.0431
6 0.216 −0.0039 −0.0107 0.0114 0.4479 −0.8753
7 – 0.6156 0.2857 −0.2153 0.842 −0.0685
8 – −0.5552 0.6818 −1.8216 0.1452 −0.8955
Bias −0.0345 0.1383
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experimental permeate flux and NaCl rejection data
and the predicted values.

The prediction efficiency of the selected ANN
model for unseen data is presented in Figs. 6 and 7. It
can be seen that the average flux and NaCl
rejection values predicted by the best ANN configura-
tion (3/8/2) are plotted against their experimentally
measured values. The calculated correlation coefficient
values for estimation of flux and NaCl rejection were
0.90 and 0.87, respectively, which show high correla-
tion between predicted and experimental values. Abbas
and Al-Bastaki used ANN to predict independent

rejection values and compared to the measured rejec-
tions and an excellent correlation was found [26].
Bowen et al. applied ANN to predict the rejections of
single salts (NaCI, Na2SO4, MgC12, and MgSO4) and
mixtures of these salts at a NF membrane. The overall
agreement between ANN predictions and experimental
data was very good for both single salts and mixtures
[8]. Salehi et al. [12] used ANN to dynamic modeling
of flux and total hydraulic resistance in NF treatment.
They reported that the ANN with nine hidden neurons
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Fig. 4. Permeate flux measurements vs. ANN predictions
for the training/testing data-set.
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Fig. 5. NaCl rejection (%) measurements vs. ANN predic-
tions for the training/testing data-set.
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Fig. 6. Experimental (validating data-set) vs. predicted
values for permeate flux of NF treatment of waste brine by
optimum ANN configuration.
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Fig. 7. Experimental (validating data-set) vs. predicted
values for NaCl rejection (%) of NF treatment of waste
brine by optimum ANN configuration.
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had the minimum MAPE values (3.27) for dynamic flux
prediction. ANN models were used to predict the total
acceptance of ice cream by Bahramparvar et al.
[10].Thirty, ten, and sixty percent of the sensory attri-
butes data were used to train, validate, and test the
ANN model, respectively. It was found that ANN with
one hidden layer comprising 10 neurons gives the best
fitting with the experimental data, which made it possi-
ble to predict total acceptance with acceptable MAPE
(27) and correlation coefficients (0.96). Furthermore,
high prediction accuracy (R = 0.97) was obtained by
applying ANN models in predicting the rejection of
neutral organic compounds by polyamide NF and
reverse osmosis (RO) membranes [15].

3.2. ANFIS results

The ANFIS network parameters such as the type
and number of MF and epochs have been varied to
obtain best results in terms of model validation.
Eighteen data points were used for training the system
to predict the permeate flux and NaCl rejection (%).
One-hundred neural nets learning epochs were used
to get a low error of training. A plot of the training
error and the number of epochs is shown in Fig. 8.
ANFIS training was completed after two epochs (very
fast training). The final fuzzy inference system that
predicts the permeate flux and NaCl rejection (%) is
shown in Fig. 9. Two Gaussian type MFs for each

input (three inputs) resulted in high accurate predic-
tion results.

The permeate flux and NaCl rejection (%) values
vs. ANFIS predictions for train data points are shown
in Figs. 10 and 11. It can be seen that an excellent
agreement between the predicted and experimental
data was achieved. A comparison between the experi-
mental and ANFIS predicted permeate flux and NaCl
rejection (%) after training for unseen data is shown in
Figs. 12 and 13. It can be seen that the system was
well trained to model the permeate flux and NaCl
rejection (%) of waste brine NF. The calculated correla-
tion coefficient values for estimation of permeate
flux and NaCl rejection (%) were 0.96 and 094, respec-
tively, which show high correlation between predicted
and experimental values. To quantify the agreement
between the actual and predicted permeate flux
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Fig. 8. ANFIS training error as a function of the number of
epochs.

Fig. 9. The final ANFIS architecture for predicting the average permeate flux and NaCl rejection (%) of NF, with three
inputs, two MFs for each input, constructed eight rules and one output for each model.
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values, linear regression was used to fit a line to the
predicted target data-set. It can be seen that the
obtained best line has a slope of 1.054 and an intercept
of −0.323, which is very close to the perfect prediction.

The ANN and ANFIS models can be applied either
separately as stand-alone modules or as an addition to
the existing conventional mathematical models. In
comparison to the conventional models, the ANFIS
model will able to predict and optimize system perfor-
mance faster and deliver better results in many
instances [9,16].

The results obtained by ANN and ANFIS models
are compared with experimental values to assess the

efficiency of these models. Table 2 shows the data
points used for system’s validation along with the
experimental and predicted values of permeate flux
and NaCl rejection (%). However, in the case of
developing a model, ANFIS model performs better
than ANN model in predicting target output because
ANFIS can deal with the values of a variable beyond
the data range using MFs [9,16,29,31].

ANN modeling offers great advantage on improv-
ing the performance of ultrafiltration process by
accounting the effects of different variables, i.e. feed
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Fig. 10. Permeate flux measurements vs. ANFIS predic-
tions for the training/testing data-set.
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Fig. 11. NaCl rejection measurements vs. ANFIS predic-
tions for the training/testing data-set.
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Fig. 12. Experimental (validating data-set) vs. predicted
values for permeate flux of NF treatment of waste brine by
optimum ANFIS configuration.
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Fig. 13. Experimental (validating data-set) vs. predicted
values for NaCl rejection (%) of NF treatment of waste
brine by optimum ANFIS configuration.
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properties, transmembrane pressure, and membrane
pore size on filtrate volume as the main output of the
filtration process. ANN modeling of ultrafiltration
may be an alternative to previously proposed empiri-
cal and semiempirical models [33].

4. Conclusion

ANN and ANFIS models do not require the prior
knowledge of the relationship between the input and
output variables because they can discover the
relationship through successive training. Moreover,
ANN models can predict several output variables at the
same time, which is difficult in general regression meth-
ods. The application of ANN and ANFIS to the simula-
tion of crossflow NF of waste brine from resin
regeneration was investigated to predict the NaCl
rejection and average flux (as outputs) vs. pressure,
temperature, and concentration (as inputs). The ANN
results suggested an optimum ANN model with 3/8/2
configuration could potentially be used to predict

permeate flux and NaCl rejection with acceptable
correlation coefficients (0.90 and 0.87, respectively). It
was also found that ANFIS models with two Gaussian
type MFs (gussmf) for all input variables and linear for
output gives the best fitting with the experimental data,
which made it possible to predict average permeate flux
and NaCl rejection with low mean absolute percentage
error (6.9 and 11.4, respectively) and high correlation
coefficients (0.96 and 0.94, respectively). The results
indicate that both ANN and ANFIS models can give
good predictions of flux and NaCl rejection (%). How-
ever, the ANFIS model performs better than ANN
model. Therefore, this method can be applied to
relevant NF projects with satisfactory results.
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