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ABSTRACT

Water quality modeling of the urban drainage system is critical to the assessment of
discharged pollutant loads and development of drainage system management. Here,
application of water quality modeling to a combined sewer system on a complex network
scale in Shanghai, China is presented. The uncertainty of the water quality parameters used
in pollutant buildup, wash-off, and sewer sediment erosion/deposition models was
assessed based on a well-calibrated water quantity model using the generalized likelihood
uncertainty estimation (GLUE) method. Moreover, the influences of a single objective func-
tion and a multi-objective function on identification of water quality parameters within the
GLUE method were discussed. The identification of water quality parameters was improved
and the prediction uncertainty band was reduced when the multi-objective function
approach was used. The multi-objective function approach is an effective alternative method
to parameter identification and uncertainty analysis that will be useful to similar studies
and applications into water quality modeling of combined sewer systems.

Keywords: Water quality modeling; Combined sewer system; Sewer sediment; Pollutant
buildup and wash-off; Uncertainty analysis; Generalized likelihood uncertainty
estimation (GLUE)

1. Introduction

Water quality modeling of the urban drainage sys-
tem is critical to assessment of discharged pollutant
loads and development of drainage system manage-
ment. Pollutant transportation processes in urban
drainage systems are complex and dependent on sys-
tem-specific circumstances. Water quality modeling of
separate storm sewer systems has been used for many
years [1,2]. However, the large uncertainty of model

inputs, parameters, and structures makes generalization
of water quality modeling of stormwater systems diffi-
cult to implement [3]. Moreover, the processes in com-
bined sewer systems are more complex. Water quality
models have been developed to describe the general
behavior of a system; however, the actual physical,
chemical, and biological processes in different sewer
systems cannot be expressed accurately and completely
with a universal and simple mathematical model [4].

Most studies of sewer sediment have been con-
ducted using conceptual models, modeling theory,
laboratory pilots, and system performance assessments
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based on site monitoring [5–8]. Previous studies have
provided a basis for improved sewer system water
quality modeling while also identifying gaps in
knowledge that need to be filled [9]. Some full-scale
studies and field experiments of sewer sediment
modeling have been reported [10–12]. However, these
studies focused on individual sewer sections, trunk
sewer sections, or subsystems in a combined sewer
system, not a complex sewer network, and the perfor-
mance of water quality modeling in full-scale sewer
networks has rarely been studied.

Several classic sediment erosion/deposition models
have been incorporated into popular commercial mod-
els such as Infoworks CS/ICM, MOUSE/Mike Urban,
MUSIC, and XPSWMM, as well as into some simpler
conceptual models as proposed in previous studies
[13,14]. The sewer sediment modules in the commer-
cial models are usually modified and improved with
the development of knowledge of sewer sediment.
These deterministic hydraulic models coupled with
the sewer sediment models provide an easily imple-
mentable or alternative approach to assess the water
quality performance of urban drainage systems. How-
ever, the reliability of prediction and performance of
these deterministic models needs to be discussed.

As reported in previous studies, the water quality
modeling of a sewer system is dependent on site-speci-
fic conditions and generally produces results with low
confidence [15]. Each model established by this
approach must be adapted to site-specific conditions
based on calibration of the measurement data. How-
ever, parameter identification is not easy to accomplish
when there are larger numbers or correlations among
the parameters [16]. Given the lack of confidence in the
current prediction, it would be useful to provide sewer
system operators with methods for predicting water
quality, as well as estimating the levels of uncertainty
associated with the prediction [17]. Uncertainty analysis
of the deterministic water quality model with the Baye-
sian or non-Bayesian approach, which is also known as
the “probabilistic shell” [17], provides an alternative
method by which to accomplish this process.

The Bayesian method is a common approach used
in uncertainty analysis of environmental models
[18–22]. The generalized likelihood uncertainty estima-
tion (GLUE) methodology based on the theory of
equifinality [23] has been shown to be effective at
quantitative evaluation of uncertainty in urban drai-
nage models [20,24]. Equifinality here means that
multiple parameter sets may lead to equally accept-
able simulation results. The uncertainty estimation of
stormwater quality and quantity models with the
GLUE method has been thoroughly investigated
[14,20,24–29]. In these studies, stormwater quality

models were analyzed independently, as well as dis-
cussed as components of an integrated urban water
quality model. Although the GLUE method has been
applied to water quality modeling of combined sewer
systems, most water quality models used in these
studies were simple models [13,30,31]. The high com-
puting cost needed for simulation of dry weather peri-
ods is one of obstacles to implementing uncertainty
assessments of detailed deterministic water quality
models for combined sewer systems [15].

Because of the large computing cost required to
implement the probabilistic method, a response data-
base method is used in sewer sediment modeling
[15,17]. The computing cost of this method is lower
than that of the GLUE method; however, there are
some drawbacks to the response data method, such as
the linear assumption of the function between any
two values in the response database [17].

Different uncertainty techniques in urban stormwa-
ter quantity and quality modeling were compared by
Dotto et al. [14], who found that identification of the
most appropriate method for uncertainty estimation is
a trade-off between the need for a strong theory-based
description of uncertainty, simplicity, and computing
cost [14]. Although there is some degree of subjectivity
involved in the GLUE method, it is advantageous in
that it is able to assess the uncertainty associated with
complex models, such as water quality models of
combined sewer systems. This is because prior knowl-
edge is not needed for this method. For these reasons,
the GLUE method was adopted for uncertainty analy-
sis in this study.

We applied Infoworks CS to a combined sewer
system located in a highly urbanized catchment in
Shanghai, China. Uncertainty of the water quality
modeling was assessed by the GLUE method based on a
well-calibrated water quantity model. A comprehensive
monitoring campaign was carried out from April
through October for both 2012 and 2013. The study objec-
tives were to: (1) estimate the uncertainty associated with
water quality prediction of a combined sewer system by
a deterministic model on a complex network scale and
(2) gather insight into parameter identification of a water
quality model of a combined sewer system. Overall, the
results presented herein provide a basis for future
research and application to water quality modeling of
combined sewer systems.

2. Materials and methods

2.1. Experimental sites

This study was applied to the Anshan combined
sewer system, which is located in a highly urbanized
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residential district in the downtown area of Shanghai.
The combined sewer network is independent from the
surrounding sewer systems. The climatology of
Shanghai is characterized by an average annual
rainfall of 1,180 mm, most of which occurs during the
period from May to October.

The catchment area is 130 ha, and the sewer
system serves 48,100 inhabitants. The sewer is charac-
terized by circular and oval pipes with maximum
dimensions of 2,400 mm. The monitored Anshan sys-
tem is a pump lifting combined sewer system. The
pump station has four stormwater lifting pumps and
four interception pumps. The nameplate flow of the
two stormwater lifting pumps is 2.8 m3/s, while that
of the other two is 2.3 m3/s. The nameplate flow of
the two interception pumps is 0.41 m3/s, while that of
the other two is 0.28 m3/s.

2.2. Field sampling and testing

Rainfall was monitored using a 0.1-mm tipping
bucket rain gauge located in the Anshan catchment.
The dry/wet weather flow and water level data were
obtained from the supervisory control and data
acquisition system of the pump station.

Water samples were collected continuously with an
automated sampler (ISCO 6,712, ISCO Inc., NE, USA) at
the outlet of the combined sewer system. The automatic
sampler was programmed to collect a 1,000 ml sample
at a time interval of 15–20 min during wet weather
flow, as well as a 1,000 ml sample at a time interval of
120 min during dry weather flow. All samples were
transported to the laboratory for analysis of total sus-
pended solids (TSS) using standard methods [32].

Field sampling was performed from April to October
in both 2012 and 2013, and 14 rainfall events were
monitored for water quality and quantity [33]. Table 1
presents the characteristics of the monitored events.

To help determine appropriate sewer sediment
parameters, a measurement campaign was carried out
in this catchment in May 2012. During the campaign,
sewer sediment was collected from 10 sites throughout
the catchment. Sediment characteristics such as sedi-
ment surface level, grain size distribution, and grain
density were collected and analyzed. The monitoring
campaign of the water quality and quantity for dry/
wet weather flow and the sewer sediment was used
for model calibration and uncertainty analysis.

2.3. Model and water quality parameters

The Infoworks CS software package (v11.0
Wallingford software, UK), which is one of most

popular deterministic commercial models for water
quality and quantity modeling of urban drainage sys-
tems, was used in this study. The build up of sedi-
ment in the network and movement of sediment and
pollutants through the drainage system during a rain-
fall event could be implemented by water quality
modeling in Infoworks CS. The water quality model
involves a separate calculation process that effectively
occurs in parallel with the hydraulic modeling calcula-
tions. In fact, the hydraulic calculations are made
before the water quality calculations at each time step.

To implement the water quality modeling of a
combined sewer system, an initialization stage simula-
tion, which is a dry weather flow simulation for reach-
ing a steady state of the network, was conducted.

The surface buildup equation determines the mass
of sediment buildup on the surface of the catchment
after the buildup period at the start of a simulation or
at the end of each time step [34].

M0 ¼ Mde
�K1NJ þ Ps

K1
ð1� e�K1NJÞ (1)

where M0 is the mass of sediment after the buildup
period, or the projected mass of sediment at the end
of the time step (kg/ha); Md is the initial mass of sedi-
ment (kg/ha); K1 is the buildup decay factor (d−1); NJ
(d) is the time step length, or the buildup period at
the start of the simulation; Ps is the surface buildup
factor (kg/ha d).

The surface wash-off equation determines the
sediment deposits left on the catchment surface and
washed off into the drainage system during a
simulation.

dMe

dt
¼ KaMðtÞ � fðtÞ (2)

Me tð Þ ¼ Kf tð Þ (3)

KaðtÞ ¼ C1iðtÞC2 � C3iðtÞ (4)

where M(t) is the mass of surface-deposit pollution
(kg/ha); Ka is the erosion/dissolution factor related to
rainfall intensity (1/s); Me(t)is the mass of pollutant
dissolved or in suspension (kg/ha); f(t) is the pollutant
flow (kg/(ha·s)); K is the linear reservoir coefficient
(s); Ka(t) is the rainfall erosion coefficient; i(t) is the
effective rainfall in m/s; C1, C2 and C3 are rainfall ero-
sion calibration coefficients; and t is time.

The Ackers–White Model [35,36], which is one of
most common sewer sediment erosion and deposition
models [37–39], was used for water quality modeling of
sewer sediment erosion and deposition in this study.
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2.4. GLUE methodology

This study employed the GLUE methodology to
assess the uncertainty of water quality parameters in
the Infoworks CS. This method is popular because it
does not require detailed distribution functions for the
observed variables or errors when the explicative
models provided are complex or highly parameterized
[14,25]. For urban drainage system modeling, 20–40%
of the total uncertainty in prediction was due to the
uncertainty in flow quantity modeling, including the
rainfall input uncertainty, whereas 80–60% was due to
the uncertainty associated with the water quality sub-
model [15]. Dotto et al. reported that the uncertainty
associated with the sewer water quality model was
one order of magnitude higher than that of the quan-
tity model [14]. In the present study, the uncertainty
associated with the water quantity model was ignored.
The water quantity parameters of the combined sewer
system model were calibrated and validated based on
14 rainfall events with variable characteristics (Table 1).
The results showed that the goodness of fit between
the simulated outputs and observed values met the
general requirements of urban drainage hydraulic
modeling. The calibrated model was used in the
uncertainty analysis of water quality parameters.

The sensitivity for all water quality parameters of
pollutant buildup, wash-off, and sewer sediment ero-
sion/deposition sub-models was analyzed, and seven
water quality parameters were selected for use in the
uncertainty analysis (Table 2). Furthermore, a primary
manual calibration of these parameters was carried
out to determine a relatively appropriate variation
range (Table 2). The primary analysis would be con-
ductive to obtaining a better result of uncertainty
analysis with a relatively low-computing cost. How-
ever, too narrow a variation range should be avoided
because it may not contain the possible optimal
parameter sets, and the observed data may fall outside
the uncertainty band obtained by uncertainty analysis.

Uncertainty analysis of the water quality parame-
ters was performed in strict accordance with the
GLUE framework provided by Beven and Binley [23].

Three single objective functions (NS efficiency index,
percent bias (BIAS), and root mean square error
(RMSE)) and a multi-objective function that combined
the first three functions and corresponding acceptabil-
ity thresholds were applied separately within the
GLUE methodology. These three single objective
functions are shown in Eqs. (5)–(7). A threshold level
of 0.0 was determined for the NS efficiency index; the
best 10% rule was used for the RMSE; and a relative
error <20% was used for BIAS. The acceptability
thresholds were applied in both the single objective
and multi-objective functions. A multi-objective
function combining three single functions and the cor-
responding acceptability thresholds defined as {P
(NS)|NS > 0.0} ∩ {P(BIAS%)| − 20% < BIAS%< 20%} ∩
{P(RMSE)|RMSE ∈ the best 10%}, and P(NS), P(BIAS
%) and P(RMSE) are posterior parameter sets
observed from objective function NS, BIAS and RMSE.

NS ¼ 1�
Pn

t¼1 ðLtobs � LtsimÞ2Pn
t¼1 ðLtobs � LobsÞ2

(5)

BIAS% ¼
Pn

t¼1 ðLtobs � LtsimÞPn
t¼1 L

t
obs

(6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

ðLtsim � LtobsÞ2
s

(7)

where Ltsim is the simulated value at time t, Ltobs is the
observed value at time t, n is the total number of time
steps, and Lobs is the mean of the observed value.

Taking the objective function NS as an example,
the NS of each simulation with parameter sets
obtained by Monte Carlo sampling from the parameter
range with uniform distribution was calculated. If this
value is higher than the acceptability threshold (NS =
0.0), the model simulation is regarded as “behavioral”
and used for subsequent analysis, otherwise, it is
regarded as “non-behavioral” and rejected. Further-
more, the cumulative likelihood distributions of water

Table 1
Characteristics of rainfall events monitored during 2012–2013 (n = 14)

Name (unit) Depth (mm) Duration (min) Mean intensity (mm/h) Max. intensity (mm/h) ADPa (d)

Minimum 15.6 50.0 2.2 28.8 2.0
Median 37.9 302.5 8.3 66.6 5.5
Maximum 140.4 1,635.0 30.8 129.6 21.0
Mean 46.6 493.2 9.8 74.2 7.7
Standard Deviation 34.4 491.5 7.7 29.9 6.5

aAntecedent dry period.
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quality parameters and the uncertainty band of model
outputs can be obtained based on these behavioral
simulations.

3. Results and discussion

A rainfall event on September 13, 2013, was selected
as an example for the uncertainty analysis of water qual-
ity parameters. Selection of the particular rainfall event
for this analysis was made based on the characteristics of
the combined sewer overflow; specifically, the event
overflow duration, event overflow volume, event mean
flow rate, and event maximum flow rate. The
characteristics of the rainfall event selected were similar
to the average values of the 14 rainfall events monitored.
The depth of the selected rainfall event was 86.9 mm
over 585 min, and the antecedent dry period (ADP) was
approximately 16 d. The following discussion is based
on the September 13 event, although similar trends were
observed for other rainfall events.

To discuss the uncertainty of the water quality
parameters, the normal objective function (the NS effi-
ciency index) was used within the GLUE framework
with an acceptability threshold of NS = 0.0 [20,40]. The
results indicated that the proportion of behavioral sim-
ulation was relatively low. When a higher acceptabil-
ity threshold was used, e.g. NS = 0.3, the model did
not return a sufficient number of behavioral parameter
sets (<1% behavioral). Additionally, the average NS
value of these behavioral simulations was around 0.2,
which was generally lower than the NS values in
stormwater quality models [14,26,40]. This is because
the water quality model of the combined sewer system
is more complicated than the stormwater quality
model owing to the influence of sewer sediment and
dry weather flow.

According to the GLUE approach, 5 and 95%
cumulative likelihood distributions were calculated.
The cumulative likelihood distributions of the water
quality parameters K1, Ps, C1, C2, C3, D50, and Sg

obtained by the GLUE methodology are shown in
Fig. 1.

As shown in Fig. 1, none of the water quality
parameters, except the pollutant buildup parameter
Ps, were identified well by the GLUE method with the
objective function of NS = 0.0. When a single objective
function (e.g. the NS efficiency index) was used, some
parameters could not be easily identified within the
GLUE methodology. The objective function selection
could be an important factor that influences the results
of an uncertainty analysis [41]. This is because a single
objective function could emphasize only certain
characteristics of an observed time series.

In this study, the GLUE approach was also applied
using different single objective functions with corre-
sponding acceptability thresholds, including RMSE
and BIAS. The cumulative likelihood distributions of
water quality parameters obtained by the GLUE with
objective functions RMSE and BIAS are shown in
Fig. 1. The results indicated that, with the exception of
parameter D50, identification of the water quality
parameters was not significantly improved when dif-
ferent single objective function was used. This is
because the objective function RMSE and BIAS
emphasizes certain characteristics of the observed time
series, while ignoring other characteristics that the
objective function NS emphasizes [42,43].

To improve identification of water quality parame-
ters, a multi-objective function that was a combination
of three objective functions, NS, RMSE and BIAS, with
corresponding acceptability thresholds was applied.
The results are also illustrated in Fig. 1. When the
multi-objective function was used, most of the water
quality parameters were easily identified by the GLUE
method. Moreover, identification of parameters was
significantly improved, and was much better than
identification of each individual objective function.
Additionally, the computing cost was not obviously
increased when the multi-objective function was
usedbecause the acceptability thresholds of each

Table 2
Parameter variation ranges used in uncertainty analysis

Parameter Symbol Unit Range

Build-up model Build-up decay factor K1 d−1 0.01–0.15
Buildup Factor Ps kg/ha d 5–40

Wash-off model Rainfall erosion coefficient 1 C1 – 5 × 107–5 × 108

Rainfall erosion coefficient 2 C2 – 1.9–2.1
Rainfall erosion coefficient 3 C3 – 15–60

Sediment erosion/deposition Sediment D50 D50 mm 0.01–0.08
Specific gravity Sg 1 1.1–2.2

14892 W. Zhang et al. / Desalination and Water Treatment 57 (2016) 14888–14896



component (NS, RMSE and BIAS) in this multi-objec-
tive function were relatively low.

The sensitivities of parameters to model output
(TSS pollutograph) were observed by the cumulative
probability distributions (Fig. 1). The results obtained
by the multi-objective function were used to discuss
the sensitivity of water quality parameters. The pollu-
tant buildup parameter Ps, the pollutant wash-off
parameters C1 and C2, and the sediment parameter
D50 were more sensitive to the model outputs than
other parameters. Moreover, the uncertainty of
parameters in the sediment erosion/deposition model
(e.g. grain size parameter, D50) had an obvious influ-
ence on the overall uncertainty associated with model
outputs of water quality modeling for the combined
sewer system.

The uncertainty bands of the TSS-simulated hydro-
graphs at the system outlet were obtained via the
GLUE approach. The uncertainty bands (5–95%)

obtained from three single objective functions and the
multi-objective function are shown in Fig. 2.

As shown in Fig. 2, almost all of the observed data
fell within the uncertainty band for the results
obtained by the three single objective functions. These
findings indicated that the obtained parameter values
accurately predicted the rainfall event. Although there
were some differences, the three uncertainty bands
obtained by the three single objective functions
appeared to be similar. When the multi-objective func-
tion was used, the uncertainty band was significantly
narrower than the bands obtained from three single
objective functions. However, some observed data,
including the peak value, fell outside the uncertainty
band. Accordingly, it is important to check the consis-
tency of the model hypotheses by comparing the
observed data to that of an uncertainty band with a
confidence level equal to 0.1 when the multi-objective
function is used.
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Based on uncertainty analysis of the water quality
parameters, the accuracy of water quality modeling of
a combined sewer system by a deterministic commer-
cial model could be assessed with the GLUE method.
However, there are some drawbacks associated with
use of the GLUE method for this application. Specifi-
cally, there is a large computing cost associated with
implementation of the GLUE method. Although com-
puting cost is a common issue for the GLUE method
relative to other uncertainty analysis approaches [14],
it is higher when the method is applied to water qual-
ity models of combined sewer systems. This is because
eroded sediments comprise a considerable amount of
the pollutants conveyed in sewer systems (e.g. TSS),
and an important source contributing to generation of
the pollutograph [44,45]. Hence, a long simulation per-
iod is needed to reach a state of equilibrium state of
sediment deposition during combined sewer system
water quality modeling. The maximum initialization
stage lasted up to several months, and the simulation
time for a complex network on a large scale could be
several hours. Moreover, the computing cost for sim-
ulation with all of the parameter sets obtained by
Monte Carlo sampling was much higher than that

associated with water quantity modeling and
stormwater quality modeling. Accordingly, uncer-
tainty analysis using the GLUE method may not be
feasible in some cases owing to the large computing
cost [15]. Another limitation is the subjectivity that
exists within the GLUE approach [20]. The selection of
the parameter variation range, objective function, and
acceptability thresholds may significantly influence the
results of uncertainty analysis of the model water
quality parameters. The small range will lead to a low
uncertainty in model outputs. However, the results
will be rejected because the observed data fall outside
the uncertainty band. Conversely, a wide parameter
range will widen the uncertainty band and reduce the
confidence level.

The uncertainty of water quality modeling of the
combined sewer system in a complex networks scale
was also much higher than that of stormwater quality
modeling and water quantity modeling. Although the
water quality parameter could be calibrated by the
GLUE method for a specific site and rainfall condition,
uncertainty analysis with the GLUE and other
probabilistic approaches is only feasible for academic
exercises, not practical applications. This is because
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uncertainty analysis is complex and has high comput-
ing costs [14]. Accordingly, further studies of water
quality models are needed to enable application of
water quality modeling to combined sewer systems on
a complex network scale.

4. Conclusion

In this study, a water quality model of a combined
sewer system in a complex network scale was estab-
lished using the Infoworks CS. Based on calibration
and validation of the water quantity parameters, the
uncertainty of the water quality parameters was ana-
lyzed using the GLUE methodology.

Several water quality parameters were not identi-
fied well by the GLUE method when a single objective
function was used, such as NS = 0.0. However, identi-
fication of parameters was significantly improved when
the multi-objective function was used, and the results
were much better than those obtained with individual
objective functions. Additionally, the uncertainty band
obtained by the multi-objective function was narrower
than that of individual objective functions. Adoption of
the multi-objective function within the GLUE method
could improve the parameter identification and reduce
the uncertainty band; however, some observed data
may fall outside the uncertainty band. Accordingly, it is
important to check the consistency of the model
hypotheses by comparing the observed data with the
uncertainty band when the multi-objective function
was used. Assessment of the uncertainty of the water
quality parameters of a deterministic commercial model
for a combined sewer system in a complex network
scale by the GLUE method revealed it was larger than
that associated with the stormwater quality model.
However, the high-computing cost and subjectivity
within the GLUE method may influence implementa-
tion of uncertainty analysis by this approach.

The results presented herein are based on a specific
case study, and further investigations are needed for
generalization. Nevertheless, this study presents the
uncertainty analysis of water quality parameters for a
complex network-scale combined sewer system, and
provides a basis for future research and application into
water quality modeling of the combined sewer system.
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N. McIntyre, Impact of rainfall temporal resolution on
urban water quality modelling performance and
uncertainties, Water Sci. Technol. 68 (2013) 68–75.

[27] G. Mannina, G. Viviani, An urban drainage stormwa-
ter quality model: Model development and uncer-
tainty quantification, J. Hydrol. 381 (2010) 248–265.

[28] P. Egodawatta, K. Haddad, A. Rahman, A. Goonetil-
leke, A Bayesian regression approach to assess uncer-
tainty in pollutant wash-off modelling, Sci. Total
Environ. 479–480 (2014) 233–240.

[29] K. Haddad, P. Egodawatta, A. Rahman, A. Goonetilleke,
Uncertainty analysis of pollutant build-up modelling
based on a Bayesian weighted least squares approach,
Sci. Total Environ. 449 (2013) 410–417.

[30] G. Freni, G. Mannina, G. Viviani, Uncertainty
assessment of sewer sediment erosion modelling,
Urban Water J. 5 (2008) 21–31.

[31] G. Mannina, A.N.A. Schellart, S. Tait and G. Viviani,
Uncertainty in sewer sediment deposit modelling:

Detailed vs simplified modelling approaches, Phys.
Chem. Earth Parts A/B/C, 42–44 (2012) 11–20.

[32] APHA, AWWA, WEF, Standard methods for the exam-
ination of water and wastewater, 22nd ed., American
Public Health Association, Washington, DC, 2012.

[33] W. Zhang, T. Li, Particle size distributions in
combined sewer overflows in a high-intensity urban
catchment in Shanghai, China, Desalin. Water Treat.
(in press), doi: 10.1080/19443994.2014.942703.

[34] Wallingford. InfoWorks CS Help Documentation,
Version 11.0, Wallingford Software, Oxfordshire, 2009.

[35] P. Ackers, W.R. White, Sediment transport:
New approachand analysis, J. Hydraul. Div. 99 (1973)
2041–2060.

[36] P. Ackers, Sediment transport in sewers and the
design implications, in: Proceedings of the
International Conference on Planning, Construction,
Maintenance and Operation of Sewerage Systems,
BHRA (Cranfield), Reading, 1984, pp. 215–230.

[37] R. Ashley, B. Crabtree, A. Fraser, T. Hvitved-Jacobsen,
European research into sewer sediments and associ-
ated pollutants and processes, J. Hydraul. Eng. 129
(2003) 267–275.

[38] W.S. Merritt, R.A. Letcher, A.J. Jakeman, A review of
erosion and sediment transport models, Environ.
Modell. Softw. 18 (2003) 761–799.

[39] A.N. (Thanos) Papanicolaou, M. Elhakeem, G. Krallis,
S. Prakash, J. Edinger, Sediment Transport Modeling
Review—Current and Future Developments, J.
Hydraul. Eng. 134 (2008) 1–14.

[40] G. Freni, G. Mannina, G. Viviani, The influence of
rainfall time resolution for urban water quality
modelling, Water Sci. Technol. 61 (2010) 2381–2390.

[41] D. Zhao, J. Chen, H. Wang, Q. Tong, Application of a
sampling based on the combined objective of parame-
ter identification and uncertainty analysis of an urban
rainfall-runoff model, J. Irrig. Drain. Eng. 139 (2013)
66–74.

[42] M. Arabi, R.S. Govindaraju, M.M. Hantush, A
probabilistic approach for analysis of uncertainty in
the evaluation of watershed management practices, J.
Hydrol. 333 (2007) 459–471.

[43] B.A. Tolson, C.A. Shoemaker, Cannonsville reservoir
watershed SWAT2000 model development, calibration
and validation, J. Hydrol. 337 (2007) 68–86.

[44] J. Gasperi, M.C. Gromaire, M. Kafi, R. Moilleron,
G. Chebbo, Contributions of wastewater, runoff and
sewer deposit erosion to wet weather pollutant loads
in combined sewer systems, Water Res. 44 (2010)
5875–5886.

[45] T. Li, M. Dai, W. Zhang, L. Qian, Pollutant source
apportionment of combined sewer overflows for a
pump lifting drainage system, J. Tongji Univ.
(Nat. Sci.) 41 (2014) 1513–1518 (in Chinese).

14896 W. Zhang et al. / Desalination and Water Treatment 57 (2016) 14888–14896

http://dx.doi.org/10.1080/19443994.2014.942703

	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Experimental sites
	2.2. Field sampling and testing
	2.3. Model and water quality parameters
	2.4. GLUE methodology

	3. Results and discussion
	4. Conclusion
	Acknowledgements
	References



