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ABSTRACT

In this study, the removal of mercury (Hg(II)) ions from aqueous solutions was carried out
using the brown algae Sargassum bevanom (S. bevanom) as a low-cost adsorbent. The sorption
of Hg(II) was facilitated through the batch method. The following are the optimum
conditions of sorption: a sorbent amount of 0.4 g in 100 mL of Hg(II) solution (50 mg L−1),
contact time of 90 min, pH and temperature 7 and 20˚C. In order to study the kinetics of
removal process, three equations were employed, namely Morris–Weber, Lagergren, and
pseudo-second-order. To estimate sorption capacity, the sorption data were imported in the
Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin models. Also, an evalua-
tion of thermodynamic parameters, namely ΔH, ΔS, and ΔG was done subsequently. These
parameters explain that the Hg(II) sorption onto the S. bevanom is feasible, spontaneous, and
exothermic under the aforementioned conditions. The data prediction phase related to the
Hg(II) sorption onto the S. bevanom was conducted using the artificial neural networks
(ANN). A comparison was made between the Hg(II) sorption data through the ANN model.
The experimental results suggested that the ANN model has a high potential for predicting
the Hg(II) sorption onto S. bevanom.
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1. Introduction

In the past decade, pollution of natural waters due
to heavy metals led to many problems. Environmental
contamination caused by heavy metals is considered a
serious and widespread health problem due to their
high toxicity rate and non-biodegradability as sources
of pollution presently originating from growing indus-
trial activities [1,2]. An example of an important heavy

metal is mercury that has special features such as
evaporation from soil and water, conversion from
organic to inorganic forms by bacteria that is piled in
the organisms body [3]. Mercury and its related com-
pounds are cumulative toxins and also hazardous to
human health in small quantities [4]. Mercury is toxic
and non-biodegradable. Its toxicity depends on the
level of exposure that can include effects such as
shortness of breath in humans, panic disorder, depres-
sion, nausea, and vomiting [5,6]. Therefore, it is highly
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important to remove heavy metals from water and
wastewater. Frequency methods such as biodegrad-
able [7], nanocomposites [8], ion exchange [9], reverse
osmosis [10], solvent extraction [10], and evaporation
[10] were employed for the removal of these ions.

Each of these methods has its pros and cons.
Among all, the adsorption process is of highest inter-
est due to its convenience, high efficiency, speed, and
the availability of the various adsorbents [11–13].
Various factors such as metal concentration, type of
adsorbent, amount of adsorbent, temperature, type of
metal are effective on the process of adsorption by
adsorbent. Also, the type of adsorbent is of particular
importance [14,15]. Algae biomass, among all biologi-
cal adsorbents, attracted much attention due to the
savings in cost, less sensitivity to environmental fac-
tors and impurities [16]. A naturally available Lateritic
soil was used in Ahmad and Qureshi [17] for the
removal of Hg(II) from industrial wastewater. Mean-
while, an investigation of different parameters such as
influence of initial concentration, pH, contact time,
adsorbent dose, and adsorbent particle size on the
removal of mercury ions was done. In another study,
the possibility of using an inexpensive biomass
obtained from prawn pond algae, namely Sphaeroplea
algae, for the Hg(II) ions removal from aqueous solu-
tions was studied through batch sorption method [18].
A sorbent called the Marine macro green algae
Halimeda gracilis was also utilized as a sorbent for the
Cr(VI) removal from aqueous solution. Further, the
effect of various operating variables on the Cr(VI)
sorption onto the H. gracilis and thermodynamic,
kinetic, and equilibrium isotherm related to this
sorption process were investigated [19].

There are too few studies in the literatures that have
some relation to heavy metal adsorbent problems in
terms of ANNs. ANN approach was investigated by
Hosseini Asl et al. for modeling Cr(VI) adsorption from
aqueous solution by zeolite that is prepared from raw
fly ash (ZFA). The effects of various operational
parameters such as adsorbent dosage, initial pH, tem-
perature, and contact time are investigated to optimize
the conditions required for maximum rate of Cr(VI)
ions removal. An effective approach in modeling and
simulating highly nonlinear multivariable relationships
is using artificial neural network (ANNs). A compar-
ison of the Cr(VI) removal efficiencies by ANN model
and the experimental results revealed that ANN model
is capable of estimating the Cr(VI) removal process
behavior under various conditions [20]. Adsorption
isotherms models and neural network were employed
in Fagundes-Klen et al. to study the binary mixture
of cadmium–zinc ions biosorption through species
such as Sargassum filipendula [21]. The equilibrium

concentrations of each ion in the fluid phase and ions
adsorbed concentrations were used as input variables
and output variables, respectively [21]. The modeling
of Cu(II) adsoprtion from industrial leachate by pumice
was also carried out using ANNs [22] .

In this research, an attractive adsorbent called
S. bevanom is utilized for the treatment of Hg(II) from
aqueous solution. The effects of various operational
parameters, such as adsorbent dosage, initial pH, tem-
perature, and contact time on the Hg(II) removal are
also studied. Based on batch adsorption experiments,
ANN model was used in this work to predict the Hg
(II) removal efficiency of S. bevanom as a low-cost
adsorbent. The Hg(II) ions adsorption from aqueous
solution is optimized so that the optimal network
structure can be determined. Finally, the results
obtained from the models are compared with the
experimental data. Also, advantages and further
developments are discussed. To better understand the
adsorption characteristics, some isotherm, kinetic, and
thermodynamic models were used to evaluate the
sorption process.

2. Materials and methods

2.1. Collection of biomass and mercury solution preparation

S. bevanom algae was extracted from the Persian
Gulf (Bandar Boshehr, Iran). The collected biomass
was washed with distilled water to remove silt, sand,
and other epiphytic organisms. After cleaning, the
algae was dried and stored at room temperature.
Then, the acid treated S. bevanom was prepared by
mixing the S. bevanom in a 0.1 M HCl solution and
stirring the mixture at 200 rpm for 8 h at room tem-
perature. Then, the alga was centrifuged, washed with
the physiological saline solution and dried in an oven
at 60˚C. Later, it was ground on an agate stone pestle
mortar and sieved to select the particles between 200
and 300 mesh sizes to be used in the sorption process
[23–26]. Mercury solutions were prepared according to
the standard methods [27].

2.2. Instrumentation

In this research, the description of S. bevanom
surface was carried out with a very high level of
magnification by means of the scanning electron
microscopy (SEM) (HITACHI) Model S-4160). The
S. bevanom was covered with gold and palladium to
increase the conductivity.

To determine the mercury concentration in
the aqueous solution, Flame Atomic Absorption
Spectrophotometer (Model 929, Unicam) was used.
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2.3. Batch adsorption experiments

In this study, the adsorption experiments were
performed to study the effect of the experimental
conditions on the achievement of maximum rate of
mercury removal. Different parameters, such as the
effects of pH, contact time, initial concentration of
Hg(II), and the dosage of the adsorbent, were consid-
ered to optimize the Hg(II) removal process. In this
part of the study, isotherm and kinetic evaluations
were carried out. The adsorption tests were performed
in magnetic mixer. The magnetic mixer worked at
300 rpm throughout the study with 100 mL Hg(II)
solution which was prepared by diluting 1 g/L stock
solution. At the end of the pre-determined time inter-
vals, the sorbate was filtered and the concentration of
Hg(II) was determined. All experiments were done
twice and the adsorbed concentrations given led to
the duplicate experimental results. In all experiments,
powder was the form of S. Bevanom. The Hg(II)
efficiency based on percent removal was calculated as
follows:

%Removal ¼ Ci � Cf

Ci
� 100 (1)

where Ci is the initial concentration (mg L−1); Cf is the
final concentration (mg L−1); q is the amount of metal
adsorbed per the specific amount of adsorbent
(mg g−1). The sorption capacity at time t, qt (mg g−1),
was given by:

qt ¼
ðCi � CtÞV

m
(2)

where Ci and Ct (mg L−1) are liquid-phase concentra-
tions of solutes at initial and a given time t, respec-
tively; V is the solution volume; m is the mass of
S. Bevanom (g). The amount of adsorption at equilib-
rium, qe was obtained by:

qe ¼
ðCi � CeÞV

m
(3)

where Ce (mg L−1) is the ion concentration at
equilibrium.

2.4. ANN modeling

The development of the empirical models by way
of numerical estimation techniques such as the ANN
can be regarded as powerful alternatives for the pre-
diction of adsorption system. ANNs were previously

developed from the basic concept of AI that tried to
simulate the human brain and nervous system
processes [28,29]. They contain a series of mathemati-
cal correlation that are being used to simulate the
learning and memorizing operations. ANNs learn
through examples in which an actual measured set
of input variables and corresponding output are
presented to determine the rules that control the
relationships between the variables [26]. ANNs are
considered a powerful means for capturing non lin-
ear effects and are practically applicable to any situa-
tion with a highly nonlinear relationship between the
dependent and independent variables [30]. Networks
are made up of three main layers, namely input, hid-
den, and output layers [31,32]. In this research, a
multi-layer feed-forward neural network was used.
In this set of networks, information moves forward
in merely one direction from the input layer toward
the hidden layer and finally to the output. Running
of neural network is normally carried out in two
stages, namely learning or training and testing. The
network architecture is represented by l, m, n, where
l neurons are present at input layer (equal to the
number of inputs in the network), m neurons at the
hidden layer (optimized through experimentation),
and n neurons at the output layer in terms of the
number of desired outputs [29]. All experimental
data are classified into three sets, namely training
(70%), validation (15%) and testing (15%). The com-
plete data are normalized in (0–1). Therefore, data
(Xi) are converted into a normalized value (Xnormal)
as shown in the following [28,29]:

Xnormal ¼ ðXi � XminÞ
ðXmax � XminÞ (4)

Xmin and Xmax are minimum and maximum actual
experimental data, respectively. The input signals are
adjusted by the interconnection weight, aka weight
factor (Wij). It represents the interconnection of ith
node of the first layer with the jth node of the second
layer. Then, the sum of modified signals (total activa-
tion) is modified by a sigmoid transfer function and
the output is collected at output layer [29,32].

The ANN model training will be more efficient
provided preprocessing steps are performed on the
input and target data [33]. To evaluate the integrity of
the fit of experimental data and the employed models
prediction accuracy, the following Eq. (5) is utilized:

MSE ¼
P ðqexp � qcalÞ=qexp

�� ��� 100

N
(5)
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To find the optimum number of neurons at hidden
layer, the network is tested with different number of
neurons through the observation of the mean squared
error (MSE). The network is tested with different
number of neurons to find their optimum number at
the hidden layer through the observation of the MSE.
The lowest mean square error is given for six neurons.
Also, the maximum R2 is obtained for six neurons.
Results obtained from the prediction carried out by
neural network for training, validation, and testing are
shown in Table 1.

3. Results and discussion

3.1. Characterization of the biosorbent

The chemical and physical properties of the raw
and acid-treated S. bevanom were determined by the
standard methods [23–25]. The surface area for both
biomasses which was determined by Quantasorb
surface area analyzer equaled 1.24 m2 g−1. The elemen-
tal analysis showed the biosorbents composition as
C = 22.4%; N = 4.18%; S = 1.64%. The calculated
humidity and the zeta potential were 1.35, 3.31% and
−0.058, −0.076 V for the raw and acid-treated
S. bevanom, respectively. The obtained density of the
biosorbent was 1.1 g cm−3.

The surface structures related to the original acid-
treated S. bevanom particles which were imaged with
different magnifications are presented in Fig. 1(a)–(c).
As shown in Fig. 1(a) and (b), the original adsorbent
was nonporous. Fig. 1(c) shows S. bevanom after being
treated by acid. As can be seen, the S. bevanom surface
is changed and the porosity of adsorbent is increased
[23,24].

3.2. Effect of pH on Hg(II) sorption

Results of the earlier studies conducted on heavy
metal biosorption revealed that adsorption depends
on the solution pH because it affects biosorbent sur-
face charge, degree of ionization, and the species of
biosorbent [34]. Thus, the effect of solutions pH (H+

ion concentration) on the adsorption percentage of
mercury ions was studied at different pH in the range
of 1–10 (Fig. 2). Less mercury uptake at low pH values
is indicative of protons competition for the same bind-
ing sites on the algal cell wall. Additionally, it was
found out that the Hg(II) uptake increases with every
increase in pH and reaches a maximum value at pH
7.0. As the aqueous solution pH increases, the nega-
tive charge density of the adsorbent increases accord-
ingly. Therefore, the Hg(II) ions uptake with an
increasing pH is due to an increasing negative charge
density on the adsorbent surface and it is also
responsible for a drop in the Hg(II) sorption at a low
hydrogen ion concentration. Hence, for subsequent
studies, an optimum pH 7 is chosen. The agreement
between the ANN model predictions and the experi-
mental data, as a function of initial pH, is shown in
Fig. 2. It can be seen from this plot that results
obtained from the proposed ANN model are in good
agreement with the experimental data.

3.3. Effect of contact time

Fig. 3 shows the effect of contact time on the Hg(II)
sorption by S. Bevanom. In these cases, the initial Hg
(II) concentration was 50 mg L−1. Also, a pH 7 was
used for Hg(II). Moreover, algae dose of 0.4 g in
100 mL were utilized. For Hg(II), the sorption rate
goes up to 90.24 when contact time is 90 min and then
little change of sorption rate is seen. Subsequently, the
initial rapid adsorption yields to a very slow approach
to equilibrium and saturation is reached in 90 min.
For further optimization of other parameters, the con-
tact time 90 min was taken as the equilibrium time
corresponding to adsorbate and adsorbent. Later, the
experimental data and ANN calculated outputs were
compared. The results suggested that the ANN model
shows a good performance during the prediction of
the experimental data.

3.4. Kinetics of sorption

Most of the adsorption transformation processes of
various solid phases are time dependent. Knowledge
of the kinetics of these processes is important in
understanding the dynamic interactions of mercury
with algae and also to predicting their fate with

Table 1
Results of neural network for prediction of adsorption
amount

Sample Regression (R2)

4 neuron Train 26 0.967
Validation 6 0.965
Testing 6 0.931

5 neuron Train 26 0.918
Validation 6 0.923
Testing 6 0.955

6 neuron Train 26 0.987
Validation 6 0.994
Testing 6 0.996

7 neuron Train 26 0.965
Validation 6 0.961
Testing 6 0.958
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time [35]. Different kinetic models, namely Morris–
Weber, Lagergren, and pseudo-second-order models
were used because of their validity with the experi-
mental adsorption data for the Hg(II) onto S. Bevanom.

It was said to offer no mass transfer (both external
and internal external) resistance to the overall adsorp-
tion process. Therefore, the kinetic can be examined
by the residual metal ion concentration in the solution.

Fig. 1. (a) Field emission scanning electron microscope (FE-SEM) image of S. bevanom. FE-SEM image of S. bevanom,
(b) with more significance and (c) after having been acid treated by HCl.
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Fig. 2. The effect of pH on the removal efficiency and com-
parison between experimental and predicted data (the ini-
tial concentration, contact time, volume of solution, and
amount of adsorbent were 50 mg L−1, 90 min, 100 mL, and
0.4 g, respectively).
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Fig. 3. The effect of contact time on the removal efficiency
and comparison between experimental and predicted data
(the initial concentration, pH, volume of solution, and
amount of adsorbent were 50 mg L−1, 7, 100 mL, and 0.4 g,
respectively).
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The study of adsorption kinetics explains the solute
uptake rate. Clearly, this rate controls the residence
time of adsorbate uptake at the solid–solution inter-
face including the diffusion process.

The kinetic data of Hg(II) ions sorption onto algae
were subjected to Morris–Weber Eq. (6) to explain the
change in the concentration of sorbate onto sorbent
with shaking time [36]:

qt ¼ Kid tð Þ0:5þC (6)

where qt is the Hg(II) ions sorbed concentration at
time “t”. The plot related to qt vs. t0.5 is shown in
Fig. 4. The rate constant value of the Morris–Weber
transport, Kid, is calculated using the slope of the lin-
ear plot that is given in Fig. 4. The rate constant
Kid = 0.0007 min−1 was calculated using the slope of
the straight line with a correlation factor of 0.9833.

Internal particle diffusion might involve pore and/
or surface diffusion. The intraparticle diffusion plots
show multi-linearity in the process suggesting that
there are three operational steps. The first step refers to
the diffusion of adsorbate through the solution to the
external surface of the adsorbent or the boundary sur-
face diffusion of the sorbate molecules. The second step
explains the gradual sorption where intraparticle diffu-
sion is rate limiting. Finally, the third step is related to
the final equilibrium because of the extremely low sor-
bate concentration remaining in the solution and the
reduction of interior active sites. The three steps in the
plot indicate that the sorption process occurs by surface
adsorption and intraparticle diffusion.

In 1898, a pseudo-first-order equation was
suggested by Lagergren [37] for the sorption of
liquid/solid system in terms of solid capacity. It

supposes that the sorbate uptake rate of change with
time is directly relevant to the difference in the satura-
tion concentration and the amount of solid uptake
with time. The Lagergren equation is the most widely
accepted rate equation in liquid phase sorption. The
general equation is given as:

log qe � qtð Þ ¼ log qe � K

2:303

� �
t (7)

where qe is the sorbed concentration at equilibrium and
K is the first-order rate constant. The linear plot related
to log(qe − qt) against time “t” (Fig. 5) indicates the
applicability of the above equation for Hg(II) ions sorp-
tion onto algae. The rate constant, K = 0.0463 min−1,
was calculated using the slope of the straight line with
a correlation factor 0.7404. The results of kinetics are:

The Hg(II) ions sorption onto algae following a
pseudo-second-order kinetics can be explained as Eq. (8):

t

qt
¼ 1

Kq2e
þ t

qe
(8)

where qt and qe are the amount of ion adsorbed at
time t and at equilibrium (mg g−1); k2 (g mg−1 min−1)
is the pseudo-second-order rate constant for the
adsorption process. One can linearize this equation to
four different forms. The different linearized types of
the pseudo-second-order equation are presented in
Table 2. From the results, the mercury adsorption by
algae can be adjusted using Type 1, Type 2, Type 3,
and Type 4 equations. Also, Type 2 equation offers
the best correlation factor. Figs. 6–9 shows the linear
plots of pseudo-second-order equations.
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Fig. 4. Morris–Weber plot of mercury ions sorption onto S.
bevanom (the initial concentration, pH, volume of solution
and amount of adsorbent were 50 mg L−1, 7, 100 mL, and
0.4 g, respectively).
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of solution, and amount of ad sorbent were 50 mg L−1, 7,
100 mL, and 0 .4 g, respectively).
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The kinetic data suggested that the adsorption
process was controlled by the pseudo-second-order
equation. Also, this indicates the assumption behind
the pseudo-second-order model that the mercury ions
uptake process originates from chemisorptions. The
assumption behind the pseudo-second-order kinetic
model is that the rate-limiting step might be involve-
ment of valence forces by chemisorption through shar-
ing or exchanging electrons between adsorbent and
adsorbate. It should be mentioned that the adsorption
of multi-metal ions by an adsorbent has a complicated
mechanism. The behavior of each metal ion in a multi-
metal ions system strongly depends on the concentra-
tion and the properties of other present ions, pH of
the solution, physical and chemical properties of both
the adsorbent and adsorbate. The shape and coeffi-
cients of the adsorption kinetics of the system were
influenced by both the interaction and competition
effects among the multi-metal ions [38].

3.5. Effect of adsorbent dosage

To evaluate the effect of biosorbent dose, it was
studied at a dose between 0.1 and 0.45 g in a 100 mL
aqueous solution. The experiments were performed at
20˚C temperature with an optimum pH. The initial
mercury ion concentration was 50 mg L−1. It was later
found out that the percentage of Hg(II) adsorption
onto S. bevanom increased rapidly with the increase in
the adsorbent concentration (Fig. 10). This is an
expected result because the increase in the adsorbent
dose leads to greater surface area. At higher concen-
trations, the Hg(II) equilibrium uptake did not
increase greatly with the increase in S. bevanom. For
further studies, a dose of 0.4 g acid-treated S. bevanom

Table 2
Kinetic constants for mercury adsorption

Morris–Weber equation

Kid (min−1) R2

0.0007 0.9833

Pseudo-first-order kinetic model K (min−1) qe (mg g−1) R2

Pseudo-second-order kinetic model

0.0463 23302.36 0.7404

k2 (g mg−1 min−1) qe (mg g−1) R2

Type 1 t
qt
¼ 1

k2q2e
þ 1

qe
t t

qt
vs. t 7.14 × 10−7 20,000 0.9295

Type 2 1
qt
¼ 1

qe
þ 1

k2q2e

� �
1
t

1
qt
vs. 1

t 2.56 × 10−6 12,500 0.9305

Type 3 qt ¼ qe � 1
k2qe

� �
qt
t qt vs:

qt
t 1.7 × 10−6 14,644 0.7361

Type 4 qt
t ¼ k2q2e � k2qeðqtÞ qt

t vs. qt 1.0699 × 10−6 17,103.8 0.7361
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Fig. 6. Pseudo-second-order (Type 1) plot of mercury ions
sorption onto S. bevanom (the initial concentration, pH,
volume of solution, and amount of adsorbent were
50 mg L−1, 7, 100 mL, and 0.4 g, respectively).
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Fig. 7. Pseudo-second-order (Type 2) plot of mercury ions
sorption onto S. bevanom (the initial concentration, pH,
volume of solution, and amount of adsorbent were
50 mg L−1, 7, 100 mL, and 0.4 g, respectively).
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in a 100 mL aqueous solution was selected. The
experimental data and the ANN outputs, as a function
of biomass dosages (Fig. 10), showed that the model
performance is in good agreement with the
experimental data.

3.6. Effect of initial concentration of mercury on the
adsorption

The batch-mode experiments were carried out at
ambient temperature (20˚C) to study the effect of ini-
tial Hg(II) concentration on Hg(II) adsorption onto
S. Bevanom. The Hg(II) solution initial concentration
was ranging from 50 to 210 mg L−1 with an optimum
adsorbent dose, contact time, and pH (Fig. 11). It is
clear from the result that the Hg(II) percentage
removal dropped from 90.14 to 62.66% for an initial
Hg(II) concentration of 50–210 mg L−1. The results
suggest that there is a reduction in Hg(II) adsorption
due to the lack of available active sites required for

the high initial concentration of Hg(II). The Hg(II)
higher uptake at low concentration might be related to
the accessibility of more active sites on the surface of
the adsorbent for lesser number of adsorbate species.
An investigation of the experimental data and ANN
outputs, as a function of initial Hg(II) concentration
(Fig. 11), showed that the performance of the model is
in good agreement with the experimental data.

The Fig. 11 data were fitted to Langmuir,
Freundlich, Temkin, and Dubinin–Radushkevich
(D–R) models to examine the models constants
adsorption isotherms.

3.7. The isotherm model

The adsorption isotherm is based on the supposi-
tion that every adsorption site is equivalent and
independent of the accessibility or inaccessibility of

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350

qt

qt/t

Fig. 8. Pseudo-second-order (Type 3) plot of mercury ions
sorption onto S. bevanom (the initial concentration, pH,
volume of solution, and amount of adsorbent were
50 mg L−1, 7, 100 mL, and 0.4 g, respectively).
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the adjacent sites [39]. Isotherms reveal that there is a
relationship between metal concentration in solution
and the amount of nitrate sorbed on a specific sorbent
at a constant temperature.

3.7.1. The Langmuir isotherm model

The Langmuir isotherm model supposes that the
adsorption occurs in a monolayer. Also, the absorption
sites that are located on the adsorbent surface are uni-
form and all of them have the same absorbing ability.
This isotherm model is often suggested in the form of
the following equation [40]:

qe ¼ qmKLCe

1þ KLCe
(9)

where qe is the mercury adsorbed per specific amount
of adsorbent, Ce is the concentration of the mercury
solution (mg L−1) at equilibrium, and qm is the maxi-
mum amount of adsorption mercury ions (mg g−1).
One can rearrange the Langmuir equation into four
various linear types presented in Table 3. The best fit
was achieved by the Langmuir-Type 1 in comparison
with other Langmuir models. Figs. 12–15 depict the
linear plots of different types of this equation. The
basic features and practicality of the Langmuir iso-
therm regarding a dimensionless constant separation
factor or equilibrium parameter RL are defined as the
following equation [41]:

RL ¼ 1

1þ KLCi
(10)

Table 3
Isotherm constants for mercury adsorption

KL (min−1) qm (mg g−1) RL R2

Langmuir equation Type 1 Ce
qe
¼ 1

ðqmKLÞ þ 1
qm

� �
Ce Ce=qe vs:Ce 5.6 35.59 0.003559–0.00085 0.9937

Type 2 1
qe
¼ 1

ðqmKLCeÞ þ 1
qm

� �
1=qe vs: 1=Ce 0.1589 37.4532 0.0023–0.000548 0.962

Type 3 qe ¼ qm � 1
KL

� �
qe
Ce

qe vs. qe=Ce 0.1641 36.446 0.087336–0.022277 0.8985

Type 4 qe
Ce

¼ Klqm � Klqe qe=Ce vs: qe 0.1594 38.14 0.002349–0.00056 0.8331

Freundlich equation K (min−1) n R2

0.0736 0.402 0.8114

Temkin equation KT B R2

3.104 6.4481 0.7222

D–R equation β qm R2

4 × 10−6 32.632 0.9118
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Fig. 12. Langmuir sorption isotherm (Type 1) of mercury
ions onto S. bevanom (the initial concentration, pH, volume
of solution, and contact time was 50 mg L−1, 7, 100 mL,
and 90 min, respectively).
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Fig. 13. Langmuir sorption isotherm (Type 2) of mercury
ions onto S. bevanom (the initial concentration, pH, volume
of solution, and contact time was 50 mg L−1, 7, 100 mL,
and 90 min, respectively).
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where KL is the Langmuir constant and Ci is the initial
concentration of mercury. The desired value of
absorption may range from 0 to 1.

3.7.2. The Freundlich isotherm model

While Langmuir isotherm supposes that the
adsorption enthalpy is independent of the adsorbed
amount, one can derive the empirical Freundlich equa-
tion based on the sorption on heterogeneous surface
assuming a logarithmic drop in the adsorption
enthalpy with an increase in the fraction of the occu-
pied sites. The Freundlich equation is completely
empirical in terms of the sorption on heterogeneous
surface. It is given by the following equation [42]:

qe ¼ KFC
1
n
e (11)

where KF and (1/n) are the Freundlich constants
related to the adsorption capacity and adsorption
intensity, respectively. The equilibrium constants are
evaluated from the intercept and the slope of the lin-
ear plot of log qe vs. log Ce based on experimental
data. One can linearize the Freundlich equation in
logarithmic form with the purpose of determining the
Freundlich constants using the following equation:

log qe
� � ¼ log KFð Þ þ 1

n
logCe (12)

The intercept and the slope correspond to KF and
(1/n), respectively. It was discovered that the log qe
and log Ce plot yields a straight line (Fig. 16). The
results are presented in Table 3.

3.7.3. The Temkin isotherm model

This isotherm model uses a factor to provide for
the inclusion of interactions between the adsorbents
and adsorbates. Temkin model enjoys the following
conditions: (i) the adsorption heat related to all mole-
cules that are present in the layer decreases linearly
with the coverage due to the adsorbent–adsorbate
interactions; (ii) to characterize the adsorption, a uni-
form distribution of binding energies is used up to the
maximum binding energy. The Temkin isotherm sug-
gests that the decrease in the adsorption heat is more
linear rather than logarithmic as already implied by
the Freundlich equation. The Temkin isotherm is nor-
mally used in the form of the following equation
[24,43]:
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Fig. 14. Langmuir sorption isotherm (Type 3) of mercury
ions onto S. bevanom (the initial concentration, pH, volume
of solution, and contact time was 50 mg L−1, 7, 100 mL,
and 90 min, respectively).
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Fig. 15. Langmuir sorption isotherm (Type 4) of mercury
ions onto S. bevanom (the initial concentration, pH, volume
of solution, and contact time was 50 mg L−1, 7, 100 mL,
and 90 min, respectively).
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Fig. 16. Freundlich sorption isotherm of mercury ions onto
S. bevanom (the initial concentration, pH, volume of
solution, and contact time was 50 mg L−1, 7, 100 mL, and
90 min, respectively).
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qe ¼ B ln KTCeð Þ (13)

where B = (RT/AT) and KT is the Temkin constant.
The above equation is often readjusted as the lin-

ear form given below in order to simplify the calcula-
tion and plotting of Temkin constant. The B and KT

values can be calculated using the linear plot of qe vs.
ln (Ce) (Fig. 17).

qe ¼ B ln KT þ B ln Ce (14)

The linearized form of the Temkin adsorption iso-
therm given in Eq. (14) was utilized to analyze the
equilibrium data. The results are presented in Table 3.

3.7.4. The Dubinin–Radushkevich isotherm model

To determine the nature of the adsorption process
viz. physisorption or chemisorption, the Dubinin–
Radushkevick (D–R) [44–46] isotherm was employed.
The following equation shows the linear form of this
model:

ln qeð Þ ¼ ln qmð Þ � be2 (15)

where qe is the amount of Hg(II) adsorbed per unit
dosage of the adsorbent (mg g−1), qm is the monolayer
capacity, β is the activity coefficient related to the mean
sorption energy and ε is the Polanyi potential given as:

e ¼ RT ln 1þ 1

Ce

� �
(16)

From the plots of ln qe vs. ε2 (Fig. 18), the values of β
and qm were obtained by the slope and intercept of
the linear plot. Along with the isotherm constants, the
statistical results are also given in Table 3. As can be
seen from the results, the Hg(II) adsorption by
S. Bevanom can be fitted with the Langmuir equation.
Also, the D–R equation suggests that there is a con-
siderable correlation factor. D–R isotherm shows that
there is a close relationship between the heterogeneity
of energies and the adsorbent surface. The quantity
can be attributed to the mean sorption energy, E,
which is the free energy for the transfer of 1 mol of
metal ions from the infinity to the surface of the
adsorbent [47]. One can calculate the mean free energy
of the adsorption (E, kJ/mol) as follows [48]:
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Fig. 17. Temkin sorption isotherm of mercury ions onto
S. bevanom (the initial concentration, pH, volume of solu-
tion, and contact time was 50 mg L−1, 7, 100 mL, and
90 min, respectively).
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Fig. 18. Dubinin–Radushkevick sorption isotherm of mer-
cury ions onto S. bevanom (the initial concentration, pH,
volume of solution, and contact time was 50 mg L−1, 7,
100 mL, and 90 min, respectively).

Table 4
The effect of temperature on the removal efficiency

Temperature (˚C) Removal efficiency of mercury (%)

20 90.12
35 91.45
50 93.65

Table 5
Thermodynamic parameter for adsorption of mercury onto
S. bevanom

DH kJ

mol

� �
DS kJ

mol.K

� �
T (˚C) DG kJ

mol

� �
R2

12.52 0.069 20 −5.3851 0.9783
35 −6.06853
50 −7.22676
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E ¼ 2bð Þ�0:5 (17)

It is said that the E magnitude is useful for the estima-
tion of the adsorption type. If this value goes below
8 kJ/mol, the adsorption type can be explained by
physical adsorption and a value between 8 and
16 kJ/mol indicates that the adsorption type can be
explained by ion exchange. The E values found in this
study were below 8 kJ/mol, suggesting that the mer-
cury adsorption onto the S. Bevanom was considered
as a physical adsorption [24].

3.8. Adsorption thermodynamics

3.8.1. Effect of temperature on adsorption of mercury

Experiments are performed at 20–50˚C, pH 7, and
materials value and adsorbent dosage level of 0.4 g in
a 100 mL solution to study the effect of temperature
adsorption. The equilibrium contact time for adsorp-
tion was maintained at 90 min. The increase in tem-
perature from 20 to 50˚C leads to a decrease in the
percentage adsorption. The results are presented in
Table 4. They revealed the exothermic nature of the
adsorption process which was later used to determine
the changes in Gibbs free energy (ΔG), heat of adsorp-
tion (ΔH), and entropy (ΔS) of the adsorption of NO�

3

from aqueous solutions.

3.8.2. Effect of temperature on thermodynamics
parameter on adsorption of mercury

Thermodynamic constants such as enthalpy change
ΔH, free energy change ΔG, and entropy change ΔS
were calculated using Eqs. ((18)–(20)) to study the
thermodynamics of Hg(II) adsorption on S. Bevanom.
The values of these parameters are presented in
Table 5. Using the following equations, the thermody-
namic parameters, namely ΔH, ΔS, and ΔG, were
calculated for Hg(II) on S. Bevanom system:

Kc ¼ Fe
1� Fe

(18)

log Kc ¼ �DH
2:303RT

þ DS
2:303R

(19)

DG ¼ �RT ln Kc (20)

where Fe is the fraction of Hg(II) ions sorbed at equi-
librium. A study of Table 5 suggested that the
enthalpy change, ΔH, is positive (endothermic)
because of the increase in adsorption in successive
increases in temperature. The negative ΔG values
showed the thermodynamically feasible and sponta-
neous nature of the sorption. The positive value of ΔS
indicates the increased randomness at the solid–solu-
tion interface during the ion fixation on the sorbent
active sites.

3.9. Comparison of the maximum sorption capacity of
various sorbents

To have a better understanding of the sorption
capacity of S. Bevanom, the values of the maximum
removal obtained for Hg(II) ion uptake with various
types of sorbents are presented in Table 6. The experi-
mental data collected from the present investigations
are corresponding to the reported values. As seen in
Table 6, the sorption capacity of S. Bevanom is higher
than that of zeolite, Rice husk ash, and chelating resin
Chelex-100.

4. Conclusion

Adsorption studies which were carried out on the
S. Bevanom algae proved they are highly effective in
the Hg(II) removal from aqueous solution. The condi-
tions of sorption were as follows: a sorbent dose of
0.4 g in a 100 mL solution. The optimum contact time
and pH were 90 min and 7, respectively. The kinetic
data showed that the adsorption process was
governed by Morris–Weber model. The results of this
study were well explained by the theoretical
Langmuir. Thermodynamic studies showed a negative

Table 6
Comparison of the maximum sorption capacity (qm) of the various sorbents

Sample Sorbent material qm (mg g−1) Refs.

1 S. bevanom 35.59 This work
2 Zeolite 1.21 [49]
3 Activated carbon 55.6 [50]
4 Polypyrrole-chitosan (PPy/CTN) nanocomposite 40 [51]
5 Rice husk ash 4 [52]
6 Chelating resin Chelex−100 14.19 [53]
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ΔG and positive ΔS and ΔH. Results were indicative of
the endothermic nature of the adsorption. The nega-
tive ΔG values showed the thermodynamically feasible
and spontaneous nature of the sorption. The positive
value of ΔS demonstrates the increased randomness at
the solid–solution interface during the ion fixation on
the sorbent sites. An analysis of the relationship
between the predicted results of the designed ANN
model and the experimental data showed that the Hg
(II) adsorption was given by the S. Bevanom algae and
predicted by the application of a 3-layered neural net-
work having 6 neurons in the hidden layer. In conclu-
sion, an ANN model-based simulation can provide
further contribution to develop a better understanding
of the dynamic behavior of the process in which there
are still some unfathomable phenomena that cannot
be explained with all details.
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The application of natural zeolites for mercury
removal: From laboratory tests to industrial scale,
Miner. Eng. 17 (2004) 933–937.

[50] K. Kadirvelu, M. Kavipriya, C. Karthika, N.
Vennilamani, S. Pattabhi, Mercury(II) adsorption by
activated carbon made from sago waste, Carbon. 42
(2004) 745–752.

[51] S. Salahi, M. Ghorban, Adsorption parameters studies
for the removal of mercury from aqueous solutions
using hybrid sorbent, Adv. Polym. Technol. 33 (2014)
1–6.

[52] A.G. El-Said, N.A. Badawy, S.E. Garamon, Adsorption
of cadmium(II) and mercury(II) onto natural adsor-
bent rice husk ash (RHA) from aqueous solutions:
Study in single and binary system, J. Am. Sci. 6(12)
(2010) 400–409.

[53] A. Amara-Rekkab, M.A. Didi, Liquid—solid extraction
of hg(ii) from aqueous solution by chelating resin
chelex-100, Eur. Chem. Bull. 3(9) (2014) 860–868.

H. Esfandian et al. / Desalination and Water Treatment 57 (2016) 17206–17219 17219


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Collection of biomass and mercury solution preparation
	2.2. Instrumentation
	2.3. Batch adsorption experiments
	2.4. ANN modeling

	3. Results and discussion
	3.1. Characterization of the biosorbent
	3.2. Effect of pH on Hg(II) sorption
	3.3. Effect of contact time
	3.4. Kinetics of sorption
	3.5. Effect of adsorbent dosage
	3.6. Effect of initial concentration of mercury on the adsorption
	3.7. The isotherm model
	3.7.1. The Langmuir isotherm model
	3.7.2. The Freundlich isotherm model
	3.7.3. The Temkin isotherm model
	3.7.4. The Dubinin-Radushkevich isotherm model

	3.8. Adsorption thermodynamics
	3.8.1. Effect of temperature on adsorption of mercury
	3.8.2. Effect of temperature on thermodynamics parameter on adsorption of mercury

	3.9. Comparison of the maximum sorption capacity of various sorbents

	4. Conclusion
	References



