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ABSTRACT

In this paper, the structure optimized support vector machine (SVM) model was applied to
predict the membrane permeate flux during dead-end microfiltration of activated sludge
suspensions from sequencing batch reactor (SBR) with different experimental samples. The
membrane permeate flux was considered as a function of mixed liquor suspended, tempera-
ture, dissolved oxygen, hydraulic retention time, transmembrane pressure, and operating
time. Excellent agreements between the predicted values of SVM model and the experimen-
tal data demonstrated that SVM model has sufficient prediction accuracy. Furthermore, the
results showed that the predicted values of SVM model agreed well with experimental data
at different experimental samples in comparison with back propagation artificial neural net-
work (BP-ANN) model. From the simulation results, the conclusion can be derived that
SVM model outperforms BP-ANN model when the experimental samples sizes are small.
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1. Introduction

Microfiltration (MF) technology, integrated with
the conventional activated sludge bioreactors, has
been widely used in wastewater treatment and reuse
[1–3]. However, the occurrence of membrane fouling
may cause severe reduction in membrane performance
including the loss of permeate flux and selectivity [4].
To solve these problems, membrane cleaning as an
essential step has been frequently carried out to
restore the membrane permeate flux. Therefore, how

to exactly predict the membrane permeate flux is of
great significance for the industrial process [5,6].

In industrial operation, once membrane styles and
feed systems are assigned, the membrane permeate
flux in MBRs is mainly influenced by operating condi-
tions, such as temperature, airflow rate of aeration,
cross-flow rate, pH, HRT, sludge retention time, and
transmembrane pressure (TMP) [7,8]. Several conven-
tional models have been developed to optimize the
operating conditions of MBRs [1,9–11]. For example,
Bai et al. [1] proposed a mathematical model to pre-
dict the cake thickness and flux decay in a cross-flow
microfiltration. Gui et al. [9] have studied the*Corresponding authors.
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influence of operating parameters using orthogonal
experimental method and found the best combination
of them. In addition, Liu et al. [10] have proposed a
model which was used to calculate the cross-flow
velocity of the activated sludge over the membrane
surface in a submerged membrane bioreactor. How-
ever, these models could not give a good prediction
accuracy since influence factors limiting its applica-
tions is extremely complex [7,8]. So, finding an effi-
cient and accurate method to predict the membrane
permeate flux in MBRs is very stringent.

Artificial neutral networks (ANN) is a mathemati-
cal model based on the modern neuroscience research,
which composes a large number of neurons connected
with simple components [12]. ANN, as an efficient
method for dealing with complex nonlinear problems,
has been applied in business, science and engineering
fields [13]. Compared with multiple linear regressions
and other traditional methods [14–16], ANN technol-
ogy shows high accuracy, but it needs a large number
of data and some shortcomings will arise from its
theoretical statistical basis such as the prediction accu-
racy is not satisfying when the training set is small. In
contrast, support vector machine (SVM), which is
based on statistical learning theory, has been proposed
to solve the difficult problem for this situation [17,18].
Compared with ANN, SVM has several merits such as
efficient utilization of high-dimensional feature space,
distinctively solvable optimization problem and theo-
retically analysis ability using computational learning
theory [14].

As a highly effective approach to model with lim-
ited training sample sets, SVM has been widely
applied in many fields for prediction [18], such as pat-
tern recognition problem [19–23], classification [24,25],
regression [26,27], image analysis [28], drug design
[29–31], time series analysis [32–34], quality control of
food [35,36], protein structure function prediction [37–
40], and genomics [41]. Additionally, SVM usually
outperformed traditional statistical learning methods
[42,43]. Thus, SVM has been arousing more and more
interest, and many researches are focused on this sub-
ject. For example, to make SVM comprehensively
understood by junior learners, support vector classi-
fication machines [44] and support vector regression
machines [45] were reviewed by Burges et al. and
Smola et al., respectively. Specifically, Noble described
the definition of SVM and its biological applications
[46]. In addition, Xu et al. adopted SVM for classifica-
tion in chemometrics [47]. Jia et al. showed that SVM
was applicable to predict the synthesis characteristics
of hydraulic valve in industrial production [19]. A pre-
dictor was constructed to predict the true and false
splice sites for higher eukaryotes based on SVMs [48].

Liang et al. proposed an effective approach based on
biased SVM for content-based sketch retrieval [49].
Gumus et al. presented an evaluation of using various
methods (PCA, wavelets and SVM) for face recogni-
tion [50]. All these studies make great contributions to
the development and application of SVM. Although
the prediction performance of SVM is excellent, few
papers have reported about the application of SVM in
the field of membrane permeate flux prediction.

Therefore, in this paper, SVM was used to validate
the application for the predictions of the membrane
permeate flux as a function of different operating
conditions during dead-end microfiltration fouled
with activated sludge suspensions from sequencing
batch reactor (SBR). Additionally, the prediction accu-
racy of SVM/back propagation artificial neural net-
work (BP-ANN) model at different experimental
sample sizes was compared.

2. Experimental

2.1. System and methods

The laboratory-scale experimental system (in Fig. 1)
described elsewhere in the literature [17] consisted of
two parts. The first part is an intermittent mode
bioreactor system with an effective volume of 25 L. The

Fig. 1. Schematic of the experimental system: Intermittent
bioreactor system (a); Dead-end filtration system (b).
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second part is a dead-end microfiltration cell. The feed
solution (raw wastewater) was obtained from the stor-
age tank of domestic sewage shown in Table 1. The
dead-end microfiltration cell has an effective mem-
brane area of 24.0 cm2. Prior to each experiment, the
polyacrylonitrile (PAN) hydrophilic membrane with
nominal pore size of 0.1 μm was soaked in deionized
water for 12 h to remove glycerin (protective agents) at
4˚C. The mixed liquor suspended solids (MLSS)
concentration was measured by weighing a dried
sample and pH was measured with a pHS-3C acidity
meter [51].

The different operating parameters for the mem-
brane bioreactor system, such as the MLSS, tempera-
ture (T), dissolved oxygen (DO), pH, and HRT, are
shown in Table 2. No sludge was discharged during
the operation or test period.

2.2. Experimental procedure

The experiments were conducted as follows: for
each experiment, the permeate weight was measured
with an electronic balance connected to a PC for auto-
matic data acquisition per a given time, in which the
sampling interval varied from 30 s to 2 min. The tem-
perature of the whole filtration process was controlled
by a constant temperature water-bath, and the
temperature was set as the bioreactor’s temperature.
TMP was varied from 0.03 to 0.24 MPa. When the
conditions of SBR remained stable, the activated
sludge suspension was poured into the filtration cell
(shown in Fig. 1(b)) in which a 0.1-μm polyacryloni-
trile (PAN) membrane had been loaded, and was fil-
tered through the membrane under a constant TMP
using compressed air.

3. The support vector machine

SVM proposed by Vapnik is a classification
method which aimed at separating two data-sets
based on the maximum distance between them [27]. It
is an excellent tool for the classification and regression
problems of good generalization ability. This method
separates two data-sets into particular classes by look-
ing for an optimal separating hyperplane between

them [52–54]. Bounds between data-sets and OSH are
called “support vectors”. In this paper, the structure
optimized SVM is used as the predicted model.

The training sample set is given as {(xi, yi), i = 1, 2,
3, … l}, where xi is the ith input and yi is the corre-
sponding desired output [52–56]. Supposed that the
training data can be linearly separated, the SVM for-
malism uses the following linear estimation function f
with the empirical risk minimization as follows:

fðxÞ ¼ ðx;uðxÞÞ þ b (1)

where ω (ω∈F) is the weight vector, (,) is the inner
product, φ(x) denotes a mapping function in the fea-
ture space, i.e. it represents the nonlinear mapping
from low-dimensional feature spaces to high-dimen-
sional feature space F; b is designated to be the bias.

The values of ω and b in Eq. (1) can be derived by
substituting the training data-set (samples) (xi, yi) into
the following function:

Rreg½f � ¼ Remp½f � þ k xk k2¼
Xs

i�1

CðeiÞ þ k xk k2 (2)

where Rreg[f] is the sum of empirical risk and experi-
ence risk; Remp[f] is the experience risk; λ is the regu-
larization parameter for controlling the loss of
training data-set (samples) and the compromise of
model complexity; the minimum distance between
any training point and this hyperplane is defined as
the margin of the classifier. In order to achieve the
minimal of structural risk, larger margins (the opti-
mal hyperplane) should be obtained to get better

Table 1
Quality of raw wastewater used in the experiment

COD (mg L−1) NH3-N (mg L−1) TOC (mg L−1) pH Turbidity/NTU

180.6–225.8 45.9–73.6 86.5–115.5 7.5–8.0 20–26

Table 2
Operating conditions of bioreactors

Operating conditions

MLSS (mg/L) 1,800, 2,600, 3,000, 4,500, 6,000
Temperature (˚C) 15, 18, 20, 24, 28
DO (mg/L) 7, 5.2, 6, 4.6, 7.5
HRT (h) 16, 20, 25, 17, 22
pH 7 ± 1
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generalization. xk k2 is the confidence risk and
reflects the model complexity in high-dimensional
feature space, and the smaller xk k2 means smaller
confidence risk; s is the size of the training set (sam-
ples); C(.) is the loss function, ei ¼ fðxiÞ � yi ¼ ŷi � yi
represents the difference between the predicted val-
ues and the experimental data, and CðeiÞ represents
the experience error of the model. Based on the
principle of structured risk minimization, SVM
model sought to minimize the sum of empirical risk
and confidence risk.

For a given loss function, the problem of finding
function f can be solved as a quadratic programming
problem as following:

max J ¼ � 1

2

Xs

i;j¼1

ðai � a�i Þða�j�ajÞðuðXiÞ;uðXjÞÞ

þ
Xs

i¼1

ai
�ðYi � eÞ �

Xs

i¼1

a�i ðYiÞ
(3)

s.t.

Ps
i¼1

ai ¼
Ps
i¼1

a�i

0� ai �C
0� a�i �C

8>><
>>:

9>>=
>>;

(4)

By solving the Eqs. (3) and (4), x ¼ Ps
i�1ðai � a�i ÞuðxiÞ can be obtained; b can be obtained by

substituting any supported vector into the Eqs. (3) and
(4). In this way, the function f is transformed into the
following representation:

fðxÞ ¼
Xs

i�1

ðai � a�i ÞðuðxiÞ;uðxÞÞ þ b (5)

Define the inner product of high-dimensional
feature transformation space as the Kernel function of
SVM:

Kðxi; xjÞ ¼ ðuðxiÞ;uðxjÞÞ (6)

The inner product in high-dimensional space can
only be obtained by computing the Kernel function in
the low-dimensional space. Finally, by introducing
Lagrange multipliers and exploiting the optimal
constraints, the decision function has the following
explicit form:

fðxÞ ¼
Xs

i�1

ðai � a�i ÞKðxi; xÞ þ b (7)

4. Back propagation artificial neural network

Artificial neural network (ANN) is a nonlinear con-
tains many simple computational units and back prop-
agation (BP) is the most typical supervised learning
algorithm [57]. BP-ANN commonly consists of input,
output, and hidden layers. Neurons interconnected
with adjacent layers by a weighting factor. BP-ANN
layers by learning to modify the connections between
neurons weights, then the final error could be minimal
[58]. In this paper, a structure optimized three-layer
BP-ANN is made as the predicted model. The number
of hidden neurons, learning functions, and learning
rate were optimized as follows.

4.1. Selection of the number of hidden neurons

The large number of hidden neurons may lead to
the overlong learning time, larger error and poorer
fault tolerance. In this paper, the training epochs and
average absolute relative deviation were chosen as the
reference standard. The relationship between the num-
ber of hidden neurons and the predicted error of the
model and epochs is depicted in Fig. 2. It can be seen
in Fig. 2 that the epochs decreased with increasing the
number of hidden neurons. According to Fig. 2, when
the number of hidden neurons was 7, the average
absolute relative deviations for the membrane perme-
ate flux got the minimum. So, the number of hidden
neurons of the BP-ANN model in dead-end microfil-
tration with the activated sludge suspension was 7.

4.2. Comparison of different training function

Table 3 shows the result of comparison of different
training functions (Traingda, Traingdx and Trainlm).

Fig. 2. Average absolute relative error/epoch as function
of number of hidden neurons.

K. Gao et al. / Desalination and Water Treatment 57 (2016) 16810–16821 16813



The sequence of average absolute relative error
was Traingda (7.31%) > Trainlm (5.26%) > Traingdx
(2.62%), which clearly demonstrated that the predicted
error using the function of Traingdx was the smallest.
Consequently, the Traingdx was chosen as the training
function in the further study.

4.3. Comparison of different learning rate

Although the slow learning rate can avoid the
problem of local minimum in training the model, it
can lead to slow the convergence rate and prolong
learning time. Moreover, the high learning rate can
induce the instability of the system [17]. Therefore, in
order to ensure the convergence rate and learning
time, the optimal learning rate should be determined.
The influence of learning rate on performance of BP-
ANN network is presented in Table 4. It is clearly
observed that the predicted error was the smallest
(2.62%) when the learning rate was 0.08. In addition,
the predicted error was 6.89, 5.11, 4.64%, respectively,
when the learning rate was 0.02, 0.05, and 0.1.

5. Structure of the SVM and BP-ANN Model

The prediction structure of SVM and BP-ANN
models, which used for modeling the membrane
permeate flux of activated sludge suspensions from
SBR, is presented in Fig. 3.

In this paper, the optimal structure of SVM model
was determined by adjusting the programmer and
LIBSVM tool loaded into MATLAB (R2010b). The
operating conditions, such as MLSS, temperature (T),
DO, HRT, TMP, and operating time (t), were set as

input variables, and the membrane permeate flux was
set as output variables. Meantime, the optimized
structure of a three-layer BP-ANN with the Traingdx
was set as the training function, with the correspond-
ing number of hidden neurons was 7 and the learning
rate was 0.08. In further study, the prediction perfor-
mances of the structure optimized by SVM and BP-
ANN models were studied.

6. Results and discussion

6.1. The prediction by SVM and BP-ANN

6.1.1. First group

In this paper, the experiments were divided into
three groups with different experimental samples. In
this group, a total of 810 sets of experimental data
were used, including 510 sets as training samples, 300
sets as predicted sample. The inputs are the operating
condition (MLSS, temperature (T), DO, HRT, TMP,
and operating time (t)) and the outputs are the mem-
brane permeate flux.

Fig. 4 presents the comparison of the predicted
values of SVM/BP-ANN model and experimental
data for the membrane permeate flux, one group
includes 60 predicted points (point stands for the
experimental/filtration time to measure the membrane

Table 3
The influence of training function on performance of BP-ANN network

Training function Epoch Average absolute relative error (%)

Traingda 4,735 7.31
Traingdx 3,986 2.62
Trainlm 1,503 5.26

Table 4
The influence of learning rate on performance of BP-ANN
network

Learning rate Epoch Average absolute relative error (%)

0.02 7,784 6.89
0.05 6,031 5.11
0.08 3,986 2.62
0.1 3,692 4.64

Fig. 3. Predictive structure of the SVM or the BP-ANN
used for modeling the membrane permeate flux of
activated sludge suspensions from SBR.
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flux during the filtration process) (Operating condi-
tions: T = 15˚C, MLSS = 2,600 mg/L, DO = 7.0 mg/L,
HRT = 16 h, TMP = 0.06 MPa or 0.09 MPa). As seen in
Fig. 4(a), the membrane permeate flux at high TMP
(0.09 MPa) was clearly higher than that at low TMP
(0.06 MPa), as well as the flux decay. The reason for
this observation is that with the higher TMPs, the
accumulation of molecules near the membrane surface
was faster and at higher permeate flux TMP decreased
quickly [59]. It is apparent from Fig. 4 that the values
of the membrane permeate flux predicted by SVM/
BP-ANN model are close to the experimental data,
indicating that the SVM/BP-ANN yield a suitable fit
at different operating conditions.

Table 5 and Fig. 5 show the relative error between
experimental data and predicted values of SVM/BP-
ANN model, respectively. All the errors for SVM
model were distributed between 7.2 and −6.0%, and
that for BP-ANN model were distributed between 5.5
and −5.5%. Simultaneously, the average values of the
error of 300 experimental points for SVM and
BP-ANN model were 3.43 and 2.62%, respectively.
These results meant that the agreement between the
experimental data and the predicted data of SVM/
BP-ANN model was excellent. Furthermore, Fig. 5 and
Table 5 also demonstrated that the prediction accuracy
of BP-ANN model was slightly higher than that of
SVM model when the large-capacity training set was
encountered (810 sets of experimental data).

6.1.2. Second group

In this group, a total of 450 sets of experimental
data were used, including 300 sets as training
samples, 150 sets as predicted samples.

The comparison between experimental data of the
membrane permeate flux and the predicted values by
the SVM or ANN model with 30 predicted points is
present in Fig. 6. As the number of predicted samples
reduced to half in contrast with that of the first group
(60 predicted points in Section 6.1.1), the predictions
of SVM model also can maintain a high accuracy
for the experimental data at different operating
conditions (Fig. 6(a)) (Operating conditions: T = 18˚C,
MLSS = 6,000 mg/L, DO = 7.5 mg/L, HRT = 22 h,
TMP = 0.13 MPa). It is also observed from Fig. 6(b)
that the BP-ANN model agreed well with the

Fig. 4. The comparisons of experimental data for the mem-
brane permeate flux and the predicted values of SVM
model (a) and BP-ANN model. (b) Operating conditions:
T = 15˚C, MLSS = 2,600 mg/L, DO = 7.0 mg/L, HRT = 16 h,
TMP = 0.06 MPa or 0.09 MPa.

Fig. 5. The relative error between experimental data and
predicted values of BP-ANN model.
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experimental data. Comparing with the result for the
first group in Section 6.1.1 (Fig. 4(b)), the prediction
performance of the BP-ANN model for the second
group is not as satisfying as it is. This observation
may be explained that a large number of weight fac-
tors are typically required for ANN model [53].

Table 6 and Fig. 7 illustrate the relative error
between experimental data and predicted values of
SVM model and BP-ANN model, respectively. It can
be seen from Table 6, all the errors between experi-
mental data and predicted values for SVM model
were distributed between 7.4 and −6.8%, in contrast,
those for BP-ANN model were distributed between

±18% as shown in Fig. 7. Moreover, the average val-
ues of the error of 150 experimental points of SVM
and BP-ANN model were 3.68 and 6.32%, respec-
tively. Table 6 and Fig. 7 also confirmed that the pre-
dicted values of SVM and BP-ANN model were in
good agreement with the experimental data for simu-
lating the membrane permeates flux of activated
sludge suspensions from SBR at the complex operat-
ing conditions. Additionally, the value of the relative
error between experimental data and predicted values
of BP-ANN model was higher than that of SVM
model. It is also obviously observed from Fig. 6 that
several big relative errors were emerged at a very
small part of points using BP-ANN model. These
observations implied that the SVM model yielded a
much better fit than BP-ANN model as the number of
training samples decreased.

6.1.3. Third group

In this group, a total of 225 sets of experimental
data were used, including 150 sets as training sam-
ples, 75 sets as predicted samples.

The comparison between the predicted values of
SVM/BP-ANN model and experimental data for this
group (there are 15 predicted points) is depicted in
Fig. 8. It can be seen from Fig. 8 that the predicted
permeate flux of SVM/BP-ANN model basically main-
tained a higher accuracy for the experimental data at
different operating conditions (Operating conditions:
T = 20˚C, MLSS = 1,800 mg/L, DO = 5.2 mg/L,
HRT = 20 h, TMP = 0.09 MPa), although the number of
predicted samples reduced by almost a half with the
second group (30 predicted samples in Section 6.1.2).

Fig. 6. The comparisons of experimental data for the mem-
brane permeate flux and the predicted values of SVM
model (a) and BP-ANN model (b). Operating conditions:
T = 18˚C, MLSS = 6,000 mg/L, DO = 7.5 mg/L, HRT = 22 h,
TMP = 0.13 MPa.

Fig. 7. The relative error between experimental data and
predicted values of BP-ANN model.
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As presented in Table 7, all the relative errors
between experimental data and predicted values by
SVM model were distributed between ±8%, and the

average error of 75 experimental points was 3.63%.
According to Fig. 8 and Table 7, the phenomenon that
SVM model has excellent prediction ability can be

Table 5
The prediction accuracy of SVM model of the first group

Operating conditions
Max. relative
error (%)

Min. relative
error (%)

The mean relative error of 300
experimental points (%)

T = 15˚C, MLSS = 2,600 mg/L,
DO =7.0 mg/L, HRT = 16 h

7.0 −6.0 3.43

T = 18˚C, MLSS = 6,000 mg/L,
DO = 7.5 mg/L, HRT = 22 h

6.7 −5.3

T = 20˚C, MLSS = 1,800 mg/L,
DO = 5.2 mg/L,HRT = 20 h

7.2 −5.0

T = 24˚C, MLSS = 3,000 mg/L,
DO = 6.0 mg/L,HRT = 25 h

6.2 −4.0

T = 28˚C, MLSS = 4,500 mg/L,
DO = 4.6 mg/L,HRT = 17 h

7.0 −5.2

Table 6
The prediction accuracy of SVM model of the second group

Experimental Conditions
Max. relative
error (%)

Min. relative
error (%)

The mean relative error of 150
experimental points (%)

T = 15˚C, MLSS = 2,600 mg/L, DO = 7.0 mg/L,
HRT = 16 h, TMP = 0.09 MPa

7.4 −6.8 3.68

T = 18˚C, MLSS = 6,000 mg/L, DO = 7.5 mg/L,
HRT = 22 h, TMP = 0.13 MPa

5.4 −5.6

T = 20˚C, MLSS = 1,800 mg/L, DO = 5.2 mg/L,
HRT = 20 h, TMP = 0.09 MPa

6.4 −6.8

T = 24˚C, MLSS = 3,000 mg/L,DO = 6.0 mg/L,
HRT = 25 h, TMP = 0.08 MPa

6.2 −5.8

T = 28˚C, MLSS = 4,500 mg/L,DO = 4.6 mg/L,
HRT = 17 h, TMP = 0.09 MPa

6.4 −6.2

Table 7
The prediction accuracy of SVM model of the third group

Experimental Conditions
Max. relative
error (%)

Min. relative
error (%)

The mean relative error of 75
experimental points (%)

T = 15˚C, MLSS = 2,600 mg/L, DO = 7.0 mg/L,
HRT = 16 h, TMP = 0.09 MPa

3.0 −3.6 3.63

T = 18˚C, MLSS = 6,000 mg/L, DO = 7.5 mg/L,
HRT = 22 h, TMP = 0.13 MPa

8.0 −5.0

T = 20˚C, MLSS = 1,800 mg/L, DO = 5.2 mg/L,
HRT = 20 h, TMP = 0.09 MPa

4.8 −6.8

T = 24˚C, MLSS = 3,000 mg/L, DO = 6.0 mg/L,
HRT = 25 h, TMP = 0.08 MPa

8.0 −4.8

T = 28˚C, MLSS = 4,500 mg/L, DO = 4.6 mg/L,
HRT = 17 h, TMP = 0.09 MPa

2.5 −3.4
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discovered. Furthermore, the relative error between
experimental data and predicted values for BP-ANN
model is presented in Fig. 9. It is clearly seen that all
the errors lie in the range −6 to 5%, and the average
error of all 75 experimental points was 9.93% as illus-
trated in Fig. 9. Compared with the relative errors
summarized in Table 7, Fig. 9 illustrates that the pre-
diction performance of BP-ANN model is not ideal
with the big error between experimental data and the
predicted values, reflecting that the BP-ANN model
cannot get good prediction results in this case. There-
fore, these observations further validated that SVM
model was more suitable than BP-ANN model in the
small size of the training set (small training sample or
restricted data-sets). This can be explained by the fact

that (i) the SVM method has a rigorous theoretical and
mathematical foundation as well as good generaliza-
tion ability, which is based on statistical theory, while
ANN depends on the designer’s experience and knowl-
edge; (ii) ANN methods need a large size of training
set (samples) to achieve the desired prediction accu-
racy, while the SVM method can get excellent accuracy
only with a small size of training set (samples).

6.2. The average relative errors

Summarizing the above analysis, the average rela-
tive errors between the experimental data and pre-
dicted values for SVM and BP-ANN model to predict
the membrane permeate flux of activated sludge sus-
pensions from SBR in the case of similar sample sizes
are illustrated in Fig. 10. It is clearly found in Fig. 10
that the predictions of SVM and BP-ANN models aim-
ing at the large-capacity training set (810 groups and
300 predicted samples in Section 6.1.1) can obtain high
accuracy, which indicate that the predictions of these
models are satisfactory. And in this case, the average
relative error of SVM model (3.43%) was slightly
bigger than that of BP-ANN model (2.62%). Aiming at
the medium capacity (450 groups and 150 predicted
samples in Section 6.1.2) training set, these models
also fitted well with the experimental data. However,
a small portion of big relative errors for BP-ANN
model appeared as depicted in Fig. 6(b). Moreover,
the relative error of BP-ANN model was larger than
that of SVM model with regard to small volume
training set (225 groups and 75 predicted samples
in Section 6.1.3) implying that the prediction

Fig. 8. The comparisons of experimental data for the mem-
brane permeate flux and the predicted values of SVM
model (a) and BP-ANN model (b). Operating conditions:
T = 20˚C, MLSS = 1,800 mg/L, DO = 5.2 mg/L, HRT = 20 h,
TMP = 0.09 MPa.

Fig. 9. The relative error between experimental data and
predicted values of BP-ANN model.
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performance of BP-ANN model was not ideal. Obvi-
ously, the values of relative errors for BP-ANN model
increased as the number of sample set decreased. The
variation trend of relative errors for SVM model chan-
ged inversely in comparison with that of BP-ANN
model. Furthermore, all average relative errors of
SVM model were below 4%, implying the good per-
formance of SVM model. At the meantime, the aver-
age relative errors were significantly lower than that
of BP-ANN model with regard to the medium- and
small-capacity training set. Thus, the conclusion can
be obtained that the predictions of SVM model are in
good agreement with the experimental data and the
prediction average relative error is stabilized in a les-
ser extent. The results were in consistent with other
studies [60].

7. Conclusion

In this paper, the membrane permeates flux of acti-
vated sludge suspensions from SBR was predicted by
SVM models with the optimized network structure.
During the prediction process, the operating conditions,
such as MLSS, temperature (T), DO, HRT, TMP, and
operating time (t), were set as input node, and the mem-
brane permeate flux of activated sludge suspensions
from SBR was set as output node. The training set
(sample) were divided into different groups (810
groups, 450 groups and 225 groups), respectively. Then,
the predicted values of SVM or BP-ANN models were
compared with the experimental data, respectively.

The results showed that the predicted values of
SVM or BP-ANN model are essentially in agreement

with the experimental data at different operating
condition with different experimental sizes. SVM
model is based on statistical theory and it has a rigor-
ous theoretical and mathematical foundation, while
BP-ANN model needs to rely on the designer’s experi-
ence and knowledge. When the sample size is large,
the relative errors between the experimental data and
predicted values for SVM and BP-ANN models are
relatively small, reflecting the high prediction accu-
racy. When the sample size is small, the prediction of
SVM model still shows a better accuracy in compar-
ison with BP-ANN model. In the meantime, the pre-
dicted average relative error of SVM model is
stabilized in a lesser extent than that of BP-ANN
model. So, BP-ANN model needs a large number of
experimental data to achieve desired prediction
accuracy, while the SVM model can get the higher
accuracy only with the small size of the training set.
In another word, SVM model is superior to BP-ANN
model for modeling the limited number of training set
so as to avoid the requirement of large numbers of
training samples.
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