
Comparison of prediction performances between Box–Jenkins and Kalman
filter models––Case of annual and monthly sreamflows in Algeria

Khadidja Boukharoubaa,*, Ahmed Kettabb

aSESNV Faculty, Department of Biology, University of Biskra, Biskra, Algeria, email: b_malikadz@yahoo.com
bResearch Laboratory of Water Sciences-LRS-EAU, National Polytechnic School, Algiers, 10 Av. Hacène-badi BP182, El-Harrach
16200, Algeria, email: kettab@yahoo.fr

Received 17 March 2015; Accepted 12 October 2015

ABSTRACT

The present study aims to investigate and to compare Box–Jenkins (BJ) and Kalman filter
(KF) models to predict stream flows in northern Algeria. For this purpose, annual and
monthly data of 10 hydrometric stations have been considered for application. The results
with BJ models led to five Autoregressive and integrated moving average (ARIMA) models
for the annual streamflows, with an overall mean explained variance at 63% level, whereas
for the monthly flows they led to 10 Seasonal Autoregressive and integrated moving
average (SARIMA) models, with an overall mean explained variance around 75%. On the
other hand, KF methodology led to two on-line operations, where multisite optimal annual
and monthly predictions are obtained. The KF and BJ predictive performances are then
compared via some statistical parameters of their prediction error. For both of annual and
monthly scales, it is found that KF model performs better in predictions. For example, the
mean prediction error for KF is 16 times smaller than the BJ models, the corresponding
standard deviation, minimum and maximum values are respectively, 5, 6, and 3 times smal-
ler than the BJ alternatives. This denotes the superiority of KF for the prediction of stream
flows in northern Algeria. In addition, an eventual tendency of KF to the underestimation
has also been noticed from the prediction error standard deviation illustration.

Keywords: Stream flows; ARIMA; SARIMA; Kalman filter; Prediction error

1. Introduction

In a semiarid country such as Algeria, water is an
element of survival that strongly influences any social
or economic development. Unfortunately, water
resources are facing big challenges due to precipita-
tion deficit and scarcity, as well as their geographical

variability. It is important to notice that among the
100 billioncubic meters received in the form of precipi-
tation per year, on the northern part of Algeria, only
4.8 billion are captured in operational dams [1]. Of
course, this statistic is given without the different
types of losses that make this quantity lesser, which is
to cope with the increasing demand of water for
agricultural, industrial, and domestic uses. According
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to Haddad and Rahla [2], water demand reached 5
billion cubic meters per year with a supply of
170m3/capita/d, whereas a minimum standard of
250m3/capita/d is already considered as a deficit. This
problematic becomes bigger from year to year, and
hence, needs some urgent and efficient solution in
order to overcome the demand deficit and insure a
regular supply with water to all water utilizations.

The new policy of Algeria focuses on integrated
management of water resources [3], and therefore, two
types of actions are to be considered; the first one is
the optimal management, while the second deals with
the water resources economy. In its Initial National
Communication, Algeria has already projected a pro-
gram of actions to deal with climate changes. In terms
of water, this program integrates watershed manage-
ment among other points. In addition, the program of
investment and water development occupies an
important place in the program (2010–2014) of the
Algerian government [4]; it will be positively com-
pleted by any scientific research or technological
development, which will certainly have a positive
impact on water resources.

The present study is a modest contribution to the
success of this new water policy. Through it, we would
like to give some helpful tools for the planners. One of
the advantages of the proposed tools is that the
stochastic nature of the hydrological variable is taken
into account, as well as its temporal and spatial varia-
tion, which is a big difficulty to overcome. The great
advantage is that one of the tools provides accurately
with the prediction error covariance and can deal with
changes in the model parameters and variances.

The objective of this study is to investigate both of
Box–Jenkins (BJ) and Kalman filter (KF) models for
monthly and annual stream flow predictions. Through
the comparison of the corresponding prediction errors,
it is possible to determine which one is better for fur-
ther predictions in the study area. In the literature,
such applied research is rather rare, particularly, for
Algerian data. However, Harrison and Stevens [5]
showed that many forecasting methods are special
cases of KF. Ahcen and O’Connor [6] argued that the
minimum mean-square error forecasts are identical for
KF and BJ when the flow forecasting model is
assumed to be autoregressive moving average model
and the corresponding flow data are free of measure-
ment errors. However, in the presence of measure-
ment errors in the river flow time series, the use of
the KF technique assumes relevance.

For this purpose, the data of 10 rivers recorded at
10 flow gauge stations, in northern Algeria, have been
considered for the application of the methodologies
used in this paper. Here, we are focusing particularly

upon streamflows, because they are directly linked to
any social, economic, or environmental developments,
but the idea still remains applicable for any other
hydrological variable.

2. Theoretical backround

Two different types of stochastic models have been
investigated in the present study. The first one deals
with Box–Jenkins (BJ) procedure, a classic method that
is based on the serial dependence structure of data,
working under the restrictive assumptions of stationar-
ity and normality. The second one is concerned with
the KF, which is based on the least squares concept and
well known by its optimality provided that the assump-
tions of linearity and white Gaussian noise are valid.

2.1. Box–Jenkins models

Any time series, Yt, can be considered as the out-
put of a linear system, where input εt is a white Gaus-
sian noise, such as:

Yt ¼ l þ w Bð Þet (1)

Here, μ is the mean of Yt, B is the back shift operator
such as Bkεt = εt−k, for k = 1, 2 … and w Bð Þ is the transfer
function, which links the input, εt, to the linear system
output, Yt, such as w Bð Þ ¼ 1 þ w1B þ w2B

2 þ w3B
3 � � �.

A particularly interesting class of these models is
the autoregressive (AR) one. In such a model, every
value Yt is the weighted and finite sum of previous
values plus a random term, et. The model is then des-
ignated by AR (p), p being the corresponding order.
Hence, for a zero mean, it is expressed as follows:

/ Bð ÞYt ¼ et (2)

where / Bð Þ ¼ 1� /1B� /2B
2 � . . .� /pB

p, is the AR
(p) operator, which is a p order polynomial in B,
which converges for /ij j\1 in order to insure the
stationary condition

Another interesting model is the moving average
(MA) approach, in which each value is the sum of
q + 1 previous values of a white noise as:

Yt ¼ h Bð Þet (3)

Herein, h Bð Þ ¼ 1� h1B� h2B2 � . . .� hpBp, is the MA
(q) operator, which is a q order polynomial in B, and
itconverges for hij j\1 in order to insure for
invertibility condition insurance.
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The combination of AR (p) et MA (q) models is a
another type of model, which is a linear mixed pro-
cess called auto regressive and moving average of
order p and q, ARMA (p, q) and it is expressed as
follows.

/ Bð ÞYt ¼ h Bð Þet (4)

In this case, when the input et is a white Gaussian
noise, Yt, can be considered as the output of a linear
filter whose transfer function is the ration of two
polynomials, namely, h Bð Þ and / Bð Þ:

Yt ¼ hðBÞ
/ Bð Þt

et (5)

This type of modeling assumes data to be stationary,
but this is not the case in most of hydrological time
series. For instance, a time increase in the variance,
average level or variance instability is frequently
observed denoting a linear trend or seasonal varia-
tions in the considered time series. In this case, it is
always possible to make them stationary via some
mathematical transformations. Hence, ARMA model
becomes ARIMA, and accordingly, seasonal ARIMA is
denoted as SARIMA model.

More details on the method can be found in the
classic references [7–10] or in the more recent ones
[11–13] among others, whereas practical applications
can be found in [14–16]. Regarding the BJ models
parameters estimation, the maximum likelihood
method has been adopted.

2.2. Kalman filter

The Kalman filter (KF) is considered to be one of
the most well-known and often-used significant math-
ematical tools that can be used for stochastic estima-
tion from noisy measurements [17]. It is as an optimal
recursive data-processing algorithm, which is consti-
tuted essentially by a set of five mathematical equa-
tions that implement a predictor–corrector-type
estimator that is optimal in the sense that it minimizes
the estimated error covariance, when some presumed
conditions are met. Those equations are recursive and
present the main advantage to provide the prediction
error accurately:

X̂k=k ¼ X̂k=k�1 þ Kk Zk �Hk X̂k=k�1

� �
(6)

Kk ¼ Pk=k�1 H
T
k ðHk Pk=k�1 H

T
k þ RkÞ�1 (7)

Pk=k ¼ I� Kk Hkð ÞPk=k�1 (8)

X̂kþ1=k ¼ /kþ1=k X̂k=k (9)

Pkþ1=k ¼ /kþ1=k Pk=k /
T
kþ1=k þ Qk (10)

In addition, KF can be initiated with minimum avail-
able objective information, and it is adaptable as soon
as a new observation arrives. It has been the subject of
extensive research and application, in many areas
[17–22] among others. This is not only due to the great
developments in digital computing that made practical
use of the filter, but also to the simplicity and the
robustness of the filter itself.

3. Obtained results and discussion

The data considered in the present study are the
annual and monthly streamflow time series recorded
by the National Agency for Hydraulic Resources
(ANRH) in Algeria. They are observed during
different periods of time with a common period of
25 years (1968–1992) that is utilized for testing. Those
data belong to mainly two subareas, namely the
eastern part with four hydrometric stations that is
characterized by the abundance of precipitation and
the western part wherefive hydrometric stations are
characterized by the scarcityof precipitation amounts.
Fig. 1 provides the spatial repartition of the
considered stations.

3.1. Annual scale modeling

3.1.1. Box–Jenkins (BJ) method

In order to apply the BJ approach, it is necessary
to divide the data into training and testing parts.
Herein, last 25 years were left for validation, whereas
all other values were utilized for training.

As mentioned before, BJ method works principally
on the serial dependence structure of time series
under the assumption that they are stationary.
Therefore, the results of the annual streamflow model-
ing led to five ARIMA models, for the stations situ-
ated in the western and central parts of northern
Algeria (see Fig. 1), while for the Eastern part, Ain-
berda, Bouchegouf, Cheffia, Mirebeck, time series did
not present any autocorrelation structure. For each
one of the time series, five other models were adjusted
and estimated, and the best fit is retained based on
some statistical criteria.
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The goodness-of-fit statistics are the mean square
error (MSE) and the determination coefficient (R2) of
the streamflow values, during training as well as vali-
dation periods, as presented in Table 1. The MSE
statistic is a measure of the residual variance and it is
indicative of the model’s ability to perform predictions.
The R2 is a measure of the variance that is explained
by the concerned model. Hence, the best-fit model is
the one with the lowest MSE and the highest R2 values
for both training and testing. For the retained ARIMA
models, the MSE and R2 statistics, for both estimation
and validation periods, confirm the ability of those
models to predict annual streamflows.

From another point of view, the obtained models
confirm the predominance of the random character of

the concerned data in the eastern part, relatively to the
western side. This random character is prevalent even
for the dependent data in the western part because, five
models together explain an average of 63.07% only from
the total variance. The random character is then around
36.93% for the annual streamflows at the study area. The
models parameters estimation is provided by Table 2.

Fig. 2 illustrates only one example of the application
of BJ method to the modeling of annual streamflow
time series. It provides the observed and estimated
annual values at Ksob from 1968 to 1992. The obtained
predictions follow roughly the observed values, and
the corresponding errors are relatively important. This
is obtained with the best-fit model (among 5 others),
which explains about 62.5% of the total variance.

Fig. 1. Location of the concerned hydrometric stations in northern Algeria.
Source: K. Boukharouba, A. Kettab, Kalman filter technique for multi-site modeling and stream flow prediction in
Algeria, J. Food Agric. Environ. 7(2) (2009) 671–677. WFL Publisher Helsinki, Finland.

Table 1
BJ modeling of annual stream flows

No. Station Model MSE (training) MSE (testing) R2 (training) R2 (testing)

1 Ainberda – – – – –
2 Bénibahdel ARIMA (0, 1, 2) 901.67 809.39 30.89 37.90
3 Bouchegouf – – – – –
4 Bouhnifia ARIMA (1, 0, 3) 1,416.25 1,011.66 65.02 75.01
5 Cheffia – – – –
6 Ksob ARIMA (2, 0, 0) 207.72 191.00 59.23 62.5
7 Mefrouche ARIMA (2, 0, 3) 28.74 23.41 65.97 72.28
8 Mirebeck – – – – –
9 Pierre du chat – – – – –
10 Remchi ARIMA (1, 0, 3) 5.81 4.98 62.32 67.70

Average 63.07
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3.1.2. Kalman filter (KF) method

For the same 10 hydrometric stations, KF has been
applied to generate multisite annual predictions with
a common observation period of 25 years (1968–1992).
An example of this application is illustrated in Fig. 3
for Ksob during the above mentioned 25 years period.

It is to be noticed from this figure that the observed
and predicted values follow each other closely, and
this is indicative of the KF efficiency for the modeling
of annual streamflow values. Prediction error is
unavoidably greater at the beginning, where more
confidence is paid to records than to the model with a

Table 2
Annual streamflows BJ modeling parameters

Annual model

Parameters

AR (1) AR (2) AR (3) MA (1) MA (2) MA (3) Constant
Residuals
variance

ARIMA (0, 1, 2) – – – 0.4666 0.4724 – – –
ARIMA (1, 0, 3) −0.7834 – – −1.1216 −0.8191 −0.6753 268.41 3,031.81
ARIMA (2, 0, 0) −0.0224 0.6569 – – – – 13.22 487.31
ARIMA (2, 0, 3) 0.5167 −0.5861 – 0.5101 −0.3171 −0.5441 17.22 71.67
ARIMA (1, 0, 3) 0.4918 – – 0.2457 0.1614 −0.4760 5.38 10.91
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Fig. 2. Box–Jenkins annual predictions at KSOB station (1968–1992).
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Fig. 3. Kalman filter annual predictions and prediction errors at Ksob hydrometric station for 25 years period
(1968–1992).
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big Kalman gain, but after some iterations the model
becomes more confident than observation with a lesser
Kalman gain and predictions are definitively better.

The major objective of this paper is to answer the
question, which is better for the prediction of stream-
flow values in the area of study, KF or BJ model? For
this purpose, a comparison between the two models is
accomplished via some statistics of the prediction
error, so as the mean, standard deviation, and the
extreme values, as provided in Table 3.

According to those results, it is obvious that KF
prediction errors statistic values are lesser (in absolute
value) than the BJ ones. Fig. 4 is a graphical represen-
tation of such comparison in terms of mean only,
whereas the same thing can be done for the remaining
statistics. This means that the difference between the
observed streamflow values and their predictions are
smaller by KF than by BJ model. Hence, it can be
argued that regarding the annual streamflow
prediction, KF performs better.

3.2. Monthly scale modeling

3.2.1. Box–Jenkins (BJ) method

BJ modeling procedure of monthly streamflows
observed at the concerned hydrometric stations led to
the determination of ten stochastic seasonal models.
Every one of which has been identified and estimated
together with 5 others, and hence, the most suitable
one has been selected based on the residual variance.
The lesser is the residual variance, the better is the
model. It is to be noticed that all monthly time series
needed some transformations to be stationary, but the
average explained variance of the whole models is
around 73.37% (Table 4). This value shows that the
seasonal effect has increased the correlated structure

Table 3
Comparison of prediction error between KF and BJ models (1968–1992)

Statistic
Bénibahdel Bouhnifia Ksob Mefrouch Remchi

FK BJ FK BJ FK BJ FK BJ FK BJ

Mean −1.55 −21.52 −3.65 −44.87 −0.55 −5.00 0.13 −5.55 0.65 −30.27
Std 5.10 19.08 10.65 47.57 4.98 18.91 1.92 7.80 6.01 41.96
Min −11.46 −53.81 −21.19 −101.08 −10.24 −59.27 −2.78 −18.87 −8.43 −88.28
Max 6.35 10.03 13.56 38.76 13.85 35.01 5.34 8.97 14.63 66.65

-45-40-35-30-25-20-15-10-505

Béni Bahdel

Bouhnifia

Ksob

Mefrouche

Remchi

Mean prediction error (Hm3)

Kalman filter
 Box-Jenkins

Fig. 4. Mean prediction error for the KF and BJ models.

Table 4
BJ models obtained for monthly scale

No. Station Model MSE (training) MSE (testing) R2 (%) (training) R2 (%) (testing)

1 Ainberda SARIMA (1, 0, 0) × (0, 1, 1)1 04.74 02.79 52.6 72.1
2 Bénibahdel SARIMA (1, 1, 1) × (2, 1, 1)1 47.34 15.85 54.36 84.71
3 Bouchegouf SARIMA (1, 0, 0) × (0, 1, 1)1 177.65 103.25 47.74 53.4
4 Bouhnifia SARIMA (1, 1, 1) × (0, 1, 1)1 155.90 64.03 64.84 85.56
5 Cheffia SARIMA (1, 1, 1) × (0, 1, 1)1 301.22 246.25 64.55 71.02
6 Ksob SARIMA (0, 0, 3) × (0, 1, 1)1 13.01 12.98 55.65 55.76
7 Mefrouch SARIMA (1, 0, 0) × (0, 1, 1)1 03.59 1.18 29.05 76.67
8 Mirebeck SARIMA (2, 0, 0) × (0, 1, 1)1 2,428.46 1,240.27 49.43 74.17
9 Pierre du chat SARIMA (1, 0, 0) × (1, 1, 1)1 215.17 200.86 69.65 71.66
10 Remchi SARIMA (0, 0, 1) × (0, 1, 1)1 99.07 39.60 71.85 88.74

Average 73.37
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of the data. Consequently, their random character has
been relatively decreased to reach the value of 26.63%
instead of 36.93% for the annual scale. The models
parameters have been estimated by the maximum
likelihood method and are given in Table 5.

An example of the predictions is illustrated in
Fig. 5 for Pierre du Chat from October 1968 to August
1992. It is obvious from this figure that predictions fol-
low observations in their whole pattern, but the peak-
values are not reproduced by the model. This
behavior has been noticed for the remaining models

too and may denote an underlying tendency of the BJ
models to underestimation.

3.2.2. Kalman filter (KF) method

KF predictions are obtained via a multisite opera-
tor, where predictions in the considered hydrometric
stations are obtained simultaneously (Fig. 6). It shows
both observations and predictions by the KF for the
monthly streamflows at Pierre du Chat station during
the period of September 1968 to August 1992. It is

Table 5
Monthly streamflows BJ modeling parameters

Monthly model

Parameters

AR (1) AR (2) AR (3) MA (1) MA (2) MA (3)
Constante Residuals varianceSAR (1) SAR (2) SAR (3) SMA (1) SMA (2) SMA (3)

SARIMA (1, 0, 0) (0, 1, 1)12 0.2810 – – – – – – 4.87
– – – 0.9563

SARIMA (1, 1, 1) (2, 1, 1)12 0.2399 – – 0.9702 – – – 47.74
0.2057 0.0731 – 0.9658

SARIMA (1, 0, 0) (0, 1, 1)12 0.2844 – – – – – – 192.07
– – – 0.9511

SARIMA (1, 1, 1) (0, 1, 1)12 0.1350 – – 0.9599 – – – 154.76
– – – 0.9688

SARIMA (1, 1, 1) (0, 1, 1)12 0.1092 – – 0.9211 – – – 306.04
– – – 0.8960

SARIMA (0, 0, 3) (0, 1, 1)12 – – – −0.2688 −0.2102 −0.3041 −0.21 13.55
– – – 0.9623

SARIMA (1, 0, 0) (0, 1, 1)12 0.1786 – – – – – 3.78
– – – 0.9617

SARIMA (2, 0, 0) (0, 1, 1)12 0.2695 0.1818 – – – – −0.67 2410.76
– – – 0.9677

SARIMA (1, 0, 0) (1, 1, 1)12 0.2971 – – – – – 617.70
0.2218 – – 0.9574

SARIMA (0, 0, 1) (0, 1, 1)12 – – – −0.1144 – – −0.17 315.80
– – – 0.9668

Note: Bold values indicate seasonal parameters.
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Fig. 5. Box–Jenkins monthly predictions at PIERRE DU CHAT (October 1968–August 1992).
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obvious that predictions follow the corresponding
observations very closely. The predictions are
unavoidably bad at the beginning of calculations
because more attention is accorded to the observa-
tions, but just after some iteration, more confidence is

accorded to the model, hence the errors become lesser
and predictions are better.

For each one of the concerned stations, Table 6
gives the comparison between KF and BJ monthly
prediction error via the mean, standard deviation,
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Fig. 6. Kalman filter monthly predictions and corresponding prediction error at PIERRE DU CHAT station (October
1968–August 1992).

Table 6
Comparison of monthly prediction errors between KF and BJ models (1968–1992)

Statistic

Ainberda Bénibahdel Bouchegouf Bouhnifia Cheffia

FK BJ FK BJ FK BJ FK BJ FK BJ

Mean −1.22 0.04 −0.53 0.30 −0.62 −0.61 −0.78 1.47 −0.98 0.04
Std 1.69 2.13 1.01 5.24 0.81 12.98 1.16 9.99 1.77 16.96
Min −17.01 −3.95 −8.79 −12.57 −8.36 −24.75 −12.48 −18.27 −18.58 −39.28
Max 1.69 16.45 6 27.75 0.32 86.86 0 94.34 1.56 89.95

Ksob Mefrouch Mirebeck Pierre du chat Remchi
Mean −1.69 0.03 −0.23 0.05 −1.90 1.58 −1.43 2.15 −0.51 1.45
Std 2.84 3.64 0.89 1.84 2.91 45.69 1.89 24.36 0.79 17.71
Min −28.2 −6.17 −5.36 −3.58 −26.8 −93.93 −19.68 −55.91 −6.27 −19.42
Max 1.23 21.20 5.85 16.97 0 417.00 1.72 179.88 5.34 161.98
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Fig. 7. Monthly prediction error standard deviation for both of KF and BJ models.
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minimum and the maximum values. The calculated
statistics of the prediction error show that values of all
the considered statistics are significantly different from
KF to BJ models. An average of the indicated statistics
absolute values has been calculated over the 10 hydro-
metric stations, and it is found that the standard devi-
ation, the KF value is 9-fold smaller compared to the
BJ model, the minimum value is twice fold smaller for
KF and the maximum is also 47-fold smaller for KF.
Once again, this is indicative of the superiority of KF
over BJ for the prediction of monthly streamflow val-
ues in the study area. Fig. 7 shows as the standard
deviation and it denotes an eventual tendency of KF
for the underestimation.

4. Summary and conclusion

In this study, the potentials of Box–Jenkins (BJ) and
Kalman-filtering (KF) techniques are investigated for
modeling streamflow hydrological time series prediction
in northern Algeria. The principal objective is to com-
pare their results and to find which one performs better
predictions in the area. BJ technique has been applied
for annual and monthly streamflow time series. For the
annual data, obtained results led to the determination of
five ARIMA models with an overall mean explained
variance of 63%, in addition to the confirmation of the
random character preponderance with 37% amount,
whereas for the monthly streamflows 10 seasonal SAR-
IMA models have been determined with an overall
mean explained variance at around 75%. The random
character is consequently decreased to reach 25%.

On the other hand, KF methodology has been
applied for annual and monthly streamflow multisite
prediction and the result is an on-line operation,
where temporal and spatial optimal predictions are
obtained both for monthly and annual scales. The pre-
diction errors are then compared to those of Box–Jenk-
ins and it is found that KF performs better predictions
for annual stream flows as well as for monthly ones.
The prediction error standard deviation value for KF
is 9 folds smaller than that of BJ models, the minimum
and maximum values are respectively 2 and 47 folds
smaller. This denotes the efficiency and superiority of
KF for prediction of streamflow values in the study
area. An eventual tendency of KF to the underestima-
tion has also been noticed from the prediction error
standard deviation illustration.
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