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ABSTRACT

The method of assessing a smell nuisance of the SBR laboratory bioreactor using a
calibrated gas sensor array (e-nose) is described in the article. The SBR bioreactor is used to
remove organic carbon and nutrients and can contribute to the emission of smell nuisance
compounds. Two measurement devices were used as an information source regarding the
presence of smell nuisance gases: an array consisting of 8 MOS-type gas sensors and a
dynamic olfactometer. The research covered the stage of a normal bioreactor performance
and simulation of the aeration system failure. With the gas sensor array, a static response
has been recorded for air samples above the surface of treated wastewater. The dynamic
olfactometer Ecoma TO-7 was simultaneously used in order to measure odour concentration
with the “yes–no” method, according to EN-13725:2007. Comparative analyses were carried
out with artificial neural networks in the statistical program. The research conducted indi-
cates that normal bioreactor performance is related to a low smell nuisance. However, in
the case of the failure during the activation of the aeration system, there occurs significant
emission of smell nuisance compounds and an increase in odour concentration to 995,606
ouE/m

3. The correlation coefficient R between real odour concentration and the estimated
value using the e-nose system exceeds 0.9, in the range of 1E5–1E6 ouE/m

3. The obtained
results indicate that the gas sensor array can be used for assessment of the smell nuisance
in the vicinity of SBR reactors during their normal performance as well in the case of the
failure.

Keywords: SBR bioreactor; Wastewater treatment; Smell nuisance; E-nose; Dynamic
olfactometer

1. Introduction

Wastewater treatment plants (WWTP) can be
regarded as one of the major nuisance sources of air

pollution [1]. Each process of sewage treatment, espe-
cially associated with anaerobic conditions, emits
smell active compounds. Air pollution sources in
WWTP can generally be assigned to 2 groups: (i)
places with a high flow rate, large surface, e.g.
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retention or mixing tanks and (ii) places where new
odorous components are created. Predominantly, these
include inlets of the raw sewage and the places con-
nected with sludge treatment [2]. Questionnaire sur-
veys conducted in 100 WWTP in Germany among
technical personnel confirmed that the main sources of
air pollution are connected with inlet works, primary
sedimentation tanks and sewage treatment works
[3,4]. The odour concentration at sewage inlets and
mechanical treatment installations amounts to
30–1,000 ou/m3 (odour unit), biological treatment 5–120
ou/m3 and sludge treatment 100–1,000,000 ou/m3 [5].

In some countries, the acceptable level of odour
concentration of annoyance gas sources is regulated
for a specified averaging period. From European coun-
tries, there ought to be mentioned UK 5 ou/m3, the
Netherlands 0.5 ou/m3 (1 h) and Denmark 0.6–1.2 ou/
m3 (1 h) and 5–10 ou/m3 (1 min) [6]. In Poland, there
are still no official regulations concerning odour emis-
sions. For the measurements of odour concentration, a
dynamic olfactometry methodology is used, which is
currently the only technique providing information on
the real nature of odour nuisance perceived by human
organisms. Measurements are performed by sensory
panel members selected according to EN-13725.
Although olfactometric results are loaded with errors
associated with subjectivity of assessors, reliable
results can be obtained by applying due procedures of
sampling and measurements. Accredited laboratories
specialized in assessment of the level of nuisance gas
emission from miscellaneous facilities, e.g. WWTP,
landfills, etc. are currently developing in Poland.
Dynamic olfactometry will be irreplaceable for a long
time, but it has one essential drawback: measurements
cannot be performed continuously, e.g. in the online
mode. Here, techniques calibrated with dynamic
olfactometry should be implemented, for instance,
standard gas detectors, gas chromatography, or e-nose
systems.

Each measurement technique of odour nuisances
has some advantages and disadvantages. Sewage is
the source of many volatile organic compounds, and
any apparatus may be used to perform full assess-
ment, especially of their synergistic influence on odour
concentration [7]. Polluted air usually contains sul-
phur compounds, organic acids, aldehydes and
ketones. The level of concentration of particular com-
pounds such as hydrogen sulphide may be a good
indicator of the air smell nuisance [2]. Research con-
ducted by Qu et al. [8] in the vicinity of swine manure
sources proved that hydrogen sulphide correlates with
odour concentration (R2 = 0.51), but no significant
relationships were found for ammonia. Gostelow and
Parsons [9] analysed relations between odour

concentration cod and the concentration of sulphide
hydrogen cH2S from 17 WWTP and obtained an
equation cod = 38,902·cH2S

0.6371 in the range of
100–1,000,000 ou/m3, with a determination coefficient
R2 = 0.69. Research carried out at the University of
Hertfordshire UK in 10 WWTP revealed no clear
relationships between the concentration of hydrogen
sulphide and TON (Threshold Odour Number) in the
range 125–781,066 ou/m3 [10].

Similarly, the signal from the PID detector
(Photoionization Detector) can be correlated with odour
concentration. Hobbs et al. [7] obtained correlations
R2 = 0.984 and 0.978 for pig and chicken slurry,
respectively, in the range 0–10,000 ou/m3.

Gas chromatography is a professional technique,
which allows for qualitative and quantitative
assessment of polluted air. One of these techniques is
GC–MS–O (Gas Chromatography–Mass Spectrometry–
Olfactometry), which facilitates detection of the most
odorous compounds in the sample, not necessarily
with the highest concentration. It allows for further
assessment of odour concentration on the basis of
chemical analysis. The factor that limits GC is the high
cost of the measuring apparatus and measurements.
Therefore, measurements with an array consisting of
many low selective gas sensors are more popular. The
full-fledged device with a signal processing analysis
and interpretation systems is called an e-nose. The
e-nose has proved to be a useful measuring device in
food industry [11,12], medicine [13,14], environmental
monitoring [15], agriculture and forestry [16,17] and
even in building constructions [18] or car industry
[19].

E-nose has an advantage over olfactometry due to
its repeatability and low cost of measurements.
Besides, the sensors have a better resolution and facili-
tate the measurement of hazardous pollutions. It can
give results in odour concentration ouE/m

3 unit only
after calibration with olfactometry. Uncertainty of
measurements is an inherent feature of such a cali-
brated method, as it is impossible to establish a more
accurate method than the reference technique [20].
Additionally, the device cannot provide any informa-
tion regarding the hedonic tone of the sample [21].

E-nose has been used for continuous monitoring of
sewage. The purpose of these attempts was to detect
accidental pollutants or illegal inflows of hazardous
substances to a sanitation system. Considering the
large amount of polluting compounds, the system
with many low selective gas sensors is suitable to
detect such incidents. The prototype system was
installed in a WWTP in Cranfield University. Continu-
ous monitoring facilitated instantaneous detection and
the initial identification of pollutants that appeared in
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the sewer [22,23]. In another research, classification of
odours according to the place of generation in the
WWTP was successfully accomplished. Additionally,
MOS (metal oxide semiconductor) sensors proved to
be more precise than CP (conducting polymer) sensors
[24].

Classification of odours was conducted by Onkal-
Engin et al. [25] for treatment plants of municipal and
industrial sewage of light industry. A total of 144 sam-
ples for measurements from the inlet works, sedimen-
tation tanks, bioreactors and outflow were collected.
To analyse a neural network with 12 inputs, 2 hidden
layers both with 12 neurons were used. The investiga-
tions revealed a high correlation of odour class
prediction (0.99). For more information see Table 1.

Sensors working in a harsh environment are
exposed to permanent poisoning by chemical com-
pounds, which leads to a long-term and irreversible
signal drift and deterioration of the sensor characteris-
tics. Due to this fact, gas sensor arrays should be
examined with a calibration gas. Research conducted
by Romain and Nicolas [26] on long-term stability of
MOS sensors shows a significant drift of the output
occurring after 7 years of operation. A longer time of
sensor operation can be ensured by shortening the
time of sensor exposition to pollutants. A short time
of sampling (few minutes) alternating with sensor
purging with clean air seems to be a very good
solution.

2. Materials and methods

The SBR (sequence batch reactor) is a suitable facil-
ity for measurements with the gas sensor array—this
also applies to chemical as well as biological reactors
that are used for wastewater treatment. The SBR reac-
tor allows for the reduction of the concentration of
organic compounds and biogenes (especially N, P, S)
during the active phase of treatment comprising mix-
ing and aeration. In aerobic conditions, pollutants are
transformed to CO2, H2O and oxidized inorganic P, S
and N compounds, which is followed by removal of
organic compounds and oxygen bound in nitrates.
Methane is generated in anaerobic conditions by a
specific group of microorganisms. All processes of
treatment are performed in one volume in a proper
sequence and, hence, only one measurement device
can be used for monitoring. In the classical WWTP
working in the flow mode, the measurements should
be conducted in a few places to collect comparable
data.

The SBR reactor used in the experiment was work-
ing as a laboratory-scale device, and treated sewage
with activated sludge in a 12 h operating cycle. The 9

h continuous mixing started from the second hour of
the cycle. Simultaneously with mixing, aeration was
activated for 2.5 h and then periodically in order to
sustain oxygen concentration at the level of approxi-
mately 2 g O2/m

3. The final part of the cycle consisted
of a 2 h sedimentation phase followed by decantation
during which treated wastewater was discharged and
the reactor was loaded with raw sewage.

The laboratory equipment consists of 3 indepen-
dent SBR reactors with a chamber—each with 10 dm3

capacity. Sewage was collected in the primary sedi-
mentation tank of a municipal wastewater treatment
plant (Hajdów) in Lublin, where the daily sewage
flow Qd is approx. 60,000m3/d.

For measurement of smell active compounds, 2
measuring devices were used: a gas sensor array
consisting of 8 MOS type sensors to analyse the smell
profile above the sewage surface and a dynamic
olfactometer for evaluation of odour concentration.
Determined odour concentration is the result obtained
for the mixture of malodorous compounds (odorants),
i.e. odorous substances, irrespective of whether their
odour seems agreeable or not. The results of these two
methods were compared. Measurements were con-
ducted during a typical performance of the SBR reac-
tor. Moreover, the failure introduced intentionally
contributed to an increase in the odorous compound
concentration, which allowed for obtaining a wide
range of odour concentrations.

2.1. E-nose

The gas sensor array consists of 8 gas sensors of
MOS (metal oxide semiconductors) type. These are
resistive sensors with conductance proportional to the
concentration of volatile chemical compounds. The
e-nose was designed for general environmental appli-
cations; therefore, the implemented sensors facilitate
detection of a wide range of gases present in water/
wastewater facilities or food and agricultural industry.
Signals from all sensors form a unique smell profile,
so-called gas fingerprint, which characterizes the ana-
lysed gas. TGS Figaro sensors used were all of the
same type from the 2,600 series. Sensor details are pre-
sented in Table 2. The heater and the sensing elements
of the sensors were continuously powered with
separate 5 VDC low-noise voltage regulators. Sensing
elements together with precise resistors formed a
resistor bridge circuit. Additionally, the temperature
and relative humidity in the sensor chamber were
measured. The gas sampling line contained a desic-
cant-membrane dryer DM-110-24 Perma Pure filled
with granulated silica gel. The sampling flow rate was
adjusted to 200 ml/min.
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The e-nose employed in the measurements had
already been successfully used for measurement of
the concentration of single odorants such as methyl-
amine, dimethylamine, benzaldehyde, methanol, ace-
tic acid [30] and many others. The e-nose was also
used for analysis of malodorous gases collected in

the surrounding of nuisance emission sources such
as piggeries, landfills and municipal rendering plants
[31]. The results show that it is possible to distin-
guish between different types of malodorous gases,
which facilitate application of the measuring device
in WWTPs.

Table 2
Overview of the gas sensors implemented in the e-nose [29]

Sensor type Description Measurement range

TGS2600-B00 Figaro General air contaminants 1–30 ppm (H2)
TGS2602-B00 Figaro General air contaminants (high sensitivity to VOC and odorous gases) 1–30 ppm (EtOH)
TGS2610-C00 Figaro Butane. LP gas 500–10,000 ppm
TGS2610-D00 Figaro Butane. LP gas (carbon filter) 500–10,000 ppm
TGS2611-C00 Figaro Methane. natural gas 500–10,000 ppm
TGS2611-E00 Figaro Methane. natural gas (carbon filter) 500–10,000 ppm
TGS2612-D00 Figaro Methane. propane. iso-butane, solvent vapours 1–25% (LEL)
TGS2620-C00 Figaro Alcohol. solvent vapours 50–5,000 ppm
DS18B20 Maxim-Dallas Temperature sensor −55–125˚C
HIH 4000 Honeywell Humidity sensor 0–100%

Table 1
Assessment of odour nuisance of sewage treatment works and other different environmental pollution sources using
e-nose

Environmental
application

E-nose; sensors; sampling;
measurement

Analysis
method Description Refs.

Wastewater
treatment
plant

Neotronics Scientific Ltd. model D;
12CP (polypyrrole); 600 ml/min,
odour profiles at 1 min

CCA Correlation between TON and e-nose in
the range 125–781,066 ouE/m

3
[10]

Compost
facility

5 × e-nose; 6MOS Supervised
modelling,
DFA

Assessment of odour annoyance in the
vicinity of waste treatment plant using e-
nose compared with meteorological
measurements, correlation of an e-nose
with odour conc. in the range circa
0–4,000 ouE/m

3

[20]

Waste
treatment
plant,
chemical
plant

Airsense PEN2; 10MOS ANN, DFA,
PCA

Correlation of an e-nose with odour
conc. 0–200 ouE/m

3 (R2 = 0.94),
discrimination between different samples
from biofilters

[21]

Wastewater EOS25, EOS28, EOS35; 3 min
meas./12 recovery

PCA Classification of odour sources with high
accuracy R2 = 0.95 (for samples 100–150
ouE/m

3), high correlation (R2> 0.9) of
e-nose response with odour conc. in the
range 20–80 ouE/m

3

[27]

Wastewater Neotronics Scientific Ltd. model D;
12CP (polypyrrole)

Canonical
discriminant
and
correlation

Classification of wastewater, correlation
of e-nose response with BOD

[28]

Note: CP—conducting polymer, MOS—metal oxide semiconductors, QCM—quartz crystal microbalance, CCA—canonical correlation

analysis, DFA—discriminant function analysis, ANN—artificial neural network, PCA—principal component analysis, TON—threshold

odour number, BOD—biological oxygen demand.

1330 Ł. Guz et al. / Desalination and Water Treatment 57 (2016) 1327–1335



2.2. Dynamic olfactometry

The second method of measurements was a
dynamic olfactometry used as a sensorial technique
for assessment of the odour concentration in samples,
according to the EN-13725 regulation: “Air quality-
determination of odour concentration by dynamic
Olfactometry”. A group of selected people assessed
odour concentration on the dynamic olfactometer Eco-
ma Mannebeck model TO-7 employing the “yes–no”
method. The dynamic olfactometer is an instrument
that allows for mixing polluted air samples with
odour-free air at a specified ratio. A diluted sample
flows to multiple sniffing ports of the sensory panel.
Measurement of odour concentration involves a grad-
ual decrease in the sample dilution until the odour is
perceived by 50% of assessors (perception threshold).
Odour concentration cod is assumed as a dilution value
when the perception threshold is reached. The unit of
1 ouE/m

3 (European odour unit) corresponds to odour
concentration of polluted air at the perception thresh-
old. The final results are the geometrical mean of the
individual results. For the collected samples, static
pre-dilution in Tedlar bags was performed. The olfac-
tometer facilitated changing the dilution in the range
from 1:2 to 1:64,000 with a dilution ratio 2. All mea-
surements were conducted within 8 h after sample
collection.

2.3. Data analysis

The artificial neural network (ANN) is frequently
used for analysing multidimensional data obtained
from gas sensor arrays. The principle of the work of
gas sensor arrays combined with ANNs trained by
special algorithms resembles the human sense of smell,
but it is still a very simplified model of neurobiological
mechanisms. One layer of hidden neurons is applied
[32,33], and when the input–output relations are more
sophisticated, it is reasonable to apply additional lay-
ers. Nielsen [34] suggests that the number of hidden
neurons should not be smaller than 2n + 1, where n is
the number of inputs. In research described in publica-
tions, the number of hidden neurons does not exceed
35 [17,25,35]. A logistic sigmoid and a hyperbolic tan-
gent were used for activation of the hidden layer and
an identity function for the output layer.

For data analysis, a feedforward artificial neural
network multilayer perceptron (MLP) was used. The
architecture of the net consisted of 10 inputs (all sen-
sors), one hidden layer with n-neurons and one out-
put neuron. The architecture of the net was
determined in order to maximize the generalization
ability of the net at minimal complexity. Network

learning is a process of iterative adjustment of weights
in order to minimize the net output error. The initial
values of weights were set randomly with normal
standardized distribution: mean �wij ¼ 0, variance
s ¼ 1. To learn the process, the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) iterative algorithm was
applied [36]. From the entire data-set, the learning
(70%), testing (15%) and validation (15%) subset was
randomly chosen. When the error of the net for the
testing error is increasing and, consequently, becomes
greater than the error for the learning subset, the
learning process is terminated. The validation subset
is used for quality assessment of the learned net.

3. Results and discussion

3.1. Odour concentration

The standard regular performance of SBR does not
contribute to a significant smell nuisance. The odour
concentration above the sewage surface was 45 ouE/
m3, and after the load of raw sewage approx. 640 ouE/
m3. The alteration in the odour concentration recorded
during the restoration of aerobic conditions after SBR
breakdown (implemented as turning off the aeration
system) is shown in Fig. 1. The box of symbols
denotes the mean value ± 95% of confidence interval,
the upper and the lower whiskers with caps denoting
max. and min. values, respectively. After SBR break-
down, the aeration processes were restored, and the
odorous compound, which was created as a result of
anaerobic processes, was released and the odour con-
centration increased to 995,606 ouE/m

3. Considering
an aeration flow rate of 4–5 l/min for each vessel, the
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Fig. 1. Alteration in the odour concentration recorded
during the first restoration phase of aerobic conditions
after breakdown.
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odour emission recalculated to 1 m3 of SBR sewage
was equal to 2,688 ouE/h. The change in the odour
concentration Dcod can be described according to the
exponential function cod ¼ 1:3589E6 � exp ð�0:043tÞ,
where Dt is time, min. The correlation coefficient R is
−0.803. Due to the small capacity of the SBR chambers,
the odour concentration very quickly recovered values
of approx. 10,000 ouE/m

3 and afterwards it slowly
returned to normal conditions within the subsequent
4 h.

3.2. Selection of optimal network configuration

In order to determine the optimal architecture and
parameters of the neural network, 10,000 networks
with one hidden layer containing from 1 to 100 neu-
rons were tested. For activating hidden and output
neuron identity, the logistic sigmoid, hyperbolic tan-
gent and exponential functions were used. To assess
the net prediction quality, a validation subset, which
was not used during the learning process, was taken.
The highest value of prediction quality �Q ¼ 0:997 was
found for the net with the logistic sigmoid for hidden
neurons and the identity function for output neurons.
Other nets with good quality have functions (hid.-out.
layer) tanh-iden, tanh-tanh, exp-exp (all �Q ¼ 0:996) and
the worst nets have iden-iden, iden-sgm, iden-exp,
exp-tanh (�Q ¼ 0:976=0:993).

Hierarchical clustering was additionally performed
for all the activation function combinations of the net-
work, considering standardized validation quality, val-
idation error and the number of learning epochs. A
single link algorithm of the agglomerative hierarchical
clustering method was used. In the single link cluster-
ing, the proximity of clusters is defined as the mini-
mum Euclidean distance between any two points in
the two clusters. A vertical dendrogram is shown in
Fig. 2. At Euclidean distance 2, the nets can be divided
into 2 groups: (i) iden-tanh and iden-iden (worst param-
eters), (ii) the rest of the nets. The best nets (sgm-tanh,
exp-exp, tanh-iden, tanh-exp, tanh-tanh, sgm-exp, sgm-
iden) can be distinguished at Euclidean distance 0.3.

From the tests, a conclusion can be derived that
the optimal function for the hidden neurons is the
logistic sigmoid and hyperbolic tangent, and for the
output neurons the identity and exponential functions.
These functions have been frequently used in similar
investigations [25,35].

Another issue is the optimal number of hidden neu-
rons. For each net, a BFGS algorithm and SOS (sum-of-
squares) function were applied for error estimation.
Generally, in many cases, more errors for a small num-
ber of hidden neurons can be discerned. For all the com-
binations of the activation function, the number of

neurons may not exceed 20, which agrees with Niel-
sen’s suggestion [34]. For nets with 20 to 100 hidden
neurons, no statistical correlation was found between
the validation quality and the number of hidden neu-
rons (0.099), likewise in the case of the number of hid-
den neurons and epochs (R = 0.096).

3.3. Implementation of selected network

For predicting the odour concentration in the air
collected above the wastewater surface in the SBR bio-
reactors, the net with the hyperbolic tangent for the
hidden neurons and the identity function for the out-
put layer was chosen (Table 3). The learning process
was finished at the 61st epoch. This network does not
have the highest value of validation quality, but corre-
sponds very well with new data from the entire mea-
surement. Networks with the logistic sigmoid,
hyperbolic tangent and the exponential function for
the hidden layer show the tendency to latch the net
output at extreme values.

From the analysis of the input sensitivity of
MLP10-20-1 (Table 4), the contribution of particular
sensors for the output value can be interpreted—this
value indicates an increment in the error after removal
of a variable. Sensor S2 (general contamination of air,
VOC) has the greatest contribution to the output.
Incomparably lower contribution to the output was
found for sensors S6 (methane and LPG) and S3
(methane, LPG, general contamination of air), S5
(methane), S8 (solvent vapours), S7 (methane and LP
gases) and S1 (air contaminants). Sensor S4 (LP gas
sensors with a filter) could be omitted. This very
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Fig. 2. Dendrogram of hierarchical clustering of the tested
neural network considering standardized validation qual-
ity, validation error and learning epochs.
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general characteristic, indicating an organic source of
pollutants, is not typically chemical.

The accuracy of the odour concentration during
restoration of aerobic conditions predicted by the MLP
10-20-1 network (data only from the validation subset)
is shown in Fig. 3. The network satisfactorily predicts

the odour concentration for measurement data that
were not used for neural network learning. The dis-
persion of data points may indicate that the network
does not interpret signal from sensors accurately. A
limited amount of olfactometric results was used to
the learning process; therefore, the network is not
completely set to interpret all combinations of sensor
signals perfectly. The network uses an ability of gener-
alization to predict odour concentrations. On the other
hand, the overlearning of the network can also con-
tribute to error of network prediction. It should be
mentioned that olfactometric results used for network
learning calibration are loaded with a certain degree
of uncertainty due to the subjectivity of panellists’
assessment.

Table 4
Analysis of input sensitivity of the MLP10-20-1 network
determined for the validation subset

Sensor Sensitivity

2602-B00 9690.1
T 64.8
2611-E00 25.9
2610-C00 14.3
2611-C00 9.6
2620-C00 6.5
2612-D00 6.2
2600-B00 5.3
2610-D00 1.9
RH 0.9
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Fig. 3. Prediction accuracy of the odour concentration of
the MLP 10-20-1 network for the validation subset.

Fig. 4. Comparison of the sensor array output and the predicted odour concentration using the e-nose and multilayer
MLP 10-1 × 20-1 (hidden neurons—tanh, output neuron—linear) during scheduled failure and normal performance of the
SBR bioreactor.

Table 3
Summary of designed multilayer perceptron

Net architecture MLP 10-20-1

Learning quality 0.97
Testing quality 0.88
Validation quality 0.98
Learning algorithm BFGS 61
Error function SOS
Activation function of hidden layer Tanh
Activation function of output layer Identity
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The predicted odour concentration for a larger part
of the measurements (disturbances and normal perfor-
mance) of SBR bioreactors using the determined MLP
10-20-1 network is shown in Fig. 4. The upper plot
presents sensor variations within the consecutive
measurement hours. Signal values were recalculated
to relative resistance as a ratio of measured sensor
resistance to resistance of the sensor in clean air atmo-
sphere. The lower plot presents the value of the odour
concentration predicted using the determined net-
work. After 75 h, the simulated breakdown of the
reactor started, causing a decrease in the sensor resis-
tance. From 140 to 155 h, restoration of aerobic condi-
tions after the controlled breakdown was recorded.
On the chart, some dependence is noticeable: when
the concentration of odorous compounds increases,
the signal of the sensors decreases and the network
predicts a high odour concentration. After the 200th h,
the treatment process returned to normal operating
conditions. When raw untreated sewage is loaded to
the SBR chamber, spikes of odour concentration are
frequently recorded by the e-nose. These values of
odour concentration should not be assumed as
accurate results, but as episodes of increasing odour
concentration causing a smell nuisance. The predicted
odour concentration in the SBR chamber was chiefly
below 1,000 ouE/m

3.

3.4. System testing

Using dynamic olfactometry, the odour concentra-
tion was measured during normal operation of SBR
bioreactors. These results were compared with pre-
dicted values using a determined method (Table 5).
Pearson’s correlation coefficient R is 0.85. This is a
very high value, regardless of the irreproducible and
subjective dynamic olfactometry results. The results
confirm that the e-nose and ANN can be used to
assess the odour concentration of the SBR reactor.

4. Summary

The investigations indicate that the standard
regular performance of SBR does not contribute to a

significant smell nuisance 45–640 ouE/m
3 (where 640

is connected with inflow of raw sewage into the reac-
tor), but during restoration of aerobic conditions after
the breakdown, the odour nuisance rises to 995,606
ouE/m

3. The odour emission recalculated to 1 m3 of
the chamber content was 2,688 ouE/h.

To assess the odour concentration using 10 sensors
(8 gas sensors and temperature and humidity sensors),
a net with one hidden layer consisting of 20 neurons is
sufficient. The best value of prediction for the validation
subset has a net with a hyperbolic tangent for hidden
neurons and an identity function in the output layer.

An important part of the work was to compare the
methods used in the evaluation of the odour nuisance.
The tests conducted after e-nose calibration show high
coherence of the odour concentration evaluated using
dynamic olfactometry and predicted using a described
method (R = 0.85). The results confirm that the e-nose
and ANN can be used to assess the odour concentra-
tion of the SBR reactor.
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