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ABSTRACT

The purpose of the study was to provide some practical examples of using interpolation
methods for modelling one-dimensional environmental data. Based on the measurement
data acquired from the automatic air monitoring station in Warsaw (Poland), simulation of
different variants of interpolation of the 1 h average values of air temperature and SO2 con-
centration was performed. The interpolation was done by three methods, namely, by a lin-
ear method with a cubic polynomial and with a cubic spline. The simulation of
supplementing the missing values was conducted for test vectors with a varying measure-
ment gap length and the variable margin of extreme adjacent values. Comparison of the
obtained modelling results with previously removed actual data was also made. For the
assessment of the modelling error, the mean absolute error, the root mean squared error
and Willmott’s Index of Agreement were used. High accuracy of modelling was obtained,
both for the short and the longer test vector variants, whereas the best environmental data
modelling accuracy was obtained in short time intervals. It has been found that the use of
interpolation for modelling a given type of environmental data should be preceded by the
assessment of the accuracy of the employed methodology. In the framework of this study, a
function for carrying out simulation of the accuracy of environmental data modelling was
prepared within the MATLAB software program.
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1. Introduction

Environmental data are often characterized by an
incompleteness of measurement series. A common prac-
tice to deal with the missing values is to omit them while
analysing the results [1,2]. However, removing entire
data records from the analysis of results due to the
absence of a few or even a single value might result in
failing to utilize a considerable amount of information,

the acquisition of which, would be very costly. The anal-
ysis of an incomplete data-set might also affect the cor-
rectness of formulated conclusions [3]. In addition, some
of the data analysis methods may only be used for com-
plete data [4–6]. Therefore, some environmental data
analysts use modelling methods to substitute the miss-
ing values with alternative ones, in accordance with pre-
sumed modelling accuracy criteria [7–10].
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One of the simplest, though fairly accurate, meth-
ods for substituting missing data with modelling data
is interpolation [8–11]. Interpolation is an analytical
technique consisting in searching for intermediate
points amongst the existing ones, provided that the
measurement data should form a logical sequence of
numbers, e.g. a time series [11].

In order to be able to use interpolation methods
for modelling environmental data, one must know the
extreme values. In the case of the linear interpolation,
the graphic interpretation of modelling is a straight
line connecting extreme values. In the case of the
interpolation with a cubic polynomial or a cubic
spline, the graphic interpretation represents curves
connecting the points of known values. However, for
non-linear methods, modelling results are dependent
on both the employed interpolation method and on
successive extreme adjacent values. This study under-
takes to examine how the results of modelling by
interpolation methods are influenced by the type of
the employed interpolation method, the measurement
gap length and the extreme adjacent value margin.
Observed environmental data were used, and a com-
putation algorithm was prepared in the MATLAB
computer program in order to carry out simulation of
the accuracy of modelling by interpolation methods.

On automatic air monitoring stations, the concentra-
tion levels of selected air pollutants and the meteorologi-
cal parameters are determined in a continuous manner.
These data are averaged to 1 h mean values and then
stored in extensive databases [12,13]. Environmental
data of this type form times series with a constant 1 h
time interval. Therefore, it is justifiable to use automatic
air monitoring databases for the validation of linear and
non-linear interpolation methods, so that the missing
data with modelling values could be substituted.

2. Materials and methods

Environmental data coming from the Warszawa-
Targówek air monitoring station in Warsaw (Poland)
were used for the investigation. The air monitoring
station under examination is an urban background sta-
tion belonging to the Provincial Environmental Protec-
tion Inspectorate in Warsaw. The air pollutant

concentrations values determined in this station are
used by EuroAirnet—the European Air Quality moni-
toring network. Simulation of different variants of
using environmental data interpolation methods was
done using the 1 h mean values of air temperature—as
a meteorological parameter—and SO2 sulphur dioxide
concentration—as one of the air quality-defining
parameters. The measurement data were derived from
three years’ period, i.e. 2009–2011.

The computation methodology involved the
removal of some data fragments from the input data
in such a manner as to obtain apparent (fictitious)
gaps in observed data. Then, those removed values
were modelled by interpolation methods. The simula-
tion was conducted in different variants, which were
arranged into test vectors moved sequentially along
the data series. Test vectors with missing measure-
ment value intervals of 1, 3, 6, 9 and 12, along with a
1-, 2- and the 3-element extreme adjacent value mar-
gin were adopted (Table 1). The test vectors were
moved sequentially by 23 values, so that the simulated
missing values would occur in different times of the
day. If at least one missing value occurred amongst
the observed ones in a given sequence, then that
step was omitted. As a result of the procedure
described above, a list of all removed fragments of
observed values and their corresponding simulated
values was obtained. Thus, so prepared set of
observed and simulated values was subjected to
modelling error assessment. For the modelling error
assessment, the following three statistical parameters
were used:

(1) mean absolute error (MAE),
(2) root mean-squared error (RMSE),
(3) Willmott’s Index of Agreement (d).

The Index of Agreement (d) developed by Willmott
as a standardized measure of the degree of model pre-
diction error varies between zero and one. The value
one indicates a perfect match, whereas zero indicates
no agreement at all [14,15].

The modelling of the missing values was con-
ducted by the following three methods: 1—linear
method, 2—cubic polynomial and 3—cubic spline. The

Table 1
Test vectors adopted for simulation of environmental data modelling: 0—extreme adjacent value margin, 1—substituted
value

[010] [01110] [01111110] [01111111110] [01111111111110]
[00100] [0011100] [0011111100] [011111111100] [0011111111111100]
[0001000] [000111000] [000111111000] [000111111111000] [000111111111111000]

R. Jasiński / Desalination and Water Treatment 57 (2016) 964–970 965



Table 2
Statistical parameters defining the accuracy of modelling of air temperature and SO2 concentration, depending on the
adopted test vector variants (Warszawa-Targówek 2009–2011)

Test vector variants
Methods of
interpolation

Temperature SO2 concentration

No. of
sequences

MAE
(˚C)

RMSE
(˚C) d

No. of
sequences

MAE
(μg/m3)

RMSE
(μg/m3) d

[010] Linear 1,094 0.22 0.33 0.9997 1,066 1.33 3.84 0.9510
Cubic − − − − − −
Spline − − − − − −

[00100] Linear 1,091 0.19 0.30 0.9998 1,051 1.14 2.99 0.9686
Cubic 0.19 0.30 0.9998 1.13 3.05 0.9675
Spline 0.19 0.30 0.9998 1.22 3.28 0.9636

[0001000] Linear 1,090 0.19 0.30 0.9998 1,039 1.18 2.94 0.9666
Cubic 0.19 0.30 0.9998 1.14 2.86 0.9688
Spline 0.19 0.30 0.9998 1.21 3.17 0.9626

[01110] Linear 1,091 0.43 0.63 0.9989 1,051 1.69 4.04 0.9401
Cubic − − − − − −
Spline − − − − − −

[0011100] Linear 1,090 0.42 0.62 0.9990 1,039 1.73 4.21 0.9341
Cubic 0.35 0.53 0.9993 1.69 4.33 0.9316
Spline 0.33 0.50 0.9993 2.04 5.51 0.8996

[000111000] Linear 1,085 0.47 0.70 0.9987 1,022 1.71 4.17 0.9335
Cubic 0.38 0.58 0.9991 1.65 4.17 0.9348
Spline 0.35 0.57 0.9991 2.02 5.09 0.9100

[01111110] Linear 1,087 0.85 1.22 0.9959 1,032 2.20 4.94 0.9074
Cubic − − − − − −
Spline − − − − − −

[0011111100] Linear 1,083 0.85 1.22 0.9959 1,013 2.16 4.69 0.9201
Cubic 0.69 1.01 0.9972 2.12 4.77 0.9198
Spline 0.60 0.90 0.9978 2.90 6.88 0.8613

[000111111000] Linear 1,079 0.87 1.25 0.9957 998 2.34 5.34 0.8957
Cubic 0.69 1.03 0.9971 2.26 5.34 0.8965
Spline 0.61 0.92 0.9977 3.19 7.78 0.8170

[01111111110] Linear 1,082 1.29 1.86 0.9904 1,010 2.66 5.91 0.8754
Cubic − − − − − −
Spline − − − − − −

[0011111111100] Linear 1,078 1.29 1.86 0.9904 988 2.75 6.24 0.8568
Cubic 1.07 1.59 0.9930 2.69 6.28 0.8577
Spline 0.90 1.34 0.9952 4.10 9.69 0.7519

[000111111111000] Linear 1,072 1.29 1.85 0.9905 974 2.76 6.42 0.8428
Cubic 1.06 1.57 0.9932 2.71 6.47 0.8424
Spline 0.92 1.37 0.9949 4.38 10.19 0.7110

[01111111111110] Linear 1,074 1.74 2.50 0.9825 978 2.86 6.33 0.8481
Cubic − − − − − −
Spline − − − − − −

[0011111111111100] Linear 1,069 1.73 2.49 0.9826 965 2.97 6.59 0.8352
Cubic 1.50 2.20 0.9865 2.94 6.72 0.8321
Spline 1.22 1.78 0.9915 4.93 11.64 0.6650

[000111111111111000] Linear 1,060 1.77 2.53 0.9821 953 2.96 6.55 0.8328
Cubic 1.54 2.25 0.9859 2.87 6.54 0.8337
Spline 1.20 1.78 0.9915 5.05 12.68 0.6120

Note: MAE—mean absolute error; RMSE—root mean squared error; D—Willmott’s Index of Agreement.
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function valid_int.m was prepared in the MATLAB
computer program (Appendix 1) in order to carry out
the simulation of the accuracy of environmental data
modelling by interpolation methods within this study.
The developed function makes it possible to adopt
arbitrary test vector length values as well as to select
the margin of extreme adjacent values and the length
of the test vector substitution sequence. The function
will.m for the computation of the Willmott’s Index of
Agreement was also prepared (Appendix 2).

3. Results

Table 2 provides the statistical parameters defining
the modelling accuracy, depending on the adopted
test vectors. The number of sequences defines the
number of repetitions of observed value removal in
particular test vector variants. For test vectors contain-
ing single extreme adjacent values, neither the cubic
polynomial nor cubic spline methods were used in
modelling since the results could be reduced to the
linear method.

As a result of the performed computations, high
modelling quality was achieved, both for the short
and long test vector variants. For single-element mea-
surement gaps, Willmott’s index values close to the
unit were obtained. It means that almost complete
agreement between the simulation values and the
observed ones was achieved. With an increase in the
length of the measurement gaps tested, the modelling
accuracy decreased, while for air temperature, the
lowest Willmott’s index value was as high as 0.9821.
The interpolation accuracy was higher for air tempera-
ture than for SO2 concentration. For modelling the air
temperature values, slightly better results were
achieved using non-linear methods in particular test
vector variants, with the best results being obtained
for interpolation with the cubic spline. In turn, for SO2

concentration modelling, better results were achieved
using the linear interpolation method. Increasing the
extreme adjacent value margin length had no effect in
the case of modelling with linear interpolation. On the
other hand, when using non-linear methods for air
temperature modelling, the modelling accuracy
increased with increasing extreme adjacent value mar-
gin length. An opposite relationship was observed for
modelling longer test gaps for SO2 concentrations.
With an increase in the extreme adjacent value margin
length, the modelling accuracy distinctly decreased,
especially in the case of using interpolation with the
cubic spline.

4. Conclusions

Environmental data used in this study, such as the
average 1 h values of air temperature (a meteorological
parameter) and SO2 concentrations (one of the air
quality-defining parameters), usually do not undergo
any rapid fluctuations in the successive hours of the
day. This feature favours the accuracy of modelling
data using the linear and non-linear interpolation
methods described above. The obtained good model-
ling results presented in this study give a good reason
to conclude that environmental data of this type can
be successfully modelled by interpolation methods.
Knowing the extreme values of measurements gaps in
one-dimension environmental data, it is possible do
substitute missing values with interpolated values at
least up to 12 missing measurement values with high
accuracy. However, in order to choose the best inter-
polation method for a given environmental data type,
making up for missing data should be preceded by
the assessment of the accuracy of the methodology
used. Within this study, a simple algorithm for the
validation of the accuracy of modelling environmental
data has been developed, whereby one-dimensional
interpolation is done by the “line”, “cubic” and
“spline” methods for different lengths of measurement
gaps and the extreme adjacent value margin. A fin-
ished procedure for assessing the quality of modelling
of one-dimensional environmental data by interpola-
tion methods within the MATLAB software program
is provided in Appendix 1.

As a result of the performed simulation using
interpolation methods for modelling environmental
data, the following conclusions have been drawn:

(1) By using interpolation methods for modelling
environmental data, very high modelling
quality can be achieved, while the modelling
accuracy decreases with an increase in the
length of the modelled value interval.

(2) For short time intervals, the use of the adja-
cent value margin is of little significance for
the accuracy of modelling. For longer time
intervals, increasing the adjacent value margin
may result in either an increase or a decrease
in the modelling accuracy, depending on the
nature of environmental data.

(3) Using interpolation methods in order to make
up for missing values should be preceded by
the analysis of modelling accuracy aimed at
selecting the best methodology for a given
type of environmental data.
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[7] S. Hoffman, R. Jasiński, Classification of air monitoring
data gaps, Pol. J. Environ. Stud. 18(2B) (2009) 177–18.

[8] H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen,
M. Kolehmainen, Methods for imputation of missing
values in air quality data sets, Atmos. Environ. 38
(2004) 2895–2907.

[9] A. Plaia, A.L. Bondi, Single imputation method of
missing values in environmental pollution data sets,
Atmos. Environ. 40 (2006) 7316–7330.
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