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ABSTRACT

In the study, a long-term set of data collected at the air monitoring station located in Lodz
(central Poland) was analysed. Two air pollutants—O3 and CO—were chosen in order to
carry out the prediction procedure. The prediction was performed using regression neural
networks. The modelled concentrations were compared to the actual ones in order to assess
the prediction accuracy. Approximation errors were calculated for the entire range of con-
centrations and also separately for several concentration sub ranges. The following mea-
sures of error were considered: the mean absolute error, the mean squared error, the root
mean squared error, the mean absolute relative error, Pearson’s correlation coefficient and
Willmott’s indexes of agreement. Values of errors and their variabilities in different ranges
were analysed. It was stated that only some error measures properly reflect the difficulties
in modelling concentrations in the entire range of concentrations as well as in different sub
ranges of concentrations. The use of a single error measure may lead to incorrect interpreta-
tion.
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1. Introduction

Concentrations of pollutants measured at air moni-
toring stations can be approximated with modelling
techniques based on the regression analysis, the time-
series analysis or other statistical methods [1,2]. The
methods which exploit the knowledge collected in his-
torical data, at the same site or at the neighbouring
monitoring stations, without recourse to any data
coming from the out of the monitoring system, were
called autonomous models [3]. In these models, con-
centrations of other pollutants measured at the same
monitoring stations, meteorological data as well as

time of measurement were used as predictors of speci-
fied pollutant concentration. The essential problem is
how to assess the quality of obtained autonomous
models. Time-series recorded at air quality monitoring
stations are characterized by a specific variation and a
specific noise level. Thus, criteria of air quality models
performance should be adapted to the specificity of
modelling data.

When the real data are available, the quality of
approximation is estimated by comparing the mod-
elled values with the actual values in order to evaluate
the modelling error. There are many various measures
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of this error, each of whom results from a specific sta-
tistical approach [4,5]. Some of them are universal,
such as the mean absolute error, the mean squared
error, the root mean squared error, the mean absolute
relative error and Pearson’s correlation coefficient.
They are widely applied in various fields of engineer-
ing and science. Others, like Willmott’s indexes of
agreement, are specially recommended to atmospheric
sciences [6–8]. Many different error measures are usu-
ally presented in issued papers [9–12]. However,
sometimes only a single kind of error is given [13].

In this study, some commonly used error measures
were compared in order to recommend procedures
that enable to assess appropriately the model quality.
The results of tests allowing for comparing the vari-
ability of various errors, when changing the level of
the modelled concentrations, were presented and dis-
cussed in this study.

2. Materials and methods

The analysed data-set derived from the air moni-
toring station Widzew in the city of Lodz (Central
Poland). The data were gathered in the period of
2004–2010. The data collection was obtained from
Voivodeship Inspectorate for Environmental Protec-
tion in Lodz. The examined time-series involved
hourly concentrations of main air pollutants: O3, NO,
NO2, PM10, SO2, CO, as well as hourly averages of
some meteorological data: Temperature, wind speed,
wind direction, relative humidity and solar radiation.

Two air pollutants were chosen in order to carry
out the prediction procedure—O3 and CO. For each of
these pollutants, five independent variables were
selected from the other time-series measured at the air
monitoring station. The prediction of O3 concentration
was performed with a regression neural network that
used NO2 concentration, temperature, relative humid-
ity, day and hour as explanatory variables. In the case
of CO, the regression neural network explored the
knowledge hidden in the following explanatory vari-
ables: NO concentration, PM10 concentration, tempera-
ture, day and hour. Both neural models used a
perceptron with five neurons placed in a single hid-
den layer. Such a relatively simple neural network
structure allows for effective exploration of knowledge
hidden in data [14].

The analysis was carried out using the programme
Statistica Data Mining. In each neural network, the
analysed set of data was randomly divided into three
different subsets: The training subset (50% of cases),
the verification subset (25% of cases) and the test
subset (25% of cases). Back propagation as well as

Levenberg–Marquardt algorithms were used for neu-
ral networks training. The modelling of O3 concentra-
tion was performed only once for entire set of
concentrations with one neural regression network. A
similar procedure was used to model the concentra-
tion of CO—the entire set of predicted concentration
was prepared using a single neural regression model.
Approximation errors were calculated for the entire
range of concentrations but also separately for several
concentration sub ranges. Values of errors and their
variability in different sub ranges were analysed.

The values of the model errors were estimated bas-
ing on divergences between the model output yi (pre-
dicted concentrations) and the observed concentration
values xi. Seven different categories of prediction error
were calculated with the formulas given below, where
n—number of observations; y—mean value in the set
of predicted concentrations; x—mean value in the set
of observed concentrations:

MAE—mean absolute error:

MAE ¼ 1

n

Xn
i¼1

xi � yij j (1)

MSE—mean squared error:

MSE ¼
Pn
i¼1

xi � yið Þ2

n
(2)

RMSE—root mean squared error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � yið Þ2

n

vuuut
(3)

MARE—mean absolute relative error:

MARE ¼
Pn
i¼1

yi�xi
xi

��� ���
n

(4)

r—Pearson’s correlation coefficient:

r ¼
Pn
i¼1

xi � �xð Þ� yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �xð Þ2 �Pn
i¼1

yi � �yð Þ2
s (5)

d—Willmott’s index of agreement:
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d ¼ 1�

Pn
i¼1

yi � xið Þ2

Pn
i¼1

yi � �xj j þ xi � �xj jð Þ2
(6)

d1—modified Willmott’s index of agreement:

d1 ¼ 1�
Pn
i¼1

yi � xij j
Pn
i¼1

yi � �xj j þ xi � �xj jð Þ
(7)

3. Results and discussion

Seven different measures of the fitting of predicted
concentrations to observed ones were considered in
the analysis. Modelling errors were calculated for the
entire range of actual O3 and CO concentrations. Then,
similar calculations were made separately for specified
sub ranges of observed concentrations of both pollu-
tants, O3,obs and COobs. Error values were shown in
Table 1 for O3, and in Table 2 for CO, respectively.

The results indicate that the modelling error values
may vary significantly, depending on the range of
concentrations of both pollutants.

Measures based on differences between actual and
predicted concentrations, such as MAE, MSE and
RMSE, behave similarly. They reach the minimum val-
ues for the third O3 concentration sub range (40–
60 μg/m3) and the third CO concentration sub range
(300–400 μg/m3), that is for the most numerous sub
ranges. This result is understandable because these
sub ranges are also the most represented in the

learning process of both modelling networks. A neural
network adaptation process is dominated by the cases
contained in the most numerous concentration sub
ranges. Moving to higher and higher concentration
sub ranges the modelling accuracy decreases due to
fewer training cases and more extreme ones. MSE is
often treated as a measure of the model accuracy,
since its formula is based on the sum of squared
errors of the respective cases. This sum is usually
assumed as the objective function which minimization
runs during neural network training. RMSE is calcu-
lated as the square root of MSE. The advantage of
RMSE use is its physical dimension (μg/m3), consis-
tent with the dimension of the modelled variable.
Considered measures (MAE, MSE, RMSE) properly
reflect the difficulties in modelling concentrations in
the entire range of concentrations as well as in differ-
ent sub ranges of concentrations.

The average relative error MARE is extremely high
in the first sub range of actual concentrations for
either O3 or CO. In subsequent sub ranges, the value
of MARE decreases rapidly. This error measure is
unstable. Its value can be especially misleading in the
case of very small concentrations of pollutants, close
to 0 μg/m3. For concentrations equal to 0 μg/m3 , the
calculation error is not feasible. Since most of measur-
ing concentrations of main air pollutants can reach
values close to 0 μg/m3, this measure cannot be rec-
ommended for assessing the accuracy of models.

Measures such as r, d, d1, which refer to averages
in the formulas, have much lower values in the speci-
fied intervals than in the entire concentration range.
The results show that we should be careful in drawing
conclusions regarding the accuracy of the models.
Comparing the error value for the full range model

Table 1
Values of specified prediction errors calculated for different sub ranges and for the entire range of O3,obs concentrations
(hourly data, Lodz-Widzew 2004–2010)

Ranges of O3,obs concentrations
(μg/m3) Number of observations

MAE
(μg/m3)

MSE
(μg/m3)2

RMSE
(μg/m3) MARE R d d1

0–20 6,214 10.1 159 12.6 1.348 0.533 0.513 0.362
20–40 9,685 9.3 139 11.8 0.318 0.396 0.515 0.367
40–60 12,057 9.2 134 11.6 0.187 0.342 0.525 0.371
60–80 9,753 11.3 199 14.1 0.163 0.337 0.475 0.338
80–100 6,085 12.6 270 16.4 0.142 0.300 0.409 0.303
100–120 2,866 13.2 291 17.1 0.121 0.268 0.384 0.286
120–140 1,135 16.3 436 20.9 0.126 0.141 0.294 0.225
140–160 315 24.2 757 27.5 0.164 0.174 0.243 0.159
160–180 46 34.1 1,300 36.1 0.202 0.066 0.213 0.127
180–200 9 56.1 3,273 57.2 0.300 0.328 0.124 0.068
0–200 48,165 10.7 1,901 13.8 0.347 0.895 0.942 0.773
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with the corresponding error values for sub ranges
can lead to false conclusions. In any concentration sub
ranges, the model does not achieve values of the coef-
ficients r, d, d1 obtained for the whole range model.
The values of these measures for O3 gradually
decrease when moving to higher and higher concen-
trations of the sub ranges. However, in the case of
CO, the values of r, d and d1 may increase with the
level of concentration sub ranges. Measures of this
type can be used for a comparison of the accuracies of
autonomous models created for different air pollutants
provided that they refer to the entire range of concen-
trations.

4. Conclusions

Based on the results of the analysis the following
conclusions have been formulated:

(1) To assess the quality of the prediction of air
pollutant concentrations several different
measures of error of approximation should
be used. The use of a single measure may
lead to incorrect interpretation.

(2) MAE, MSE, RMSE properly reflect the diffi-
culties in modelling concentrations in the
entire range of concentrations as well as in
different sub ranges of concentrations.

(3) The average relative errors like MARE cannot
be recommended for assessing the accuracies
of autonomous models.

(4) Measurement errors depending on the aver-
age concentration values (r, d, d1) show
worse performance when the assessment is
referred to a selected range of concentrations
in comparison with the values obtained for
the entire range of the modelled concentra-

tions. Measures of this type can be used for
comparing the accuracies of autonomous
models created for different air pollutants
provided that they refer to the entire range
of concentrations.
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