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ABSTRACT

This study proposes a method for examining storage function of intercepting sewers,
following sewerage rehabilitation works to convert combined-type to separate-type systems.
The selected case study sewage treatment area recently completed a large-scale rehabilita-
tion work; the area incorporates six sub-areas (SAs) and one wastewater treatment plant
(WWTP), the latter having treatment capacity of 11,000m3/d. Sewage flow generated in dry
weather was domestic sewage flow only. Wet weather wastewaters consist of the dry
weather sewage flow, in addition to rainfall-derived infiltration/inflow. In order to calculate
wet weather wastewater flows of the six SAs, an advanced regression model was used. This
was calibrated and verified using long-term monitoring flow data of 816 and 204 h,
respectively; the model was then used to predict wastewater flows for 168 h. Hydraulic sim-
ulations of intercepting sewers were conducted using a conventional pipe hydrodynamic
model (i.e. Saint-Venant equations). By assuming different inflow conditions to the WWTP
(multiples of daily peak flows, Qd), storage function tests were conducted, based on water
balance calculations between sewage flows generated from the six SAs and inflow measured
at the WWTP. The existing intercepting sewer of the case study area appears to have 70, 11,
and 3 h flow storage functions, for inflow controls of 1.5Qd, 2Qd, and 2.5Qd, respectively.
Under 3Qd inflow conditions, almost all wastewater flowed to the WWTP. The storage func-
tion is thus expected to be effective for wet weather operation of the WWTP. Such storage
function would also be achievable in other areas conducting large-scale rehabilitation works.
The method proposed in this study will be useful for decision-making concerning the
removal of existing intercepting sewers.
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1. Introduction

Traditionally, the most common type of sewerage
system was a combined system, which carries both
the wastewater and stormwater. Total sewer lengths
in Korea in 2003 were of 78,605 km; of these, com-
bined and separate sewers comprised 46,167 km
(58.7%) and 32,438 km (41.3%), respectively. The pro-
portion of separate sewers has increased continuously;
in 2012, 70,820 km (59.8%) of sewers were comprised
of separate systems [1]. While new construction of
separate-type sewers has increased the proportion of
separate-type systems in Korea, sewerage rehabilita-
tion works have also introduced separate instead of
combined-type systems. In separate systems, wastewa-
ter and stormwater are carried in separate pipes. In
this system, the wastewater pipes operate all day and
carry wastewaters to wastewater treatment plants
(WWTPs), while stormwater that is not mixed with
wastewater discharges directly to receiving water
bodies. This system has an obvious advantage, in that
it does not lead to combined sewer overflows (CSOs),
and hence does not cause additional pollutant prob-
lems for receiving water bodies [2].

In case of most sewerage rehabilitation works that
seek to convert combined systems to separate-type
ones, existing combined sewers are being used as
stormwater pipes, and only additional wastewater
pipes are newly constructed. The separate system there-
fore is operated by storm sewers (existed combined
sewers) and newly installed sanitary sewers. This
implies intercepting sewers, which were used to direct
large-scale flows to the WWTPs in the combined sys-
tem, are also still present even after completion of the
rehabilitation works. That means both the storm sewers
and sanitary sewers are finally connected to the existing
intercepting sewers that direct flows to the WWTPs.
Intercepting sewers of the combined system were ini-
tially designed to carry both stormwater and wastewa-
ter in the same pipes, up to the level below CSO
occurrence. Normally, the intercepting sewers are
designed to carry flows up to several times the daily
treatment capacity of the WWTP. As they are still exist
even after the rehabilitation work, considerable
amounts of water could be stored within existing inter-
cepting sewers of separate-type systems.

This work aims to develop a methodology for
examining the storage function of existing intercepting
sewers, following sewerage rehabilitation works to
convert combined-type to separate-type sewers. The
existed intercepting sewers are likely to carry only
wastewater during dry weather, but could have mix-
ture of stormwater and wastewater up to the capacity
of intercepting sewers during wet weather as it did

before the rehabilitation work (system conversion of
combined to separate type). The methodology consists
of two main parts. First, quantities of wastewaters are
predicted using a regression model; the generated
wastewater flows are then simulated using a conven-
tional hydrodynamic model.

Typical residential dry weather flow in a catchment
has a characteristic diurnal pattern and can be calcu-
lated based on population, population density, water
consumption, and land uses. However, wet weather
flows, which have additional rainfall-derived infiltra-
tion and inflow (RDII) from foul sewers and which
occur as a result of storm events, also need to be esti-
mated. RDII quantification methods investigated by the
Water Environment Research Foundation [3] include
constant unit rate methods, percentage of rainfall vol-
ume (R-value) methods, percentage of stream-flow
methods, synthetic unit hydrograph (SUH) methods,
probabilistic methods, predictive equations based on
rainfall/flow regression, predictive equations based on
synthetic stream flow and basin character, and RDII as
a component of hydraulic software.

Among these, the use of regression models has a
long history and is widespread in the literature [3–6].
Regression analysis is a traditional statistical technique
modeling relationships between an outcome or
response variable, and one or more predictor or regres-
sor variables. The simpler form of regression model
includes a predictor variable for unknown parameters
with an error term [7]. The more advanced forms, the
advanced regression models, enhance the model per-
formance of conventional regression model [8].

Advanced regression models are rather general term
having advanced forms than simple regression models.
For example, polynomial regression model can also be
called an advanced type regression than simple linear
regression, since it accounts for curvature in a data-set
[8]. Several time series regression models often used
include auto regressive (AR), auto-regressive moving
average (ARMA), and auto-regressive moving average
model with exogeneous inputs (ARMAX) models.
ARMA model is an advanced type of auto-regressive
model that included moving average to use additive
seasonal time series consists of a mixture of trend cycle,
seasonal, and irregular components, and ARMAX addi-
tionally applied influences of exogenous input data [9].
Our case model is a modified form of ARMAX model
suggested by Tan et al. [10]. The detailed model
description is given in later section. These models
widely applied in wastewater studies. For example,
multiple linear models are first used to derive a rela-
tionship between rainfall and RDII; subsequently, the
AR models are adjusted by manipulating model
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coefficients to deliver the best fit between predicted and
actual flows in [11]. Zhang [12,13] applied the AR
method to estimate RDII using measured sewer flow
and rainfall data series. The ARMA model in [14,15]
was used to predict inflows of WWTP. In order to opti-
mize treatment plant operation, [16] applied ARMA
and multivariate ARMA process to model wastewater
influent variables. Tan et al. [10] applied an ARMAX
model for forecasting wastewater flow. Measured rain-
falls were used to predict rainfall-related flows, and dry
weather flows were superimposed.

The use of computer models, such as storm water
management model (SWMM) [17], and of methods
embedded in hydraulic software, is also described in
the literature. In the SWMM model, the RDII calcula-
tion model equation is based on the SUH method of
RDII calculation, which assumes that RDII generation
is similar to rainfall-runoff calculations of a catchment.
It calculates RDII as a specified unit hydrograph that
relates RDII to unit precipitation volume, specific
duration, and watershed characteristics. The sanitary
sewer overflow analysis and planning toolbox, intro-
duced by the [5,6], integrates the SWMM interface of
flow routing and the RTK method (based on SHU
hydrographs) of RDII generation.

Artificial intelligence appears to have been more
recently applied to wastewater calculation. El-Din and
Smith [18] applied artificial neural network (ANN)
models for short-term prediction of wastewater inflow
rate to a WWTP, using observed rainfall data. The inte-
grated model of sewer flow introduced by [19] applied
a neural network model for describing sewer flow fore-
casting, with the ANN applied for set weather flow
forecasting through a case study of the Milwaukee
Metropolitan Sewerage District [20]. Fernandez et al.

[21] used fuzzy logic to describe wastewater flow. The
model was fitted using actual flow data and used for
long-term forecasting; it produced an error less than
10%. Other applications of artificial intelligence models
include estimation of the relationship between rainfall
and runoff on a catchment scale [22–26].

This study applied the ARMAX model for waste-
water calculation, including RDII, during rainfall
events. An ARMAX model was selected because of its
general strengths, in generating high accuracy outputs
and relatively easier application in the RDII calcula-
tion [3]. For purposes of the selected case study, the
ARMAX model application was developed for waste-
water flow data generation of several sub-areas (SAs).
Models were built for six SAs, using long-term moni-
tored flow data, and then used to predict wastewater
flows. The XP SWMM model was then used to simu-
late wastewater flows in intercepting sewers. By con-
sidering different inflow conditions to the WWTP,
which is connected in the final link intercepting sew-
ers, the storage function of the latter was tested.

2. Study area and methodology development

2.1. Study area description

The case study network selected was the
Hongcheon sewage treatment area, located in Gangwon
province, South Korea. Fig. 1 shows a schematic repre-
sentation of the case study area; details of each SA,
including area, population, number of properties, and
characteristics of sewers, are described in Table 1. The
Hongcheon area has a population of 39,000. Six SAs
(SA1–SA6) direct their wastewater to the Hongcheon
WWTP, which has a daily treatment capacity of
11,000m3. The area is served by 84.13 km of sewers,

Fig. 1. Schematic representation of case study area.

J. Ryu et al. / Desalination and Water Treatment 54 (2015) 1299–1307 1301



and 10.77 km of intercepting sewers (L1–L5) are
connected to the WWTP. SA2, SA3, and SA4 support
relatively larger numbers of properties than the other
three SAs. Sewerage rehabilitation across the entire area
was completed in 2010, with conversion from combined
to separate-type sewers.

Fig. 2 describes rainfall and wastewater flows in
the case study area, as measured in 2011. The black
solid and dotted lines represent inflow to the WWTP
monitored at flow monitoring site (M7), and the sum
of wastewaters measured at the flow monitoring site
(M1–M6) of the six SAs between January and Decem-
ber 2011. The WWTP was designed to cope with daily
peak flow (Qd) generated from the Hongcheon area of
11,000m3. The WWTP inflow graph shows that inflow
exceeded treatment capacity during the 2011 wet sea-
son (June–September). The normal procedure used in
the design of intercepting sewers in combined systems
in Korea is to triple the values of daily peak flows
generated from the serviced area [27]. The inflow
graph shows that WWTP inflow has not exceeded the
calculated 3Qd, of 33,000 m3/d, even during wet sea-
sons, indicating that intercepting sewers could play an

important role in controlling excess flow, relative to
the WWTP treatment capacity.

2.2. Framework of storage function test

The flowchart in Fig. 3 shows the framework
adopted for storage function tests in this study. The
developed model was first used to predict wastewater
flows of SAs. Long-term measured rainfall and waste-
water flow data for the outlet of each SA were used to
calibrate and verify the model. During dry weather
conditions, wastewaters consist of domestic sewage
flow only, but wet weather wastewaters include addi-
tional wastewater derived from rainfall events. There-
fore, models were calibrated and verified for both dry
and wet weather conditions. The fitted models were
used to predict wastewaters generated following a
selected rainfall event. Once the intercepting sewer
network structure connecting the SAs was configured,
scenarios for storage function tests were developed.
The main purpose of the storage function tests was to
explore the role of intercepting sewers during rainfall
events. Four different inflow conditions to the WWTP
were considered. The hydraulic simulations were
designed to accommodate flows of 1.5Qd, 2Qd, 2.5Qd,
and 3Qd to the WWTP, and to test the storage func-
tion of intercepting sewers. Hydraulic simulations of
intercepting sewers describing flows from SAs to the
WWTP were conducted using a conventional pipe
hydrodynamic model (i.e. Saint-Venant equations) in
the use of XP SWMM model. In order to represent the
steady inflow for different conditions (1.5Qd, 2Qd,

Table 1
Characteristics of case study area

Sub-
area

Area
(km2) Population

No. of
properties

Avg.
sewer
dia.
(mm)

Total
sewer
length
(m)

SA1 0.42 340 154 320 3,844
SA2 1.25 8,467 3,637 270 13,352
SA3 1.44 14,571 4,945 250 25,491
SA4 1.36 15,294 4,023 270 28,240
SA5 1.08 777 336 260 9,000
SA6 0.31 504 221 200 4,200
Sum 5.86 39,953 13,316 – 84,127

Fig. 2. Description of wastewater flows.

Wastewater calculation

- parameter generation
- model calibration and verification
- wastewater flow prediction

Storage function tests

- intercepting sewer network configuration
- Saint Venant model setup
- scenario developments
- intercepting sewer storage function tests

Rainfall and waste water flowdata

Fig. 3. Framework for testing of storage function of
intercepting sewers.
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2.5Qd, and 3Qd), we assumed a virtual pump which
controled the inflow. As the design capacity of the
WWTP was 11,000m3/d, the inflows only up to
16,500, 22,000, 27,500, and 33,000m3/d for 1.5Qd, 2Qd,
2.5Qd, and 3Qd, respectively, are directed to the
WWTP and the excess flows are stored in the inter-
cepting sewers. The stored water flows reduce after
the peak flow, as inflows to the WWTP diminish.

3. Wastewater calculation

3.1. Advanced regression model descriptions

The wastewater prediction model applied here is
multivariate regression model, additionally considered
dry weather wastewater flow pattern and wastewater
flow generated by rainfall event. The model developed
was modified forms of the ARMAX model described in
[10] and can be represented by Eq. (1), where Pt, St and
et are trend cycle, seasonal, and error term respectively.

Pt ¼ a0 þ
Pm

i¼1aiUit; St ¼
Pk

j¼1bjVjt and the Uit and Vit

are the trend and seasonal variables.

Zt ¼ Pt þ St þ et

¼ a0 þ
Xm

i¼1

aiUit þ
Xk

j¼1

bjVjt þ et (1)

Factors relevant to wastewater flow generation include
time, rainfall, and presence of dry and wet periods.
Dry weather wastewater flows have a specific daily
pattern, and hence wastewater flows can differ sub-
stantially, depending on time of occurrence. In order
to represent the trend cycle of dry weather wastewater
over a day, a linear trend cycle component Pt in Eq.
(1) can be written as an m th-order polynomial in time
as Pt ¼ a0 þ

Pm
i¼1ait, where α0 is the baseline value.

The seasonal component St can be simplified as,
St ¼ b0Vt where the seasonal variable, Vt = 0 for dry

Table 2
Calculated parameters of the wastewater prediction model

Sub
areas

SA1 SA2 SA3 SA4 SA5 SA6

α p α p α p α p v p α p

α1 −11.2 0.02 −250.6 0.00 −475.6 0.10 −554.4 0.12 −25.5 0.02 −16.4 0.02
α2 −21.0 0.00 −434.2 0.00 −901.0 0.00 −1,101.8 0.00 −48.0 0.00 −30.9 0.00
α3 −20.8 0.00 −417.7 0.00 −558.4 0.05 −1,107.6 0.00 −47.5 0.00 −30.8 0.00
α4 −19.5 0.00 −431.1 0.00 −599.4 0.04 −1,016.1 0.00 −44.6 0.00 −28.9 0.00
α5 −10.8 0.02 −389.5 0.00 −356.9 0.21 −371.9 0.29 −24.6 0.02 −15.5 0.03
α6 −3.0 0.53 −244.7 0.00 17.2 0.95 20.3 0.95 −6.8 0.53 −4.0 0.57
α7 27.6 0.00 430.8 0.00 1,196.8 0.00 1,691.0 0.00 63.1 0.00 41.4 0.00
α8 52.8 0.00 1,004.4 0.00 2,226.9 0.00 3,067.3 0.00 120.8 0.00 78.8 0.00
α9 46.2 0.00 957.8 0.00 1,981.2 0.00 2,421.1 0.00 105.5 0.00 68.9 0.00
α10 43.8 0.00 956.6 0.00 1,901.9 0.00 2,191.7 0.00 100.2 0.00 65.4 0.00
α11 36.6 0.00 838.1 0.00 1,642.9 0.00 1,706.9 0.00 83.7 0.00 54.8 0.00
α12 37.0 0.00 736.6 0.00 1,721.6 0.00 1,849.3 0.00 84.4 0.00 55.2 0.00
α13 32.8 0.00 647.1 0.00 1,712.8 0.00 1,460.4 0.00 74.9 0.00 49.1 0.00
α14 29.9 0.00 613.2 0.00 1,538.9 0.00 1,313.4 0.00 68.3 0.00 44.1 0.00
α15 18.5 0.00 441.7 0.00 985.6 0.00 659.8 0.06 42.2 0.00 27.1 0.00
α16 24.1 0.00 397.2 0.00 1,226.8 0.00 1,242.7 0.00 55.0 0.00 36.1 0.00
α17 32.4 0.00 498.5 0.00 1,596.6 0.00 1,803.1 0.00 74.2 0.00 48.5 0.00
α18 38.9 0.00 675.8 0.00 1,756.6 0.00 2,187.5 0.00 88.9 0.00 58.1 0.00
α19 41.3 0.00 791.4 0.00 1,816.1 0.00 2,241.0 0.00 94.4 0.00 61.7 0.00
α20 38.5 0.00 821.5 0.00 1,520.4 0.00 2,122.2 0.00 88.1 0.00 57.6 0.00
α21 36.4 0.00 750.0 0.00 1,431.0 0.00 2,058.2 0.00 83.2 0.00 54.4 0.00
α22 33.8 0.00 666.9 0.00 1,343.9 0.00 1,939.7 0.00 77.1 0.00 50.5 0.00
α23 18.0 0.00 349.6 0.00 736.7 0.01 1,027.9 0.00 41.2 0.00 27.2 0.00
α0 98.9 0.00 1,218.6 0.00 6,013.6 0.00 4,919.3 0.00 226.0 0.00 146.1 0.00
β0 −49.2 0.00 −273.3 0.00 −3,259.0 0.00 −2,834.1 0.00 −112.4 0.00 −72.8 0.00
γ0 11.4 0.00 35.0 0.00 579.2 0.00 858.4 0.00 26.0 0.00 16.9 0.00
R2 0.630 0.716 0.585 0.554 0.630 0.630
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weather periods and is otherwise 1, since wastewater
flows can only have additional components with rain-
fall events. The variable β0 represents changes in
wastewater occurring as a result of rainfall influences,
such as ground water infiltration and inflow. The
irregular components represent changes which relate
to the rainfall amount variable, Djt (rainfall depth,
mm), with the variable representing different catch-
ment characteristics, γ0. An advanced regression model
of wastewater estimation with an error term et can
therefore be represented as Eq. (2). The model first
finds suitable parameters for, α0, β0, γ0, and αi is
estimated using the variance of wastewaters.

Zt ¼ Pt þ St þ et

¼ a0 þ
Xm

i¼1

ait þ b0Vt þ c0
Xn

j¼1

Djt þ et (2)

3.2. Wastewater flow prediction

Table 2 lists parameters of the model in Eq. (2) for
estimated wastewater calculation and significance
probability of parameters (p) and determination
coefficient (R2). The probability of significance for α0,
β0, and γ0 estimated for every SA was below 0.05.
While some p values calculated for the α1–23 were rela-
tively higher than 0.05, overall R2 (0.55–0.72) indicated
that model parameters fit wastewater flow characteris-
tics with large variability relatively well. The AR
models were calibrated, and verified monitored waste-
water flow data in each SA for 816 h (34 d, measured
23 June 2011–23 July 2011) and 240 h (10 d, measured
15–24 August 2012), respectively. Errors in total
flow were largest in SA4, with values of 9% and
12% for model calibration and verification, respec-
tively. Figs. 4a and 4b compare measured wastewater
flows, and flows generated in model calibration, and
verification. Total flows calculated are summarized in

Fig. 4a. Results of model calibration (23 June–23 July 2011, 816 h) (simple line: measured flow, dotted line: modeled flow).
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Table 3. Wastewater flows using the fitted AR models
were then calculated for 168 h of wastewater flows for
3–9 July 2012. Flow data over the 7 d was not
measured, and relatively large rainfall depths were
recorded. A total of 95mm rainfall depth was
recorded during 168 h. A depth of 82mm was
recorded on 6 July, with 13mm/h peak intensity. The
rainfall event was expected to generate more than
1.0Qd of WWTP capacity. The storage function tests
therefore opted to use predicted wastewater flow data
of 168 h. Total wastewater flows estimated using the
developed models, for the 7-d period, were 109,212,
1,669,162, 6,004,174, 5,470,109, 161,729, and 249,583 m3

for SA1–SA6, respectively.

4. Storage function tests

In order to test storage function of intercepting
sewers (L1–L5), different inflow conditions (1.5Qd,

2Qd, 2.5Qd, and 3Qd) to the WWTP were considered.
Under 1.5Qd inflow assumption conditions, the
WWTP has a steady inflow of 1.5Qd (16,500m3/d),
and hence, flow remains in the intercepting sewers.

Fig. 4b. Results of model verification (15–24 August 2012, 240 h) (simple line: measured flow, dotted line: modeled flow).

Fig. 5. Hydrographs of inflow to the WWTP under
different inflow conditions.
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Once rainfall ends, the wastewater flow stored in the
intercepting sewers gradually directs to the WWTP.
Under conditions of 2Qd, 2.5Qd, and 3Qd, the steady
inflow amounts to the WWTP are 22,000, 27,500, and
33,000m3/d, respectively. Hydrodynamic simulations
for the different inflow conditions were conducted
using XP SWMM model. Using wastewater inputs
from the six SAs, as generated from the ARMAX
model, the hydrodynamic simulations tested the stor-
age function of intercepting sewers for different inflow
conditions to the WWTP, by assuming inflow pump
operation conditions in the inlet of the WWTP.

Figs. 5 and 6 show pipe flow hydrographs and
hydraulic gradient lines (HGL) in L1–L5, comprising the
main stream of intercepting sewers to the WWTP. In the
case of 1.5Qd inflow conditions, up to 16,500m3/d flow
is continuously directed to the WWTP, with flows
exceeding the amount remaining in interception sewers
between 50 and 180 h from the start of simulation. The
HGL shown in Fig. 6 reached 130.7m, and all four links
(L1, L3, L4, and L5) were used for wastewater storage.
Under 2Qd inflow conditions, over 22,000m3/d of
wastewater was stored in intercepting sewers between
89 and 100 h after the start of simulation, and only L4

and L5 were used for flow storage. When the WWTP is
assumed to have 2.5Qd and 3Qd inflow control
conditions, only the final link served as a storage, with
maximum HGL of 105.3 and 103.1m during the
simulation periods, respectively.

Existing intercepting sewers stored wastewaters for
70, 11, and 3 h, under WWTP inflow control condi-
tions of 1.5Qd, 2Qd, and 2.5Qd, respectively. Almost all
the wastewater flowed to the WWTP under 3Qd

inflow conditions. The sewer storage function is thus
expected to be effective for wet weather operation of
the WWTP, up to the 3Qd inflow condition; as previ-
ously noted, this threshold represents the conventional
design criterion for intercepting sewers within com-
bined sewer areas.

5. Conclusions

This study proposes a method for examining the
storage function of intercepting sewers, following sewer-
age rehabilitation works for conversion of sewers from
combined to separate-type systems. In order to evaluate
in detail the storage function of intercepting sewers, a
simple mathematical model, utilizing runoff generated

Table 3
Results of wastewater prediction model calibration and verification

SA
Measured
flow (m3)

Calibration modeled
flow (m3)

Error
(%) RMSE

Measured
flow (m3)

Verification modeled
flow (m3)

Error
(%) RMSE

SA1 3,513,856 3,230,178 −8 50 301,403 283,741 −6 61
SA2 45,992,342 43,299,526 −6 407 3,796,444 3,765,796 −1 392
SA3 198,016,191 182,387,460 −8 3,025 16,148,182 16,039,867 −1 3,574
SA4 185,291,162 168,277,857 −9 3,758 16,866,514 14,833,086 −12 4,254
SA5 5,198,666 4,784,137 −8 115 446,786 420,246 −6 139
SA6 8,030,281 7,382,010 −8 75 688,795 648,440 −6 90

Fig. 6. HGL of intercepting sewers.
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from a statistical model, was used in this study. A con-
ventional advanced regression model, which repre-
sented a type of random process of time-varying inputs,
was used to generate runoff hydrographs for each SA. A
rainfall event was then selected as an input to the
advanced regression model, and wastewater flows were
generated for 168 h for storage function testing. Different
inflow conditions to the WWTP were considered, and
the intercepting sewer hydraulics were solved using
Saint-Venant Equations. Based on results obtained, the
sewer storage function is expected to be effectively used
for wet weather operation; this function could also work
in other areas where similar large-scale rehabilitation
works are also being conducted. The method suggested,
utilizing simplified calculation of runoff generation and
hydraulic simulation, will be useful for decision-making
concerning the removal of existing intercepting sewers
in various areas.
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