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ABSTRACT

In order to establish a method for the prediction of permeability, the significance of perme-
ability in simulating a reverse osmosis (RO) module is studied. An optimization methodol-
ogy incorporating the simulation model was established to estimate the water and salt
permeability, and a number of correlations were studied to represent them. Optimized cor-
relations were then validated over a wide range of operating conditions for a typical RO
system for seawater desalination (50–80 bar, 20–35˚C, and 25–40 kgm−3). Using these perme-
ability correlations, the model satisfactorily predicted two different published experimental
observations: (1) predicted the permeate flow rate within a 5% error for 88% of the readings
and the permeate concentration within a 10% error for 92% of the readings, and (2) pre-
dicted the permeate flow rate within a 6.2% error for 94% of the readings and the permeate
concentration within an 8% error for 91% of the readings. The relative deviation between
the experimental and predicted results using this procedure is 56% less than the published
predicted result. Thus, a method to reliably determine a single permeability correlation for
each of the water and salt permeability was established.
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1. Introduction

The purpose of desalination is the production of
low-salt freshwater from saline water. Among the var-
ious desalination technologies, multi-stage flash
(MSF), reverse osmosis (RO), and multiple-effect distil-
lation (MED) are likely to dominate in the future [1].
MSF and MED are distillation-based desalination pro-
cesses and require heating, while in RO thermal
energy is not required. RO technology is a feasible
and prominent desalination method for water supply

[2], around half of the total desalination investment is
in seawater RO [3]. There is a continuous progress in
the improvement of membranes [4], also in the desali-
nation techniques [5–7] to improve cost-effective water
production and water recovery.

There are four types of membrane modules: plate
and frame, tubular, spiral wound, and hollow fiber.
Currently, the spiral-wound module (SWM) dominates
the market. The feed solution mixes well in SWM due
to continuous change of flow. A typical SWM has a
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packing density of ~250m2/m3, and flow channel1

size of ~0.05 cm [8]. The schematic of a SWM is shown
in Fig. 1.

Although there are many proposed models for
transport through RO membranes, mathematical/
numerical models are principally based on either a
solution diffusion model such as in [9–11] or a Spie-
gler and Kedem model [8,12]. Much work related to
performance predictions in the desalination process by
SWMs is available in the literature [8–11,13]. In RO
membranes water flux is a function of permeability
along with feed, and osmotic pressure [14], and per-
meability is a topic of interest for many recent
researchers [15,16]. Solute and solvent permeability is
the fundamental membrane parameter to simulate the
flow through membrane, and cannot be measured
directly, so indirect determination is required.

For the estimation of water and salt permeability,
Sundaramoorthy et al. [11] developed a graphical lin-
ear fit method that included the following: pressure
drop in the feed channel, transmembrane pressure,
feed flow, retentate flow, module length and width,
and feed channel friction parameter. Avlonitis et al.
[9] united the pressure effect with the Arrhenius type
equation for solute permeability to find the correlation
in terms of pressure, and temperature. For salt perme-
ability, the same authors Avlonitis et al. [17] deter-
mined the regression-based equation in terms of the
temperature only. Voros et al. [18] used the non-
dimensional form of the operating conditions (pres-
sure, mole fraction) for the permeability, and selected

the optimum correlation through a simple regression
procedure. By plotting the net driving force vs. the
permeate water flux and the solute concentration dif-
ference across the membrane vs. permeate side salt
flux Hung et al. [2] determined water and salt perme-
ability, respectively, by the slopes. Permeability of
water and salt was related to temperature using
Arrhenius type equation [19]. Taking a different
approach from others, Senthilmurugan et al. [8] deter-
mined the values of water and salt permeability for
specific temperatures but independent of the operating
pressure.

The accuracy of prediction of a model depends on
the suitability of parameter. However, the permeabil-
ity in all the above-referred studies was estimated
using diverse approaches by relating permeability
with different parameters. The accuracy of prediction
of a model depends upon the suitability of parameter.
A representative unique method that can be used to
estimate permeability (parameter) in any type of mem-
brane/module is vital. In addition to this, a single per-
meability correlation for each of the water and salt
permeability is needed to reliably predict the perme-
ability under varying operating conditions. Optimiza-
tion methodology was established to study/predict
the permeability trends/behavior under the effect of
operating conditions. The correlation for the water
permeability is associated with temperature and pres-
sure, while the salt permeability correlation is associ-
ated with temperature, pressure, and concentration.
With this procedure, various permeability correlations
were studied for the water and the salt permeability—
from these correlations one suitable correlation for the
salt permeability and the other correlation for the

Fig. 1. Schematic of a typical SWM.

1Flow channel is the path for feed to flow between the
membranes and it is much smaller than module diameter
(please refer to Figs. 1 and 2).
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water permeability was determined. The suitability of
the correlation is based on the extent it fits the experi-
mental data [10].

2. Model equations and outline

2.1. Model equations

This study is based on the model developed by
Senthilmurugan et al. [8], which is based on the
Spiegler and Kedem model. In an unwound SWM,
there are two membrane sheets in a single leaf, and
between the membranes is a permeate channel (see
Fig. 2). In order to simulate the SWM, many research-
ers have conceptually considered the membrane as
unwound. The formulated numerical models based
on this assumption could well simulate the experi-
mental data [8,11,19]. In the present study, the same
approach is adopted to simulate the SWM as shown
in Fig. 2. Theoretically, each sheet is divided into
11 × 21 (i.e. m= 11 parallel to brine flow direction, x
axis, n = 21 parallel to the permeate flow direction, y
axis).

Si;j ¼ 2 ðL�WÞ
ðm� nÞ (1)

�x ¼ L

m
(2)

�y ¼ W

n
(3)

where the membrane surface area is S [m2; L2], with
length L [m; L], and width W [m; L], while i,j are the
nodes of the index along the length, and width of the

membrane, respectively. The size of each sub division
along the x, y axis, respectively is, Δx and Δy [m; L].

Volumetric water flux Jvi;j [m
3m−2s−1; L T−1]

through the membrane is:

Jvi;j ¼ A½ Pbi;j � Ppi;jÞ � ra/i;jðCbi;j � Cpi;jÞ
� i

(4)

where A is the water permeability [m3m−2 s−1 Pa−1; L
T−1], P is the hydraulic pressure [Pa; M L−1 T−2], C is the
solute concentration [kgm−3, M L−3], (subscripts b
= feed side, p = permeate side), α is the osmotic pres-
sure proportionality [m3 Pa kg−1; L2 T2], σ is the reflec-
tion coefficient. Here, α = 2RT (R being ideal gas
constant and T is temperature) [8]. The equations for
the concentration polarization effect /i;j is expressed as:

/i;j ¼
Cmi;j

� Cpi;j

Cbi;j � Cpi;j

¼ exp
Jvi;j
ki;j

� �
(5)

(Subscript m =membrane feed interface) and k is mass
transfer coefficient [m s−1; L T−1]

The solute concentration in the permeate stream Cp

can be expressed as:

Cpi;j ¼ ½/i;jð1� Ri;jÞCbi;j �=½/i;j þ Ri;jð1� /i;jÞ� (6)

The concentration on the feed/brine side Cb, and brine
rejection rate R are:

Cbiþ1;j
¼ 1

Qbiþ1;j

Cbi;j Qbi;j� Si;j Cpi;j Jvi;j

� �
(7)

Fig. 2. Flow path and dimensions of conceptually unwound SWM [8].
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Ri;j ¼
ð1� Fi;jÞr
1� rFi;j

(8)

where Fi,j = exp ð�Jvi;jð1� rÞ=BÞ and Qb is brine flow
rate calculated as:

Qb1:j ¼
Qf

ðn� leavesÞ (9)

Qbiþ1;j
¼ Qbi;j � Jvi;j Si;j (10)

where Qf is initial flow rate at inlet [m3 s−1; L3 T−1]
and leaves represents the number of membrane leaves
in the module.

The initial and boundary conditions used in this
study are as follows:

Feed side:

Pbi;1 ¼ Pf

Ubi;1 ¼ Uf i;1
Ubi;1 ¼ qbi;1=ðhb�yÞ
Cbi;1 ¼ Cf

9>>=
>>; for i ¼ 1 to m (11)

Permeate side:

dPp1;j

dy ¼ 0

Upm;j
¼ 0

dCp1;j

dy ¼ 0

Ppm;j
¼ 1 atm

9>>>>=
>>>>;

for j ¼ 1 to n (12)

Fig. 3. Effect of permeability on permeate characteristic prediction of numerical model. Permeate water flow rate and
permeate concentration as a function of (a) water permeability and (b) salt permeability.
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The hydraulic pressure drop in the feed channel and
the permeate channel along the x and y axis, respec-
tively, were estimated based on Darcy’s law as fol-
lows:

Pbi�1;j
� Pbi;j ¼ 2�x2lkfb

Xi�1

l¼1

Jvl;j
hb

� �
(13)

Ppi;jþ1
� Ppi;j ¼ 2 kfp l�y2

Xn
l¼jþ1

Jvi;1
hp

� �
(14)

where kfb and kfp are the friction parameters for the
feed channel and the permeate channel respectively
[m−2; L−2], is the permeate channel height [m; L].

Finally, the total permeate flow Qpt [m
3 s−1; L3 T−1]

and average permeate concentration Cpt [kgm−3; M L−3]
are estimated as follows:

Qpt ¼ NL

Xm
i¼1

Xn
j¼1

ðJvi;j Si;jÞ
0
@

1
A (15)

Cpt ¼ NL

Qpt

Xm
i¼1

Xn
j¼1

ðCpi;j Jvi;j Si;jÞ
0
@

1
A (16)

where NL is the number of membrane leaves in one
module.

Fig. 4. Permeate characteristics of Boudinar’s [10] experimental data, predicted using permeability correlations Eqs. (23)
and (24); (a, b) Cf = 35 kgm−3 and (c, d) Cf = 40 kgm−3.
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2.2. Physical property/parameter determination

The mass transfer coefficient was estimated by the
following equation:

k ¼ 0:753
K

ð2� KÞ
� �

D

hb

� �
Scð�1=6Þ Pe � hb

Lmix

� �0:5

(17)

where K is the brine spacer mixing efficiency, D is the
diffusion coefficient [m2 s−1; L2 T−1], Schmidt number
Sc = μ/ρD, Peclet number Pe = hb Ub/D, Lmix is brine
spacer characteristic length [m; L], μ is dynamic vis-
cosity [Pa s; M L−1 T−1], ρ is density [kgm−3; M L−3], hb
is feed channel thickness [m; L], and Ub is feed solu-
tion velocity [m s−1; L T−1] ðUbiþ1;j

¼ Ubi;j � 2�XJvi;j=hbÞ.
The solute diffusion coefficient, viscosity, and density
are estimated as follows [19]:

D ¼ 6:725� 10�6expð0:1546� 10�3C� 2513=TÞ (18)

l ¼ 1:234� 10�6expð0:00212Cþ 1965=TÞ (19)

q ¼ 498:4Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
248400M2 þ 752:4MC

p
(20)

ðM ¼ 1:0069� 2:757� 10�4tÞ (21)

where T = feed temperature [K; θ], and t = relative tem-
perature [˚C; θ], (ratio of feed temperature in (˚C) to
ambient temperature (25˚C))

The SWM dimensions and performance parameters
are summarized in Table 1.

Fig. 4. (Continued).
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2.3. Algorithm to simulate the SWM

The model calculation steps (algorithm) for the
prediction of the permeate flow rate (Qpt) and concen-
tration Cpt are outlined here.

� Step 1: Assume the solution flux through the mem-
brane (Jv), and permeate concentration (Cp).

� Step 2: Calculate Cb, Pb, and Pp using Eqs. (7), (13),
and (14), respectively.

� Step 3: Calculate k, ϕ, and R using Eqs. (17), (5), and
(8), respectively.

� Step 4: Calculate Jv Eq. (4) and Cp Eq. (6).
� Step 5: Compare the calculated Jv and Cp (Step 4)

with the assumed values. On the convergence of
calculated values to respective assumed Jv and Cp

values, Go to Step 7 else Go to Step 6.
� Step 6: Assume new Jv and Cp Go to Step 2.
� Step 7: Calculate Qpt, and Cpt Eqs. (15) and (16).

To execute this algorithm, a computer program in
the FORTRAN language was developed.

3. Estimation of permeability

In order to simulate the system behavior, the math-
ematical model depends on the accuracy of model
parameters data which make the mathematical model
a useful analysis tool. For the estimation of parame-
ters, the model predictions are compared with experi-
mental data (numerically/graphically). In present
work, a numerical approach is considered, because it
can simultaneously relate different operating condi-
tions (temperature, pressure, and concentration) with
permeability linearly/non-linearly.

The numerical solution (presented in the previous
section) was incorporated with the process integration

and design optimization software PIAnO (Process Inte-
gration, Automation, and Optimization) [20] to study/
estimate the permeability correlations. An uncon-
strained optimization problem was formulated that
minimizes the following objective function Eq. (22):

Fobj ¼
XNS
i¼1

Qpexp;i �Qpcalc;i

Qpexp;i

 !2

þ
XNS
i¼1

Cpexp;i � Cpcalc;i

cpexp;i

 !2

(22)

The established optimization procedure was to trace
the representative equations for water and salt perme-
ability that minimize the error Eq. (22). Different per-
meability correlations were used in the numerical
model and the prediction of the numerical model (per-
meate flow rate and concentration) were matched with
the experimental readings. The forms of correlations
studied were found in published work [9,10,17–19],
and also based on intuition. The correlations studied
were as follows:

� Water permeability correlations (I to V) studied
were:

ðIÞ ða0 þ a1T
� þ a2T

�2Þ � 10�12expð�a3PÞ

ðIIÞ a0 � 10�12 exp � a1
R

1

T
� 1

Trel

� �� �

ðIIIÞ a0 � 10�12 exp � a1
R

1

T

� �

ðIVÞ a0 � 10�12 T

Trel

� �
P

Prel

� �

ðVÞ a0 � 10�12 T

Trel

� �a1 P

Prel

� �a2

� Salt permeability correlations (VI to XII) studied
were:

ðVIÞ ðb0 þ b1T
� þ b2T

�2Þ � 10�8 expð�b3PÞ

ðVIIÞ b0 � 10�8 exp � b1
R

1

T
� 1

Trel

� �� �

ðVIIIÞ b0 � 10�8 exp � b1
R

1

T

� �

ðIXÞ b0 � 10�8 exp b1
T�

Trel

� �

Table 1
Membrane module characteristics and performance
parameters (2.5´´ FT30 [8,10])

Parameters Value

Length of membrane sheet, L (m) 0.854
Width of membrane sheet, W (m) 1.10
Number of leaves per module 1
Feed channel height, hb (m) 7.7 × 10−4

Permeate channel height, hp (m) 4.1 × 10−4

Friction parameter for feed channel, Kfb (m−2) 2.5008 ×
108

Friction parameter for permeate channel, Kfp

(m−2)
1.2 × 1010

Efficiency of mixing net, K (dimensionless) 0.5
Characteristic length of spacer, Lmix (m) 0.006

M.B. Minhas and W.-S. Kim / Desalination and Water Treatment 54 (2015) 2343–2356 2349



ðXÞ b0 � 10�8 exp
b1T�

Trel
� b2

P
� b3

C

� �

ðXIÞ b0 � 10�8 exp
b1T

�

Trel
þ b2

P
� b3

C

� �

ðXIIÞ b0 � 10�12ðPÞ�b2 expðb1T�Þ

For optimization, direct search settings using micro-
genetic algorithm [21] was used. Each set of correla-
tions was tried thrice by changing the initial values to
find the global optimum instead of local optimum.

4. Results and discussion

The ability of a model to predict the physical phe-
nomena precisely depends on many factors including
the assumptions underlying mathematical calculations,
and the accuracy of model parameters. For the estima-
tion of pressure drop in a spacer-filled channel, Ka-
rode et al. [22] related it to the channel length, feed
velocity, density, hydraulic diameter, drag coefficient,
and spacer porosity. While Koutsou et al. [23] mea-
sured the pressure drop by relating it to diameter of
filaments, angle between crossing filaments, channel
size, density, and feed flow rate. These studies esti-
mate pressure drop for known geometrical configura-
tion. The flow in spacer-filled channels at low
Reynolds number (34–45) is unsteady [23], but in the
present study the Reynolds number is lower than this
range (14–20). The flow in the present study is not in
transition region and the validity of Darcy’s law can
be safely assumed. Moreover, with the help of this
assumption previous numerical studies have shown
good agreement with experimental readings [8,10].
Furthermore, the use of Darcy’s law in recent pub-
lished works [11,24–29] in a variety of membrane pro-
cesses (such as RO, direct contact membrane
distillation, pressure retarded osmosis, and vacuum
membrane distillation) and the reproduction of experi-
mental data indicate its applicability.

Several authors [8,11,17,30,31] estimated the mass
transfer coefficient by establishing a relationship
between the Sherwood number, Reynolds number, and
Schmidt number. Many of such established relation-
ships are usually limited to that system only. In con-
trast to many other published mass transfer coefficient
relationships, the relation developed by Winograd
et al. [30] has been widely used. Many researchers
[8,10,19,24] have used this relation for various RO sim-
ulation models. The same mass transfer coefficient
relation was considered appropriate for this study.

The present study is based on experimental work
presented in Ref. [10]. The parameters with constant val-
ues (Kfb, Kfp, K, Lmix) used in the present study are based
on the same experimental work, so these values were
considered sufficient for the present analysis. Moreover,
the numerical model presented in Ref. [10] is based on
the “solution diffusion model”, and that of Ref. [8] is
based on a three parameter concept by Spiegler–Kedem.
The models based on different membrane transport fun-
damentals used the same parameter values.

Apart from these parameters, in an RO simulation
model, an important parameter, permeability, has a
significant effect on the predicted permeate flow rate/
concentration, so a thorough examination for its esti-
mation is necessary. Suitable experimental data are
required for the estimation of the parameters. The
experimental data presented in Ref. [10] covers a wide
range of pressure, temperature, concentration, and
flow rate. The SWM used for the experiments was a
2.5´´ FT30 module element with a thin-film composite
polyamide membrane. The range of the operating con-
ditions in the experiments was pressure 50–80 bar,
flow rate 0.21–0.24 L/s, temperature 20–35˚C, and feed
salinity 25–35 kgm−3 (for further details please refer to
Table 1). This experimental data is considered as a
benchmark to estimate the permeability. In the present
work apart from the permeability, all the physical
properties of the feed along with system parameters
were known/fixed (as discussed in previous sections).
In this setting, the permeability can be studied and
estimated reliably.

4.1. The effect of permeability on the model prediction

The numerical procedure presented in Section 2
was used to understand the significance of the water
and salt permeability under different operating
conditions (50–80 bar, 20–35˚C, and 25–35 kgm−3). The
effects of variation in the permeability under constant
operating conditions (20˚C, 55 bar, 35 kgm−3, and
2.1498m3/s) are shown in Fig. 3(a) and (b). For these
simulations, the salt permeability in Fig. 3 (a) is kept
constant (2.76E−8m/s), and the water permeability in
Fig. 3(b) is kept constant (5.25E−12m3/m2 s Pa). It is
obvious from these figures that changing the perme-
ability values results in significantly different pre-
dicted flow rates and concentration.

4.2. Optimization methodology for the prediction of
permeability

The permeability correlations are membrane or
application specific. Due to the highly non-linear

2350 M.B. Minhas and W.-S. Kim / Desalination and Water Treatment 54 (2015) 2343–2356



behavior of the membrane in different operating con-
ditions, the membrane characteristic (i.e. permeability)
is estimated indirectly from the experimental data.
The operating condition influences the permeability,
and a numerical model can better simulate the RO/
SWM with a suitable representation of the membrane
permeability in terms of the physical quantities (pres-
sure, temperature, and concentration).

The focus of the above discussion is the estimation
of the appropriate parameter to improve the simula-
tion of RO/SWM that can be validated by experimen-
tal data. As furnished in the Introduction section,
different approaches to estimate the permeability can
be used. To trace out the trends that permeability fol-
lows under the influence of temperature, pressure,
and concentration, in present work, different correla-
tion combinations were studied using the optimization
methodology (explained in the previous section). The
coefficients of the correlations which minimize Eq.
(22) were determined by optimization. The optimum
coefficients for different correlation combinations
along with relative deviation between the predicted
and experimental values of the permeate flow rate
and concentration are furnished in Table 2. All the
combinations of the correlations presented in Section 3
were studied; however, only some of the important
results are summarized in Table 2.

The correlation that gives the minimum relative
deviation between the predicted and experimental val-
ues is chosen. The outcome of the established optimi-
zation procedure was the estimation of water and salt
permeability, which are as follows:

� Water permeability correlation:

A ¼ ð6:252þ 0:00545T� þ 0:00867T�2Þ
� 10�12 expð�1:139E� 7� PÞ (23)

� Salt permeability correlation:

B ¼ 1:0605� 10�8 exp
13:55T�

Trel
þ 1:4551E6

P
� 10:52

C

� �
(24)

The experimental data analyzed in this paper has
wide range feed operating conditions such as tempera-
ture (20–35˚C), pressure (50–80 bar), and concentration
(25–40 kgm−3). By using the mentioned methodology,
a single correlation of water permeability/salt perme-
ability applicable over a wide range of operating con-
ditions was determined.

Table 2
Optimized coefficients of the water and salt permeability correlation combinations along with the relative difference in
the predicted and experimental results using respective correlations in the numerical model

Correlation combination a0 b0 a1 b1 a2 b2 a3 b3

Fobj
Eq. (22)

(V) and (XI) (V) 2.5026 – 3.08002 – 0.1588 – – – 1.091
(XI) – 1.0689 – 12.7984 – 6.406E5 – 3.999

(III) and (VIII) (III) 5.8694 – 57.3044 – – – – – 3.267
(VIII) – 3.7464 – 286.07 – – – –

(II) and (VII) (II) 5.7320 – 20.4427 – – – – – 3.256
(VII) – 3.2964 – 371.68 – – – –

(IV) and (IX) (IV) 0.0898 – – – – – – – 4.296
(IX) – 3.3248 – 19.916 – – – –

(I) and (VII) (I) 12.3865 – 0.01130 – 1.57E−5 – 1.239E−7 – 3.175
(VII) – 3.3841 – 10.908 – – – –

(I) and (VI) (I) 16.2475 – 0.3863 – 0.0733 – 4.08E−7 – 3.734
(VI) – 6.2410 – 0.2613 – 1.25E−7 – 2.96E−7

(I) and (XII) (I) 12.9329 – 0.0559 – 0.00468 – 1.75E−7 – 2.082
(XII) – 1.005 – 0.0166 – 8745E−6 – –

(I) and (X) (I) 8.5435 – 0.0381 – 0.01004 – 1.597E−7 – 2.09
(X) – 5.0567 – 25.25 – 3.5055E6 – 21.543

(I) and (XI) (I) 6.252 – 5.45E−3 – 8.67E−3 – 1.139E−7 – 0.268
(XI) – 1.0605 – 13.55 – 1.4551E6 – 10.52

(I) and (IX) (I) 4.0386 – 0.05521 – 0.00648 – 7.9E−8 – 0.468
(IX) – 0.8837 – 14.514 – – – –
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4.3. Comparison of the predicted results with the published
experimental and simulation data

The SWM simulation results (permeate flow rate
and permeate concentration) were obtained using the
presently determined permeability Eqs. (23) and (24).
These predicted permeate characteristics for 25 kgm−3

feed concentration in comparison with published
experimental and the simulation data are summarized
in Table 3. It is obvious from the table that the perme-
ability correlations determined using the present opti-
mization methodology predicts precisely and
accurately.

Using the presently determined permeability corre-
lations, the experimental data for different feed con-
centrations (Cf = 35 kgm−3, and 40 kgm−3) was also
simulated. The predicted and experimental results are
plotted in Fig. 4(a)–(d). It is evident from the figures
that the predicted results are in close agreement with
the experimental data. The predicted permeate con-
centration is lower than the experimental data at
higher temperature. It may be due to the physical
relaxation of the membrane pores at higher tempera-
ture. By analyzing the model predictions (using Eqs.
(23) and (24)) compared to the experimental observa-
tions, it is evident that the numerical model is able to
predict the permeate flow rate within a 5% error for
88% of the readings, and the permeate concentration
within a 10% error for 92% of the readings. Scrutiniz-
ing the published predictions of the permeate flow
rate/permeate concentration [8,10] with present per-
meate characteristics prediction (Table 3, Fig. 4) show
that the predictions in this study are far better than
both [8] and [10].

This work reduced the magnitude of the percent-
age error and increased the reliability of the model
prediction. The residual sum of the squares as defined
by Eq. (22) for the present work is 0.2698, while for
Ref. [10] is 0.6154. When the residual sum of the
squares for the selected 24 data-sets (simulated by [8])
are analyzed, the error Eq. (22) by [8,10], and the pres-
ent work are 0.2284, 0.1515, and 0.0967, respectively.
Using the optimization methodology, presented in the
present work for the prediction of permeability, the
percentage improvement in prediction is 56.15% better
than [10], and for 24 data-sets 57.66% better than [8].
This shows the significance of present study. The
applicability of the predicted permeability correlations
are analyzed in the next section.

4.4. Validation of the optimized correlation

In the membrane simulation, the models require
different fundamental parameters. These parameters

are obtained from experimental data. Several authors
[2,9,11,19] have presented a parameter estimation pro-
cedure. However, the reliability of the estimated
parameters becomes uncertain with the presence of
error in the experimental data that propagates in the
simulations. To mitigate this problem, the experimen-
tal data ([10]) used for the determination of permeabil-
ity in the present study were carefully taken with
negligible instrumental errors while the parameters
were determined by well-fitting of curves in the exper-
imental data [32]. The purpose of the present study is
the development of a methodology to reliably inter-
pret the effect of operating conditions on permeability.
Therefore, in this study a validation of the optimized
correlation is also presented to confirm the reliability
of i) methodology used to estimate the permeability
and ii) determined permeability correlations.

The experimental data [17] was simulated using
the present estimated permeability correlations. The
range of the operating conditions, membrane, and the
membrane module used in Refs. [10] and [17] was
identical except for the range of the feed flow rate.
Using the calculation procedure mentioned in Sec-
tion 2, along with the permeability correlations, Eqs.
(23) and (24), the predictions for the permeate charac-
teristics are reported in Table 4. The predicted perme-
ate flow rate was within a 6.2% error for 94% of the
readings, and the permeate concentration was within
an 8% error for 91% of the readings.

It can be inferred that the predicted results using
the permeability correlations established in this work
predicts the permeate flow rate and the permeate con-
centrations in close agreement with the experimental
readings. Thus, the water permeability correlation
Eq. (23), and the salt permeability correlation Eq. (24)
are applicable to a wide range of, pressure (50–80 bar),
temperature (20–35˚C), concentration (25–40 kgm−3),
and feed flow rate (~7E−5 to ~2.4E−4m3/s) for the
same membrane and membrane module.

Using the procedure mentioned in this study, the
parameters of a numerical model were studied and
determined. The permeability determined from one
set of experimental data was used to simulate another
set of experimental data with different ranges of feed
flow rate. The experimental data were well simulated
using this approach. This indicates the practical effec-
tiveness of the present study.

The membrane intrinsic property, permeability, is
determined by various different procedures explained
in the Introduction section. The focus of the present
study was the determination of permeability, numeri-
cally. Furthermore, the determined permeability can
be reliably used for various operating conditions. The
results presented in the present study elaborates that
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this parameter estimation methodology is convenient
and the determined permeability is reliable.

5. Conclusion

A simple optimization methodology to reliably
predict permeability correlations was established.
Based on the proposed methodology, permeability is
determined for the membrane module. Moreover, the
consistency of this approach for parameter estimation
is verified by the simulation of experimental data.
Using this optimization methodology different form of
water and salt permeability can be studied. One corre-
lation is thus chosen for water permeability and salt
permeability to describe the membrane permeability
behavior relative to temperature, pressure, and

concentration. The determined permeability relations
showed an impressive improvement in the model pre-
dictions to calculate the permeate flow rate and the
permeate concentration. Using the optimization meth-
odology, the permeability correlations (for same mem-
brane and membrane module) valid over wide range
of operating conditions can be obtained. The agree-
ment with experimental result is strong evidence that
the present methodology provides a realistic approach
for the estimation of RO membrane permeability.

A new form for salt permeability was determined
that ensued the consistent prediction of the permeate
concentration. This new form may be useful to predict
the salt permeability (and thus the permeate concen-
tration) for other membranes/modules. This study
may also be usefully applied to determine/predict the

Table 4
Permeate characteristics of Avlonitis’s [17] experimental data predicted using permeability correlations Eqs. (23) and (24)

Temp.
Feed
Conc. Pf

Qf ×
105

Qpt × 105

(Exp.)
Qpt × 105

(Predicted) %
Error

Cpt

(Exp.)
Cpt

(Predicted) %
Error˚C kgm−3 bar m3/s m3/s m3/s kgm−3 kgm−3

20 25 50 17.266 1.6660 1.7490 −4.98 0.095 0.1026 −8.00
20 25 55 17.500 1.9110 1.9725 −3.21 0.089 0.0935 −5.05
20 25 60 17.705 2.1160 2.1753 −2.80 0.089 0.0870 2.24
20 25 70 18.108 2.5200 2.5262 −0.24 0.079 0.0785 0.63
20 25 80 18.516 2.9290 2.8124 3.98 0.075 0.0733 2.26
20 35 50 16.776 1.1880 1.1149 6.15 0.220 0.2177 1.04
20 35 55 7.102 1.2280 1.0117 17.61 0.248 0.2676 −7.90
20 35 55 12.640 1.3580 1.2293 9.47 0.200 0.2087 −4.34
20 35 55 16.996 1.4080 1.3364 5.08 0.187 0.1867 0.16
20 35 55 21.498 1.4480 1.4178 2.08 0.178 0.1722 3.25
20 35 60 17.206 1.6180 1.5400 4.82 0.166 0.1664 −0.24
20 35 70 17.571 1.9830 1.8968 4.34 0.141 0.1421 −0.78
20 35 80 17.880 2.2910 2.1929 4.28 0.139 0.1284 7.62
20 40 70 17.288 1.7000 1.6275 4.26 0.162 0.1844 −13.82
25 35 60 17.368 1.7800 1.7389 2.30 0.182 0.1898 −4.28
25 35 70 17.786 2.1980 2.1529 2.05 0.146 0.1617 −10.75
25 35 80 18.181 2.5930 2.5004 3.57 0.136 0.1458 −7.20
25 40 60 17.106 1.5180 1.4245 6.15 0.242 0.2568 −6.11
25 40 70 17.490 1.9010 1.8386 3.28 0.200 0.2102 −5.09
25 40 80 17.921 2.3330 2.1913 6.07 0.162 0.1850 −14.19
30 35 60 17.571 1.9830 1.9570 1.31 0.228 0.2172 4.73
30 35 70 18.076 2.4880 2.4373 2.03 0.187 0.1846 1.28
30 35 80 18.485 2.8970 2.8405 1.95 0.162 0.1665 −2.77
30 40 60 17.246 1.6580 1.5915 4.01 0.289 0.2952 −2.14
30 40 70 17.746 2.1580 2.0708 4.04 0.235 0.2404 −2.29
30 40 80 18.191 2.6030 2.4788 4.77 0.207 0.2114 −2.12
35 35 60 17.881 2.2930 2.1919 4.40 0.245 0.2495 −1.83
35 35 70 18.348 2.7600 2.7400 0.72 0.218 0.2122 2.66
35 35 80 18.868 3.2800 3.2095 2.14 0.200 0.1910 4.50
35 40 60 17.460 1.8720 1.7684 5.53 0.368 0.3408 7.39
35 40 70 17.963 2.3750 2.3153 2.51 0.299 0.2769 7.39
35 40 80 18.506 2.9180 2.7876 4.46 0.240 0.2428 −1.16
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permeability trends under the influence of operating
conditions.

A number of different numerical models are avail-
able in literature for different applications, mem-
branes, and modules. However, the approach
developed in this study is not limited to the numerical
model used in this study, and SWM. It is unique in
the sense that it does not modify the membrane trans-
port equations but considerably improves the simula-
tion of SWM. Using this methodology, any numerical
model (for any membrane/module) can be integrated
with the optimization tool to reliably determine the
membrane intrinsic property over a wide range of
operating conditions. This methodology can be used
to study the effect of different model parameters
(including permeability) on the simulation model out-
put. Additionally, it can estimate the single optimum
parameter value or trend (correlations) valid over a
wide range of operating conditions.

The estimation of permeability parameter over a
wide range of operating conditions helps understand-
ing the effect of the operating conditions on membrane
performance. The understanding of the effect of physi-
cal condition on membranes may lead to the discovery
of new material/improved membrane design produc-
ing higher water flux with improved solute rejection.
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List of symbols

A — water permeability coefficient (m3/m2 s Pa)
B — solute permeability coefficient (m s−1)
C — concentration of solute (kgm−3)
D — diffusivity of solute (m2 s−1)
F — flow parameter defined by Eq. (12)
h — height of channel (m)
Jv — solution flux through membrane (m3/m2 s)
k — mass transfer coefficient (m s−1)
K — mixing efficiency of net
kfb — brine side friction parameter (m−2)
kfp — permeate side friction parameter (m−2)
L — length of membrane (m)
Lmix — characteristic length of mixing net (m)
m — divisions along x direction
n — divisions along y direction
NS — total number of data sets

NL — number of membrane leaves in a module
P — pressure (Pa)
Prel — relative pressure (1.01325E−5 Pa)
Q — flow rate (m3 s−1)
R — rejection
S — membrane surface area (m2)
T — feed temperature (K)
Trel — relative temperature (273.15 K)
T* — T − Trel

U — solution velocity (m/s)
W — width of membrane (m)
Δx, Δy — dimension of sub elements along x and y

direction (m)

Subscripts
b — bulk solution side
f — input feed
i, j — ith, jth component
m — membrane feed interface
p — permeate side
t — total

Greek letters
α — osmotic pressure proportionality = 2RT
μ — viscosity (kg/m s)
ρ — density (kgm−3)
φ — concentration polarization
σ — reflection coefficient
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