
Modeling nitrate concentrations in a moving bed sequencing batch biofilm
reactor using an artificial neural network technique

Hakan Dulkadiroglua,*, Galip Seckinb, Derin Orhona

aENVIS Energy and Environmental Systems R&D Ltd, ITU Ayazağa Yerleşkesi, Ari Teknokent, Ari 1 Binasi, No: 16, 34469
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ABSTRACT

In this study, the performance data of a moving-bed sequencing batch biofilm reactor
(MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neu-
ral-network technique. Multi-linear regression (MLR) technique is also used for a compari-
son. The performance of MBSBBR was evaluated using these models for a set of
experimental results obtained from a model reactor operated with different cycle times and
temperatures. The experimental data were retrieved from a previous reported work. Opera-
tional time, temperature, ammonium nitrogen, and pH were used as inputs for modeling,
whereas nitrate concentration was the output variable. The results of the models were com-
pared using statistical criteria, such as mean square error, mean absolute error, mean
absolute relative error, and determination coefficient (R2). The results showed that the
multi-layer perceptron neural-network produced more accurate results than those of MLR,
although the latter gave reasonable results.

Keywords: Artificial neural network; Biodegradation; Modeling; Multi-layer perceptron;
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1. Introduction

Suspended growth and biofilm systems, such as
different activated sludge and biofilter configurations,
although widely used as successful biological treat-
ment schemes for domestic and industrial wastewater,
have a number of inherent limitations. In this context,
moving bed biofilm reactors (MBBR), holding carrier
elements freely moving in the reactor, have been
developed as one of the most attractive hybrid sys-
tems [1,2]. Sequencing batch reactor (SBR), is another
highly successful biological treatment alternative,

widely studied in the last two decades [3–5]. Recently,
it was suggested that MBBRs could be operated in a
sequencing batch mode, in order to benefit from the
advantages of both processes.

Full understanding of system performance in bio-
logical systems is only possible by means of an accu-
rate interpretation of the complex set of biochemical
reactions taking place in the reactor. This requires
modeling, which defines process kinetics and stoichi-
ometry for selected model components [6,7]. Model
calibration of experimental data and assessment of
process kinetics is now successfully applied to sus-
pended growth systems including SBRs [8] and mem-
brane bioreactors [9]. Similar modeling approaches
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have also been attempted for moving bed biofilm reac-
tors: Plattes et al. [10] proposed a model including bio-
film attachment and detachment using Activated
Sludge Model No.1 (ASM1) and Monod kinetics for
the dynamic simulation of a pilot-scale moving bed
bioreactor. Sin et al. [11] defined a mathematical
model integrating hydraulics, biofilm, and microbial
conversion processes to evaluate nitrification in a
moving bed biofilter. A similar model was also pro-
posed by Lin [12] and calibrated with the experimen-
tal data derived from a pilot-scale moving-fixed bed
biofilm reactor for the kinetics and nitrogen and car-
bon removal. Ferrai et al. [13] utilized respirometric
techniques for the evaluation of kinetic and stoichiom-
etric coefficients for a similar reactor operated with
domestic sewage. While these approaches were
claimed to be successful for the specific cases selected
for investigation, the microbial structure of the moving
bed biofilm reactor is too complex to be described in a
single mathematical model, mainly because of severe
identifiability problems involved in model calibration
[14]. Therefore, there is a significant need for using
auxiliary techniques, such as the artificial neural net-
work (ANN) technique adopted in the study to inter-
pret system performance [15].

In previous works, a series of experiments were
conducted using Moving Bed Sequencing Batch Bio-
film Reactor (MBSBBR) in order to investigate its nitri-
fication performance [16,17]. Dulkadiroglu et al. [17]
measured pH, ammonium (NH4-N in mg/L), oxidized
nitrogen (NOX-N in mg/L), temperature (T in ˚C),
operational time (OT in min), chemical oxygen
demand (COD in mg/L), volatile suspended solid
(VSS in mg/L), and total suspended solid (TSS in
mg/L) in their previous work. Among these parame-
ters, pH, T, OT, and NH4-N are the known (input)
parameters, whereas NOX-N, COD, VSS, and TSS are
unknown (output) parameters. There are two ways to
determine these unknown parameters: (i) they can be
measured as done by Dulkadiroglu et al. [17]; (ii) they
can be modeled. Accurate estimation of these
unknown (output) parameters will lead to time con-
servation and cost reduction in the operation instead
of measuring these parameters repeatedly. For this
purpose, in this study, a new ANN model is proposed
in the estimation of NOX-N concentrations in a
MBSBBR.

There are several features in ANN that distinguish
it from the empirical models: First, neural networks
have flexible non-linear function mapping capability
that can approximate any continuous measurable
function with arbitrarily desired accuracy, whereas
most of the commonly used empirical models do not
have this property. Second, being non-parametric and

data-driven, neural networks impose few prior
assumptions on the underlying process from which
data are generated. Also, high computation rate, learn-
ing ability through pattern presentation, prediction of
unknown patterns, and flexibility affronts for noisy
patterns are other advantages of using ANNs. Neural
networks are composed of neurons as basic units.
Each neuron receives input data and processes the
input data and transforms them into output forms.
The input forms may be pure data or the input results
of other neurons, and the output forms may be the
results of the final process or the input data of other
neurons [18]. In current work, the output variable was
the concentration of oxidized nitrogen (NOX-N), while
the input variables were the operational time (OT),
temperature (T), ammonium nitrogen (NH4-N), and
pH. Because of lack of some data, the other parame-
ters, such as COD, TSS, and VSS could not been mod-
eled in current work. Multi-linear regression (MLR)
technique is also used in the estimation of NOX-N for
a comparison. The predictive ability of the proposed
models were assessed using four criteria, namely
mean square error (MSE), mean absolute error (MAE),
mean absolute relative error (MARE), and determina-
tion coefficient (R2).

2. Materials and methods

2.1. Experimental

As experimental setup and procedure are given in
detail elsewhere [17], they are just summarized herein.

The experiments were carried out in a lab-scale,
cylindrical Plexiglas MBSBBR with a working volume
of 10 L, placed into an incubator in order to operate at
constant temperature. Wastewater was fed and dis-
charged by peristaltic pumps controlled by timers.
The react phase was selected as 420min for 8 h cycle
time and 300min for 6 h cycle time. Fill- and draw-
discharge phases were kept constant at 30min each.
MBSBBR was fed with a synthetic wastewater with
COD concentration of 400mg/L and ammonia nitro-
gen concentration of 40mg NH4-N/L, approximating
domestic sewage characteristics. Macro- and micro-
nutrients were added at necessary amounts. Reactor
performance was monitored by NH4-N and NOX-N
measurements. After an acclimation period of the bio-
mass to loadings and temperatures, NH4-N and
NOX-N variations within a given cycle were deter-
mined for each set of experiments and these in-cycle
measurements were repeated at different times to
have a reliable assessment of the system performance
at the selected operation condition. NH4-N experi-
ments were performed as defined in Standard
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Methods [19]. NOX-N concentrations were determined
using a ChemLab Autoanalyzer. Measurements indi-
cated that NO2-N concentrations were below the
detection limits and negligible in all experiments.
Therefore, it was safe to assume and express the total
oxidized nitrogen (NOX-N) levels as NO3-N. pH was
monitored using a Hanna HI8711E pH controller. All
the analyses were conducted in triplicate and the aver-
age values were used for evaluation of the experi-
ments. The variation among triplicate measurements
usually remained below the analytical precision pre-
scribed in the corresponding methods.

2.2. Modeling

ANN has the ability to learn from examples, recog-
nize a pattern in a group of data, adapt solutions over
time, and process information rapidly. The application
of ANNs to issues related to wastewater treatment
and water resources conservation is rapidly gaining
popularity due to their immense power and potential
in the mapping of non-linear system data. In the con-
text of hydrological forecasting, recent studies have
reported that ANN technique may offer a promising
alternative for rainfall–runoff modeling [20], stream-
flow prediction [21,22], suspension of sediments [23],
water resources [24], and reservoir inflow forecasting
[25]. The variation in the characteristics of a water
resource system may be non-linear and multivariate,
and the variables involved may have complex inter-
relationships. For most cases, ANNs provide more
reliable estimates for dependent variables of concern.
The processes that involve several parameters are eas-
ily amenable to neuro-computing. Among the many
ANN structures that have been studied, the most
widely used network structure is the multilayer per-
ceptron (MLP) network. An ANN consists of a num-
ber of data processing elements called neurons or
nodes, which are grouped in layers. The input layer of
neurons receives the input vector and transmits the
information to the next layer with the help of cross-
connections. In the current study, a MLP modeling
technique was applied.

2.3. MLP neural-network model

A MLP distinguishes itself by the presence of one
or more hidden layers, whose computation nodes are
correspondingly called “hidden neurons of hidden
units.” The function of hidden neurons is to intervene
between the external input and the network output in
some useful manner. By adding one or more hidden
layers, the network is enabled to extract higher order

statistics. In a rather loose sense, the network acquires
a global perspective despite its local connectivity due
to the extra set of synaptic connections and the
extra dimension of NN interconnections. Detailed
theoretical information about MLP can be found in
Haykin [26].

MLP network used in current study, is seen in
Fig. 1. Index k is referred to the individual output
layer neurons, the indices i and j refer to the input
neurons and the hidden layer neurons, respectively.
wij and wjk represent the connection weights between
the hidden-input layer and hidden-output layer,
respectively. A hidden-layer neuron produces the fol-
lowing (Eq. (1)) as output;

hj ¼ f
Xn
i¼1

wijxi þ bj

 !
(1)

while an output-layer neuron produces the following
(Eq. (2)) as output;

yk ¼ f
Xn
j¼1

wjkhj þ bk

0
@

1
A (2)

where hj is the output of the jth neuron in the hidden
layer; xi is the input of the ith neuron in the
input layer; yk is the output of the kth neuron in the
output layer; bj and bk are the threshold values, also
called the bias, associated with the hidden and output
nodes, respectively; and f denotes the activation func-
tion. Each neuron multiplies every input by its inter-
connection weight, sums the product, and then passes
the sum through a transfer function to produce its
result. This transfer function is usually a steadily
increasing S-shaped curve, called a sigmoid function.

The MLP can have more than one hidden layer.
However, theoretical works have shown that a single
hidden layer is sufficient for MLP to approximate any
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Fig. 1. MLP structure.
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complex non-linear function [27] Therefore, in this
study, one-hidden-layer MLP is used. Throughout all
MLP simulations, the adaptive learning rates are used
to speed up training. The numbers of hidden layer
neurons are found using simple trial-and-error
method in all applications. The sigmoid and linear
functions are used for the activation functions of the
hidden and output nodes, respectively.

Some of the recent studies have reported that the
performance of MLP was superior to conventional sta-
tistical and stochastic methods [22,23]. Multi-layer per-
ceptions can get trapped in a local minimum when
they try to find the global minimum of the error sur-
face. Maier and Dandy [28] summarized the methods
used in the published literature to overcome the local
minima problem, such as training a number of net-
works, starting with different initial weights, an on-
line training mode to help the network escape local
minima, inclusion of the addition of a random noise,
and employment of second-order schemes, such as
Newton–Raphson and Levenberg–Marquardt algo-
rithms, or global methods, such as stochastic gradient
algorithms and simulated annealing. Other ANN
methods, such as conjugate gradient algorithms, the
radial basis function, the cascade correlation algo-
rithm, and recurrent neural networks, were briefly
explained in the report by the ASCE Task Committee
on Application of ANNs in Hydrology [29].

2.4. Levenberg–Marquardt algorithm

In the present study, the Levenberg–Marquardt
algorithm was employed because this algorithm is
more powerful than the conventional gradient descent
techniques [30]. The Levenberg–Marquardt algorithm
is an approximation of Newton’s method and is very
efficient for training networks with up to a few hun-
dred weights. Although the computational load of the
Levenberg–Marquardt algorithm is greater than that
of other techniques, this is compensated by the
increased efficiency and much better precision in
results. In many cases, the Levenberg–Marquardt
algorithm was found to converge when other
back-propagation techniques diverged [30].

2.5. Determination of an appropriate ANN model

Determining an appropriate architecture of a neu-
ral network for a particular problem is an important
issue as the network topology directly affects its com-
putational complexity and its generalization capability.
The MLP model with one hidden layer can approxi-
mate any complex non-linear function provided a
sufficient amount of hidden-layer neurons are

available. Indeed, many experimental results seem to
confirm that one hidden layer may be enough for
most forecasting problems [31]. Therefore, in this
study, one hidden-layer MLP model was used. Gener-
ally, the number of hidden-layer neurons is deter-
mined by a trial-and-error method. A common
strategy for finding the optimum number of hidden-
layer neurons is to start with a small number of neu-
rons and increase their number, while monitoring the
performance criteria until no significant improvement
is observed [32].

2.6. MLR model

If it is assumed that the dependent variable Y is
effected by m independent variables X1; X2; . . .; Xm

and a linear equation is selected for the relation
among them, the regression Eq. (3) of Y can be written
as:

y ¼ aþ b1x1 þ b2x2 þ . . .þ bmxm (3)

y in this equation shows the expected value of the var-
iable Y, when the independent variables take the val-
ues X1 = x1, X2 = x2, . . ., and Xm = xm.

The regression coefficients a, b1, b2, . . ., and bm are
evaluated, similar to simple regression, by minimizing
the sum of the eyi distances of observation points from
the plane expressed by the regression Eq. (4):

XN
i¼1

e2yi ¼
XN
i¼1

yi � a� b1x1i � b2x2i � bmxmið Þ2 (4)

In this study, the a coefficient was assumed to be 0,
and the coefficients b1, b2, . . ., bm were determined
using least squares method.

3. Results and discussion

In this study, the dependent variable was the con-
centration of oxidized nitrogen (NOX-N), while the
independent variables were the operational time (OT),
temperature (T), ammonium nitrogen (NH4-N), and
pH. The minimum and maximum values for the
model variables are provided in Table 1. It should be
noted that the synthetic wastewater was prepared to
contain 40 mg N/L of ammonia nitrogen. However,
the evaluation was based upon slightly lower values
measured in the reactor volume at the start of the
experiments. Furthermore, it is well known that nitrifi-
cation is affected by changes in the temperature. In
this context, the model evaluation was not limited to
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15˚C, which was recorded as the temperature of the
experiments, but they also covered the range of
10–20˚C. There are no acceptable rules to determine
the optimum size of the training data-set. The net-
works are not very sensitive to the number of training
data, but very sensitive to the number of testing data.
Attempts at reducing the training data size resulted in
poor generalization capabilities in the testing phase. A
training sample and a test sample are typically
required for building on ANN forecaster. The training
sample is used for ANN model development and the
test sample is adopted for evaluating the forecasting
ability of the model. There is no general rule to the
problem of division of the data into training and data-
sets. Several factors, such as the problem of structure,
the data type, and the size of the available data should
also be considered in making the decision. It is critical
to have both the training and test sets representative
of the population or underlying mechanism. This has
particular importance for time-series forecasting prob-
lems. Inappropriate separation of the training and test
sets will affect the selection of optimal ANN structure
and the evaluation of the forecasting performance [33].
In this study, these data were randomly divided into
two independent parts. To overcome some extrapola-
tion difficulties in prediction of extreme values, mini-
mum and maximum values of parameters used in
modeling were set in training data. Therefore, the
available data-set was partitioned into a training set
and a testing set with 75 and 25% of the available
experimental measurements selected for training and
testing phases, respectively. Maier and Dandy [34]
pointed out that “It is common practice to split the
available data into two sub-sets; a training set and an
independent validation set.” This process was fre-
quently used in the related literature [35–38]. Before
the training phase of the network, both input and out-
put variables were normalized within the range of
0.1–0.9 as follows (Eq. (5)):

xi ¼ 0:8
x� xminð Þ

xmax � xminð Þ þ 0:1 (5)

where xi is the normalized value of a certain parame-
ter, x is the measured value for this parameter, xmin

and xmax are the minimum and maximum values in
the database for this parameter, respectively.

While training the ANN model, an overfitting
problem may appear. The best way to avoid overfit-
ting is to use lots of training data. For noise-free data,
if there are at least five times as many training cases
as there are weights in the network, we are unlikely to
suffer from overfitting. The other way to avoid overfit-
ting problem is to use different feed-forward neural
network structures [39].

For all created neural networks, the general struc-
ture of input, one hidden and one output layer were
used. In order to determine the optimal architecture,
several neural networks were trained with different
iteration numbers (epoch) and number of nodes in the
hidden layer. In this study, the tangent sigmoid, loga-
rithmic sigmoid, and pure linear transfer functions
were tried as activation functions for hidden and out-
put layer neurons to determine the best network
model. Accordingly, the activation functions of the
hidden and output layer were found using simple
trial-and-error method in all the applications herein.
When the log sig was applied, the inputs and the out-
puts were normalized within the range of 0–1. The
most accurate estimations of the ANNs were obtained
with logarithmic sigmoid transfer function. The best
MLP results were obtained from the ANN (4, 6, 1)
model using the logarithmic sigmoid activation func-
tions for both hidden and output layer neurons,
respectively.

The MSE, MARE, and R2 (determination coeffi-
cient) values of ANNs for both training and testing
phases are given in Table 2. The MSE, MAE, and
MARE are defined as follows (Eqs. (6)–(8)):

MSE ¼ 1

N

XN
i¼1

ðYiobserved � YipredictedÞ2 (6)

MAE ¼ 1

N

XN
i¼1

Yiobserved � Yipredicted
�� �� (7)

MARE ¼ 1

N

XN
i¼1

Yiobserved � Yipredicted
Yiobserved

����
����� 100 (8)

Table 1
The minimum and maximum values of the input para-
meters

Parameters

Training
data-set

Testing
data-set

Min Max Min Max

OT (minutes) 0 420 30 330
pH 7.09 7.63 7.18 7.51
NH4-N (mg/L) 0 36 0.2 28.8
T (˚C) 10 20 15 15

2500 H. Dulkadiroglu et al. / Desalination and Water Treatment 54 (2015) 2496–2503



In Eqs. (6)–(8), Y denotes nitrate concentrations and N
is the total number of data.

The MLP and MLR models were trained, tested,
and then the results were compared by means of

MSE, MAE, MARE, and R2 statistics as shown in
Table 2. As seen from Table 2, both the MLP and the
MLR have the capability of modeling nitrate concen-
tration, although the former gave better results.

Table 2
The training and testing performances of the MLP and MLR models

Method

Training phase Testing phase

MARE (%) MAE (m3/s) MSE (m3/s)2 R2 MARE (%) MAE (m3/s) MSE (m3/s)2 R2

MLP 25.089 0.600 0.596 0.992 25.275 0.639 0.592 0.990
MLR 58.100 1.712 4.547 0.940 26.961 1.006 1.593 0.985
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Fig. 4. Comparison between observed and predicted nitrate concentrations in testing phase using MLP.
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The performances of the MLP and MLR models ana-
lyzed, herein, are shown in Figs. 2 and 3 for training
and Figs. 4 and 5 for testing phases, respectively. As
can be seen from these figures, the MLP produced
highly more accurate results than those of MLR in the
estimation of nitrate concentrations for training phase,
whereas they gave similar results in the testing phase.

4. Conclusions

The abilities of MLP neural network and MLR
technique in the estimation of the nitrate concentration
as the product of nitrification in the MBSBBR were
assessed in this paper by comparing the results with
observed concentrations of nitrate. From the results
obtained, both the MLP with a Levenberg–Marquardt
algorithm and MLR technique used in current study
appear to be useful tools for prediction of the nitrate
concentrations in the MBSBBR, although the former
produced more accurate estimations. The results of
this study show that ANN technique can be used in
the design and operation of an MBSBBR system for
prediction of optimum cycle time required for nitrifi-
cation for a known influent NH4-N concentration and
different temperatures.
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