

55 (2015) 1177–1199 July

The IAPWS industrial formulation for the thermodynamic properties of seawater

Hans-Joachim Kretzschmar^{a,*}, Rainer Feistel^b, Wolfgang Wagner^c, Kiyoshi Miyagawa^d, Allan H. Harvey^e, Jeff R. Cooper^f, Michael Hiegemann^g, Francisco L. Blangetti^g, Konstantin A. Orlov^h, Ingo Weberⁱ, Anurag Singh^j, Sebastian Herrmann^a

^aZittau/Goerlitz University of Applied Sciences, Zittau, Germany, Tel. +49 3583 61 1846; email: hj.kretzschmar@hszg.de (H.-J. Kretzschmar), Tel. +49 3583 61 1817; email: s.herrmann@hszg.de (S. Herrmann)

^bBaltic Sea Research Institute, Warnemuende, Germany, Tel. +49 381 5197 152; email: rainer.feistel@io-warnemuende.de

^cRuhr-University Bochum, Bochum, Germany, Tel. +49 234 32 29033; email: wagner@thermo.rub.de

^dNishiogu Arakawa-ku, Tokyo 116-0011, Japan, Tel. +81 3 3894 7039; email: miyagawa.kiyoshi@nifty.com

^eNational Institute of Standards and Technology, Boulder, CO, USA, Tel. +1 303 497 3555; email: allan.harvey@nist.gov

^fQueen Mary, University of London, London, England, Tel. +44 20 7882 4313; email: j.r.cooper@qmul.ac.uk

⁸ALSTOM (Switzerland) Ltd, Baden, Switzerland, Tel. +41 56 205 2104; email: michael.hiegemann@power.alstom.com

(M. Hiegemann), Tel. +41 56 205 6628; email: francisco.blangetti@power.alstom.com (F.L. Blangetti)

^hMoscow Power Engineering Institute, Moscow, Russia, Tel. +7 495 362 71 71; email: orlov@twt.mpei.ru

ⁱSiemens AG, Energy Sector, Erlangen, Germany, Tel. +49 9131 18 6603; email: ingo.iw.weber@siemens.com

^jGeneral Electric, Power and Water, Schenectady, NY, USA, Tel. +1 518 385 7274; email: anurag.singh@ge.com

Received 14 January 2014; Accepted 12 May 2014

ABSTRACT

In 2008, the International Association for the Properties of Water and Steam (IAPWS) adopted a standard formulation for the thermodynamic properties of seawater as a sum of contributions to the Gibbs free energy from pure water and from dissolved sea salt. For pure water, the IAPWS formulation for general and scientific use (IAPWS-95) was used. However, for industrial uses such as desalination and seawater power-plant cooling, it is likely to be more convenient to use the computationally simpler IAPWS formulation for industrial use (IAPWS-IF97), which is standard in the steam power industry. This paper documents this approach and gives formulas for calculating thermodynamic properties of seawater and steam (volume, enthalpy, isobaric heat capacity, etc.). The calculation of colligative properties (such as boiling and freezing points and osmotic pressure) is also described, as is the calculation of properties of two-phase states such as brine-vapor and brine-ice (sea ice). The computing speeds for these calculations are faster than those using IAPWS-95 by factors on the order of 100–200. The use of IAPWS-IF97 instead of IAPWS-95 for industrial seawater calculations is endorsed in IAPWS Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater. This use is valid for IAPSO

^{*}Corresponding author.

Partial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

^{1944-3994/1944-3986 © 2014} Balaban Desalination Publications. All rights reserved.

Standard Seawater with sea salt of the Reference Composition in specified regions inside the pressure, temperature, and salinity ranges of 0.3 kPa $\leq p \leq 100$ MPa, 261 K $\leq T \leq 353$ K, and $0 \leq S \leq 0.12$ kg kg⁻¹.

Keywords: Seawater; Thermodynamics; Industrial use; Gibbs function; Brine ice; Brine vapor

1. Introduction

The calculation of thermodynamic properties of seawater is important not only for ocean science, but also for industrial applications such as desalination and seawater cooling of power plants. In 2008, the International Association for the Properties of Water and Steam (IAPWS) adopted the "Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater" (for short, IAPWS-08) [1-4]. This formulation was also adopted as an international standard by the Intergovernmental Oceanographic Commission (IOC) in Paris in 2009 and by the International Union of Geodesv and Geophysics (IUGG) in Melbourne in 2011. In this formulation, the thermodynamic properties of seawater are calculated from an equation of state consisting of a water contribution and a saline contribution. The water contribution of IAPWS-08 is computed from the Helmholtz free energy equation of the "Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use" (IAPWS-95) [5,6]. The saline contribution is formulated as a Gibbs free energy equation.

However, the iterative calculation of required properties from the IAPWS-95 Helmholtz free energy equation is computationally intensive, making its use less desirable in applications where processing speed is important. For modeling desalination and cooling processes, it is more convenient to use the Gibbs free energy equation of region 1 of the "Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (IAPWS-IF97) [7,8] for calculating the water contribution of the seawater formulation. An additional reason for using IAPWS-IF97 in the seawater formulation is that the IAPWS-IF97 formulation is commonly used by industry for calculating properties of pure steam and water for power plants and their components.

The purpose of this paper is to document the IAPWS "Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater" [9], which describes the use of IAPWS-IF97 instead of IA-PWS-95 for calculating thermodynamic properties of the water contribution of the seawater formulation in order to enable more consistent and efficient calculations in the cases described in the preceding

paragraph. This industrial calculation of the thermodynamic properties of seawater will herein be called the industrial seawater formulation. All requisite equations and parameters are provided in this paper.

It should be noted that this usage differs from the use of the simplified water Gibbs free energy formulation adopted as the "IAPWS Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use" [2,3,10]. Ref. [10] documents a formulation for liquidwater thermodynamics to be used specifically for computational efficiency in oceanographic calculations, while the present paper describes the application of the existing IAPWS "industrial" formulation to calculate the water contribution to seawater properties in industrial settings where the use of IAPWS-IF97 is desired for other reasons.

Sharqawy et al. [11] published a review of correlations and experimental data available for the calculation of thermophysical properties of seawater. In addition, those authors developed regression equations for the calculation of different properties of seawater as functions of temperature and salinity only. These relatively simple equations have a limited range of application due to their pressure independence. Also, their equations were correlated separately, so they are not mutually thermodynamically consistent, which may conceivably cause problems in process calculations. As a consequence, it may be preferable to use the more accurate algorithms of IAPWS-08 in combination with IAPWS-IF97 to calculate the thermodynamic properties of seawater for industrial use.

In this paper, the terms "seawater" and "brine" refer to a solution of sea salt in liquid water; the term "sea salt" refers to a mixed solute with the chemical Reference Composition described in [12]; "brine-vapor mixture" is a two-phase composite of brine with water vapor, and "brine-ice mixture" is a two-phase composite of brine with ice Ih. For water vapor, the IAPWS "Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (IAPWS-IF97) [7,8] is used, and for ice Ih, the IAPWS "Revised Release on the Equation of State 2006 for H₂O Ice Ih" (for short, IAPWS-06) [13,14] is used. Note that salinity *S* here refers to the Absolute Salinity of seawater which differs from the

Practical Salinity that is obtained from common salinometers or oceanographic devices [1,4,12,15].

2. Thermodynamic properties of seawater

2.1. The fundamental equation of state for seawater

The equation of state of IAPWS for the liquid mixture "seawater" [1–4] is in the form of the specific Gibbs free energy as a function of pressure p, temperature T, and salinity S, and reads

$$g(p, T, S) = g^{W}(p, T) + g^{S}(p, T, S)$$
(1)

As described in the following Sections 2.2 and 2.3, the water contribution $g^{W}(p,T)$ is computed from the Industrial Formulation IAPWS-IF97, and the saline contribution $g^{S}(p,T,S)$ from the IAPWS-08 seawater formulation. The temperature *T* is based on the International Temperature Scale ITS-90 [16,17]. Salinity *S* is the mass fraction of sea salt in seawater

$$S = \frac{m_{\rm S}}{m} \tag{2}$$

where m_S is the mass of sea salt and m is the mass of the mixture seawater. The composition of sea salt is assumed to be the Reference Composition for IAPSO Standard Seawater [12]. For pure water with S = 0, the saline contribution vanishes, $g^S(p,T,0) = 0$.

Using salinity *S*, the molality of seawater, defined as the moles of the solute sea salt per mass of the solvent water, is computed as

$$b = \frac{S}{M_{\rm S}(1-S)} \tag{3}$$

where $M_{\rm S} = 31.403~821~8~{\rm kg}~{\rm kmol}^{-1}$ is the molar mass, or the "mole weighted average atomic weight of the elements of sea salt" as given by Millero et al. [12].

All thermodynamic properties and derivatives can be calculated from Eq. (1) by using the appropriate combinations of the Gibbs free energy equation and its derivatives with respect to p, T, and S. Relations between relevant thermodynamic properties and g(p,T,S), Eq. (1), and its derivatives are summarized in Table 1. To assist the user in computer-program verification, test values are given in Table A1, which contains values for the specific Gibbs free energy, g(p,T,S), together with the corresponding derivatives and some thermodynamic properties. For an easy check of the Gibbs free energy functions of the water contribution $g^{W}(p,T)$ and of the saline contribution $g^{S}(p,T,S)$, the results of both contributions are reported separately in Table A1.

In addition, any thermodynamic derivative of the variables p, T, v, s, u, h, f, and g, for example, $(\partial h/\partial p)_{v}$, can be determined from algebraic combinations of v, s, c_p , α_v , and κ_T as described in detail in the IAPWS Advisory Note No. 3 [19] and comprehensively in [20].

Backward functions, which use other input variables, can also be calculated by iteration from the explicit equations listed in Table 1. For example, for given pressure p, specific enthalpy h, and salinity S, the temperature T is calculated from the equation for h(p,T,S) by iteration.

2.2. Water contribution

The water contribution of Eq. (1) is calculated from the specific Gibbs free energy equation of IAPWS-IF97 region 1 (liquid water) [7,8]

$$\frac{g^{\rm W}(p,T)}{R_{\rm W}T} = \gamma(\pi,\tau) = \sum_{i=1}^{34} n_i (7.1-\pi)^{I_i} (\tau - 1.222)^{J_i}$$
(4)

where the reduced Gibbs free energy is $\gamma = g^{W}/(R_WT)$, the reduced pressure is $\pi = p/p^*$ and the inverse reduced temperature is $\tau = T^*/T$ with $p^* = 16.53$ MPa, and $T^* = 1,386$ K. $R_W = 0.461526$ kJ kg⁻¹ K⁻¹ is the specific gas constant of water given in [7]. The coefficients n_i and the exponents I_i and J_i are given in Table 2. The equations of the Industrial Formulation IAPWS-IF97 are also described in various steam-table books [20–24].

Table 3 contains the relations for determining $g^{W}(p,T)$ and its pressure and temperature derivatives from the reduced Gibbs free energy equation $\gamma(\pi,\tau)$ and its derivatives. The equations for the derivatives of $\gamma(\pi,\tau)$ are taken from Table 4. With the equations of Table 3, the water contributions in the equations of Table 1 can be determined.

Note that for temperatures less than the melting (freezing) temperature of pure water [25,26], or greater than the saturation (boiling) temperature of pure water [7,8], the IAPWS-IF97 Gibbs free energy equation of liquid water region 1, Eq. (4), is evaluated at conditions where the liquid phase of pure water is metastable. Investigations have shown that Eq. (4) can be used at temperatures in this metastable region and even below 273.15 K, the minimum temperature of IAPWS-IF97. The accuracy of the thermodynamic properties of seawater calculated from IAPWS-IF97 is sufficient for industrial calculations. Section 6 contains a description of the deviations of IAPWS-IF97 from IAPWS-95.

Table 1

Relations between the relevant thermod	lynamic properties	of seawater and g	(<i>p,T,S</i>), Eq.	(1), and its derivatives ^{a,b}

Property	Relation
Specific volume	$v(p,T,S) = g_p$
v	
Density	$\rho(p,T,S) = \frac{1}{q_{r}}$
$ ho = v^{-1}$	89
Specific internal energy	$u(p,T,S) = g - p g_p - T g_T$
u	
Specific enthalpy	$h(p,T,S) = g - T g_T$
h = u + pv	
Specific entropy	$s(p,T,S) = -g_T$
\$	
Specific isobaric heat capacity	$c_p(p,T,S) = -T g_{TT}$
$c_p = c_p = (\partial h / \partial T)_p$	$\left(q^{2}\right)$
Specific isochoric heat capacity	$c_v(p,T,S) = T\left(\frac{s_{pT}}{g_m} - g_{TT}\right)$
$c_v = (\partial u / \partial T)_v$	
Cubic isobaric expansion coefficient	$\alpha_v(p,T,S) = \frac{g_{pT}}{g_v}$
$\alpha_v = v^{-1} (\partial v / \partial T)_p$	or 2
Isothermal compressibility	$\kappa_T(p,T,S) = -rac{g_{pp}}{g_p}$
$\kappa_T = -v^{-1} (\partial v / \partial p)_T$	
Speed of sound	$w(p,T,S) = g_p \sqrt{\frac{g_{TT}}{(g_{rT}^2 - g_{pp}g_{TT})}}$
$w = v\sqrt{-(\partial p/\partial v)_s}$	
Isentropic exponent	$\kappa(p,T,S) = \frac{1}{p} \frac{8p81T}{(g_{rT}^2 - g_{m}g_{TT})}$
$\kappa = -vp^{-1}(\partial p/\partial v)_s$, (op) (op)
Relative chemical potential	$\mu(p,T,S) = g_S$
$\mu = (\partial g / \partial S)_{p,T}$	
Chemical potential of water	$\mu_{\rm W}(p,T,S) = g - S g_S$
$\mu_{\rm W} = g - S \mu$	
Chemical potential of sea salt	$\mu_{\mathrm{S}}(p,T,S) = g + (1-S)g_S$
$\mu_{\rm S} = \mu + \mu_{\rm W}$	(x, T, C) $(g^{s}-Sg_{s})$
$h = (aW \dots b^{-1} D^{-1} T^{-1})$	$\varphi(p, T, S) \equiv -\frac{\omega}{bR_{\rm m}T}$
$ \varphi = (g - \mu_W)v - \kappa_m I $ Haling contraction coefficient	$B(n, T, S) = \frac{g_{pS}}{g_{pS}}$
$B = a^{-1} (\partial a / \partial S)$	$p(p, 1, 3) = -\frac{1}{g_p}$
$\frac{p-p}{(0p/03)_{p,T}}$	
${}^{a}g_{p} = \left(\frac{\partial g}{\partial p}\right)_{T,c} = \left(\frac{\partial g^{W}}{\partial p}\right)_{T} + \left(\frac{\partial g^{S}}{\partial p}\right)_{T,c}, g_{pp} = \left(\frac{\partial^{2}g}{\partial p^{2}}\right)_{T,c} = \left(\frac{\partial^{2}g^{W}}{\partial p^{2}}\right)_{T,c}, g_{T} = \left(\frac{\partial g}{\partial T}\right)_{p,c} = \left(\frac{\partial g^{W}}{\partial T}\right)_{p,c},$	$g_{TT} = \left(\frac{\partial^2 g}{\partial T^2}\right)_{n,s} = \left(\frac{\partial^2 g^W}{\partial T^2}\right)_n + \left(\frac{\partial^2 g^S}{\partial T^2}\right)_{n,s'}$

 $g_{pT} = \left(\frac{\partial^2 g^{S}}{\partial p \partial T}\right)_{S} = \left(\frac{\partial^2 g^{S}}{\partial p \partial T}\right)_{S'} g_{S} = \left(\frac{\partial g^{S}}{\partial s}\right)_{p,T} = \left(\frac{\partial g^{S}}{\partial s}\right)_{p,T} = \left(\frac{\partial^2 g^{S}}{\partial p \partial S}\right)_{T} = \left(\frac{\partial^2 g^{S}}{\partial p \partial S}\right)_{T} = \left(\frac{\partial^2 g^{S}}{\partial p \partial S}\right)_{T}$ ^bThe value of the molar gas constant $R_{\rm m} = 8.314 472 \text{ kJ kmol}^{-1} \text{ K}^{-1}$ was taken from CODATA 2006 [18] and is used in the 2008 IAPWS formulation for seawater.

Numerical check values for the water contribution computed from $g^{W}(p,T)$, Eq. (4), and its derivatives, for the seawater properties computed from the Gibbs function g(p,T,S), Eq. (1), and its derivatives as well as for selected seawater properties of Table 1 at given points (p,T,S) are given in Table A1.

2.3. Saline contribution

The saline contribution of Eq. (1) is calculated from the Gibbs free energy equation of the IAPWS formulation for seawater properties [1].

$$\frac{g^{S}(p,T,S)}{g^{*}} = \sum_{k=0}^{5} \sum_{j=0}^{6} \left(n_{1jk} \xi^{2} \ln \xi + \sum_{i=2}^{7} n_{ijk} \xi^{i} \right) (\theta - \theta_{0})^{j} (\pi - \pi_{0})^{k}$$
(5)

where the reduced pressure is $\pi = p/p^*$, the reduced atmospheric pressure is $\pi_0 = p_0/p^*$, the reduced temperature is $\theta = T/T^*$, the reduced Celsius zero-point temperature is $\theta_0 = T_0/T^*$, and the square root of the reduced salinity is $\xi = \sqrt{S/S^*}$. The values of the

			1			0.	, 0 , I . ,
i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	0	-2	0.146 329 712 131 67	18	2	3	-0.441 418 453 308 46×10^{-5}
2	0	-1	-0.845 481 871 691 14	19	2	17	$-0.726 949 962 975 94 \times 10^{-15}$
3	0	0	$-0.375\ 636\ 036\ 720\ 40 \times 10^{1}$	20	3	-4	$-0.31679644845054 \times 10^{-4}$
4	0	1	$0.338\ 551\ 691\ 683\ 85\times 10^1$	21	3	0	$-0.282\ 707\ 979\ 853\ 12 \times 10^{-5}$
5	0	2	-0.957 919 633 878 72	22	3	6	$-0.852\ 051\ 281\ 201\ 03 \times 10^{-9}$
6	0	3	0.157 720 385 132 28	23	4	-5	$-0.224 252 819 080 00 \times 10^{-5}$
7	0	4	-0.166 164 171 995 01×10^{-1}	24	4	-2	$-0.651\ 712\ 228\ 956\ 01 \times 10^{-6}$
8	0	5	$0.812\ 146\ 299\ 835\ 68 \times 10^{-3}$	25	4	10	$-0.143 417 299 379 24 \times 10^{-12}$
9	1	-9	$0.283 \ 190 \ 801 \ 238 \ 04 \times 10^{-3}$	26	5	-8	$-0.405\ 169\ 968\ 601\ 17 \times 10^{-6}$
10	1	-7	-0.607 063 015 658 74 $\times 10^{-3}$	27	8	-11	-0.127 343 017 416 41×10^{-8}
11	1	-1	-0.189 900 682 184 19×10^{-1}	28	8	-6	-0.174 248 712 306 34×10^{-9}
12	1	0	-0.325 297 487 705 05×10^{-1}	29	21	-29	-0.687 621 312 955 31×10^{-18}
13	1	1	-0.218 417 171 754 14×10^{-1}	30	23	-31	$0.144\ 783\ 078\ 285\ 21\times 10^{-19}$
14	1	3	-0.528 383 579 699 30 $\times 10^{-4}$	31	29	-38	$0.263\ 357\ 816\ 627\ 95 \times 10^{-22}$
15	2	-3	-0.471 843 210 732 67 × 10 ⁻³	32	30	-39	-0.119 476 226 400 71 \times 10 ⁻²²
16	2	0	$-0.300\ 017\ 807\ 930\ 26 \times 10^{-3}$	33	31	-40	$0.182\ 280\ 945\ 814\ 04\times 10^{-23}$
17	2	1	$0.476\ 613\ 939\ 069\ 87\times 10^{-4}$	34	32	-41	-0.935 370 872 924 58×10^{-25}

Numerical values of the coefficients and exponents of the dimensionless Gibbs free energy for region 1, Eq. (4)

Table 2

Relations for determining $g^{W}(p,T)$ and pressure and temperature derivatives from the reduced Gibbs free energy equation $\gamma(\pi,\tau)$ and its derivatives of IAPWS-IF97 region 1^a

$$\begin{split} g^{\mathrm{W}} &= R_{\mathrm{W}}T\gamma, \quad \left(\frac{\partial g^{\mathrm{W}}}{\partial p}\right)_{T} = \frac{R_{\mathrm{W}}T}{p}\pi\gamma_{\pi}, \quad \left(\frac{\partial^{2}g^{\mathrm{W}}}{\partial p^{2}}\right)_{T} = \frac{R_{\mathrm{W}}T}{p^{2}}\pi^{2}\gamma_{\pi\pi}, \\ \left(\frac{\partial g^{\mathrm{W}}}{\partial T}\right)_{p} &= R_{\mathrm{W}}(\gamma - \tau\gamma_{\tau}), \quad \left(\frac{\partial^{2}g^{\mathrm{W}}}{\partial T^{2}}\right)_{p} = \frac{R_{\mathrm{W}}}{T}\tau^{2}\gamma_{\tau\tau}, \quad \left(\frac{\partial^{2}g^{\mathrm{W}}}{\partial p\partial T}\right) = \frac{R_{\mathrm{W}}\pi}{p}(\gamma_{\pi} - \tau\gamma_{\pi\tau}) \\ \overline{}^{a}\gamma_{\pi} &= \left(\frac{\partial\gamma}{\partial \pi}\right)_{\tau}, \quad \gamma_{\pi\pi} = \left(\frac{\partial^{2}\gamma}{\partial \pi^{2}}\right)_{\tau}, \quad \gamma_{\tau} = \left(\frac{\partial\gamma}{\partial \tau}\right)_{\pi}, \quad \gamma_{\tau\tau} = \left(\frac{\partial^{2}\gamma}{\partial \tau^{2}}\right)_{\pi}, \quad \gamma_{\pi\tau} = \left(\frac{\partial^{2}\gamma}{\partial \tau\partial \tau}\right). \end{split}$$

Table 4 The dimensionless Gibbs free energy γ and its derivatives^a according to Eq. (4)

$$\begin{split} \gamma &= \sum_{i=1}^{34} n_i (7.1 - \pi)^{I_i} (\tau - 1.222)^{I_i} \\ \gamma_{\pi} &= -\sum_{i=1}^{34} n_i I_i (7.1 - \pi)^{I_i - 1} (\tau - 1.222)^{I_i} \quad \gamma_{\pi\pi} = \sum_{i=1}^{34} n_i I_i (I_i - 1) (7.1 - \pi)^{I_i - 2} (\tau - 1.222)^{I_i} \\ \gamma_{\tau} &= \sum_{i=1}^{34} n_i (7.1 - \pi)^{I_i} J_i (\tau - 1.222)^{I_i - 1} \quad \gamma_{\tau\tau} = \sum_{i=1}^{34} n_i (7.1 - \pi)^{I_i} J_i (J_i - 1) (\tau - 1.222)^{I_i - 2} \\ \gamma_{\pi\tau} &= -\sum_{i=1}^{34} n_i I_i (7.1 - \pi)^{I_i - 1} J_i (\tau - 1.222)^{I_i - 1} \\ {}^a \gamma_{\pi} &= \left(\frac{\partial \gamma}{\partial \pi}\right)_{\tau}, \quad \gamma_{\pi\pi} = \left(\frac{\partial^2 \gamma}{\partial \pi^2}\right)_{\tau}, \quad \gamma_{\tau} = \left(\frac{\partial \gamma}{\partial \tau}\right)_{\pi}, \quad \gamma_{\pi\tau} = \left(\frac{\partial^2 \gamma}{\partial \pi^2}\right)_{\pi}. \end{split}$$

constants $g^* = 10^{-3}$ kJ kg⁻¹, $p^* = 100$ MPa, $T^* = 40$ K, and $S^* = 40/35 \times S_n$ were taken from Feistel [4] while the normal salinity of seawater $S_n = 0.035$ 165 04 kg kg⁻¹ was taken from Millero et al. [12]. The constants $p_0 = 0.101$ 325 MPa [27] and $T_0 = 273.15$ K [16], respectively, are the standard atmospheric pressure and the Celsius zero point. The coefficients n_{ijk} are given in Table 5.

Table 5. Table 6 contains the relations for determining the following derivatives:

$$\begin{split} g_{p}^{\mathrm{S}} &= \left(\frac{\partial g^{\mathrm{S}}}{\partial p}\right)_{T,S}, \quad g_{pp}^{\mathrm{S}} &= \left(\frac{\partial^{2} g^{\mathrm{S}}}{\partial p^{2}}\right)_{T,S}, \quad g_{T}^{\mathrm{S}} &= \left(\frac{\partial g^{\mathrm{S}}}{\partial T}\right)_{p,S}, \\ g_{TT}^{\mathrm{S}} &= \left(\frac{\partial^{2} g^{\mathrm{S}}}{\partial T^{2}}\right)_{p,S}, \quad g_{pT}^{\mathrm{S}} &= \left(\frac{\partial^{2} g^{\mathrm{S}}}{\partial p \partial T}\right)_{S}, \quad g_{S}^{\mathrm{S}} &= \left(\frac{\partial g^{\mathrm{S}}}{\partial S}\right)_{p,T}, \\ g_{pS}^{\mathrm{S}} &= \left(\frac{\partial^{2} g^{\mathrm{S}}}{\partial p \partial S}\right)_{T} \end{split}$$

from Eq. (5) which are used in Table 1.

i	j	k	n _{ijk}	i	j	k	n_{ijk}
1	0	0	$0.581\ 281\ 456\ 626\ 732\times 10^4$	2	2	1	$-0.860\ 764\ 303\ 783\ 977\times 10^3$
2	0	0	$0.141\ 627\ 648\ 484\ 197\times 10^4$	3	2	1	$0.383\ 058\ 066\ 002\ 476 \times 10^3$
3	0	0	$-0.243\ 214\ 662\ 381\ 794 \times 10^4$	2	3	1	$0.694\ 244\ 814\ 133\ 268 \times 10^3$
4	0	0	$0.202\ 580\ 115\ 603\ 697\times 10^4$	3	3	1	$-0.460 \ 319 \ 931 \ 801 \ 257 \times 10^3$
5	0	0	$-0.109\ 166\ 841\ 042\ 967\times 10^4$	2	4	1	-0.297 728 741 987 187×10^3
6	0	0	$0.374\ 601\ 237\ 877\ 840 \times 10^3$	3	4	1	$0.234\ 565\ 187\ 611\ 355 \times 10^3$
7	0	0	$-0.485 891 069 025 409 \times 10^{2}$	2	0	2	$0.384\ 794\ 152\ 978\ 599 \times 10^3$
1	1	0	$0.851\ 226\ 734\ 946\ 706 \times 10^3$	3	0	2	$-0.522\ 940\ 909\ 281\ 335 \times 10^2$
2	1	0	$0.168\ 072\ 408\ 311\ 545 \times 10^3$	4	0	2	-0.408 193 978 912 261 $\times10^{1}$
3	1	0	$-0.493 \ 407 \ 510 \ 141 \ 682 \times 10^3$	2	1	2	$-0.343 956 902 961 561 \times 10^3$
4	1	0	$0.543 835 333 000 098 \times 10^3$	3	1	2	$0.831\ 923\ 927\ 801\ 819 \times 10^2$
5	1	0	$-0.196\ 028\ 306\ 689\ 776 \times 10^3$	2	2	2	$0.337 \ 409 \ 530 \ 269 \ 367 \times 10^3$
6	1	0	$0.367\ 571\ 622\ 995\ 805 \times 10^2$	3	2	2	$-0.541 917 262 517 112 \times 10^{2}$
2	2	0	$0.880\ 031\ 352\ 997\ 204 \times 10^3$	2	3	2	$-0.204 \ 889 \ 641 \ 964 \ 903 \times 10^3$
3	2	0	$-0.430\ 664\ 675\ 978\ 042 \times 10^2$	2	4	2	$0.747\ 261\ 411\ 387\ 560 \times 10^2$
4	2	0	$-0.685\ 572\ 509\ 204\ 491 \times 10^2$	2	0	3	$-0.965\ 324\ 320\ 107\ 458 \times 10^2$
2	3	0	$-0.225\ 267\ 649\ 263\ 401\times 10^3$	3	0	3	$0.680\ 444\ 942\ 726\ 459 \times 10^2$
3	3	0	$-0.100\ 227\ 370\ 861\ 875 \times 10^2$	4	0	3	-0.301 755 111 971 161 \times 10 ²
4	3	0	$0.493\ 667\ 694\ 856\ 254 \times 10^2$	2	1	3	$0.124\ 687\ 671\ 116\ 248 \times 10^3$
2	4	0	$0.914\ 260\ 447\ 751\ 259 \times 10^2$	3	1	3	$-0.294 830 643 494 290 \times 10^{2}$
3	4	0	0.875 600 661 808 945	2	2	3	-0.178 314 556 207 638×10^3
4	4	0	$-0.171 \ 397 \ 577 \ 419 \ 788 \times 10^2$	3	2	3	$0.256\ 398\ 487\ 389\ 914 \times 10^2$
2	5	0	$-0.216\ 603\ 240\ 875\ 311 \times 10^2$	2	3	3	$0.113\ 561\ 697\ 840\ 594 \times 10^3$
4	5	0	$0.249\ 697\ 009\ 569\ 508\times 10^1$	2	4	3	$-0.364 872 919 001 588 \times 10^{2}$
2	6	0	$0.213\ 016\ 970\ 847\ 183 \times 10^{1}$	2	0	4	$0.158\ 408\ 172\ 766\ 824 \times 10^2$
2	0	1	$-0.331\ 049\ 154\ 044\ 839\times 10^4$	3	0	4	-0.341 251 932 441 282 $\times 10^{1}$
3	0	1	$0.199\ 459\ 603\ 073\ 901 \times 10^3$	2	1	4	$-0.316\ 569\ 643\ 860\ 730\times 10^2$
4	0	1	$-0.547 \ 919 \ 133 \ 532 \ 887 \times 10^2$	2	2	4	$0.442\ 040\ 358\ 308\ 000 \times 10^2$
5	0	1	$0.360\ 284\ 195\ 611\ 086 \times 10^2$	2	3	4	-0.111 282 734 326 413×10^2
2	1	1	0.729 116 529 735 046 × 10^3	2	0	5	-0.262 480 156 590 992 $\times 10^{1}$
3	1	1	-0.175 292 041 186 547 $\times 10^3$	2	1	5	$0.704\ 658\ 803\ 315\ 449\times 10^1$
4	1	1	$-0.226\ 683\ 558\ 512\ 829 \times 10^2$	2	2	5	$-0.792\ 001\ 547\ 211\ 682 \times 10^{1}$

Coefficients of the saline contribution of the Gibbs function, as given by Eq. (5). Coefficients not contained in this table have the value $n_{iik} = 0$

Table 6 Equations for the saline contribution of the specific Gibbs free energy, Eq. (5), and its derivatives

$$\begin{split} g^{\rm S}(p,T,S) &= g^* \sum_{k=0}^{5} \sum_{j=0}^{6} (n_{1jk}\xi^2 \ln \xi + \sum_{i=2}^{7} n_{ijk}\xi^i) (\theta - \theta_0)^j (\pi - \pi_0)^k \\ g^{\rm S}_T(p,T,S) &= \frac{g^*}{T^*} \sum_{k=0}^{5} \sum_{j=1}^{6} j(n_{1jk}\xi^2 \ln \xi + \sum_{i=2}^{7} n_{ijk}\xi^i) (\theta - \theta_0)^{j-1} (\pi - \pi_0)^k \\ g^{\rm S}_p(p,T,S) &= \frac{g^*}{p^*} \sum_{k=1}^{5} \sum_{j=0}^{6} \sum_{i=2}^{7} kn_{ijk}\xi^i (\theta - \theta_0)^j (\pi - \pi_0)^{k-1} \\ g^{\rm S}_{TT}(p,T,S) &= \frac{g^*}{(T^*)^2} \sum_{k=0}^{5} \sum_{j=1}^{6} \sum_{i=2}^{7} j(j-1)n_{ijk}\xi^i (\theta - \theta_0)^{j-2} (\pi - \pi_0)^k \\ g^{\rm S}_{pT}(p,T,S) &= \frac{g^*}{(T^*)^2} \sum_{k=1}^{5} \sum_{j=1}^{6} \sum_{i=2}^{7} jkn_{ijk}\xi^i (\theta - \theta_0)^{j-1} (\pi - \pi_0)^{k-1} \\ g^{\rm S}_{pp}(p,T,S) &= \frac{g^*}{(p^*)^2} \sum_{k=2}^{5} \sum_{j=0}^{6} \sum_{i=2}^{7} k(k-1)n_{ijk}\xi^i (\theta - \theta_0)^j (\pi - \pi_0)^{k-2} \\ g^{\rm S}_{S}(p,T,S) &= \frac{g^*}{2S^*} \sum_{k=1}^{5} \sum_{j=0}^{6} \sum_{i=0}^{7} k(k-1) + \sum_{i=2}^{7} in_{ijk}\xi^{i-2}] (\theta - \theta_0)^j (\pi - \pi_0)^k \\ g^{\rm S}_{pS}(p,T,S) &= \frac{g^*}{2S^*p^*} \sum_{k=1}^{5} \sum_{j=0}^{6} \sum_{i=2}^{7} kn_{ijk}\xi^{i-2} (\theta - \theta_0)^j (\pi - \pi_0)^{k-1} \end{split}$$

Numerical check values for the saline contribution computed from $g^{S}(p,T,S)$, Eq. (5), and its derivatives are given in Table A1.

3. Colligative properties

3.1. Phase equilibrium between seawater and water vapor

For computation of the equilibrium between seawater and water vapor, the required thermodynamic condition is the equality of the chemical potential of H_2O in seawater, μ_W , with the specific Gibbs free energy of water vapor, g^{vap} . In thermodynamic equilibrium, the amount of sea salt in the vapor phase is assumed to be negligible. Here, chemical potentials are expressed on a mass basis, which is the usual (molar) chemical potential divided by molar mass.

For the phase equilibrium between seawater and water vapor, the following condition must be fulfilled:

$$\mu_{\rm W}(p,T,S) = g^{\rm vap}(p,T) \tag{6}$$

which can be written equivalently in terms of the osmotic coefficient ϕ as

$$bR_{\rm m}T\phi(p,T,S) = g^{\rm W}(p,T) - g^{\rm vap}(p,T)$$
(7)

where $\mu_W(p,T,S)$ and $\phi(p,T,S)$ are from Table 1, and $g^W(p,T)$ is from Eq. (4). The molality *b* is determined from Eq. (3) and the value of the molar gas constant $R_m = 8.314 472 \text{ kJ kmol}^{-1} \text{ K}^{-1}$ is taken from CODATA 2006 [18]. Note that the slightly different recently updated value of R_m [28] is not used here for consistency with IAPWS-08. The specific Gibbs free energy of water vapor $g^{\text{vap}}(p,T)$ is calculated from the Gibbs free energy equation of the IAPWS-IF97 region 2 (water vapor),

$$\frac{g^{\rm vap}(p,T)}{R_{\rm W}T} = \gamma(\pi,\tau) = \gamma^{\rm o}(\pi,\tau) + \gamma^{\rm r}(\pi,\tau)$$
(8)

with the ideal-gas contribution,

$$\gamma^{\mathrm{o}} = \ln \pi + \sum_{i=1}^{9} n_i^{\mathrm{o}} \tau^{J_i^{\mathrm{o}}}$$
⁽⁹⁾

and the residual contribution,

$$\gamma^{\rm r} = \sum_{i=1}^{43} n_i \, \pi^{I_i} (\tau - 0.5)^{I_i} \tag{10}$$

In Eqs. (8)–(10), the reduced Gibbs free energy is $\gamma = g^{\text{vap}}/(R_{\text{W}}T)$, the reduced pressure is $\pi = p/p^*$, and the inverse reduced temperature is $\tau = T^*/T$ with $p^* = 1$ MPa and $T^* = 540$ K. The specific gas constant of water $R_{\text{W}} = 0.461526$ kJ kg⁻¹ K⁻¹ is given in [7]. The coefficients n_i^o and n_i , and the exponents I_i , J_i^o , and J_i are given in Tables 7 and 8.

All thermodynamic properties of pure water vapor can be derived from Eq. (8) by using the appropriate combinations of the ideal-gas contribution γ^{o} , Eq. (9), and the residual contribution γ^{r} , Eq. (10), of the dimensionless Gibbs free energy and their derivatives. All required derivatives of the ideal-gas contribution and of the residual contribution of the dimensionless Gibbs free energy are given in Tables 9 and 10, respectively. Relations between the relevant thermodynamic properties and γ^{o} and γ^{r} and their derivatives are summarized in Table 11.

Using Eqs. (6) or (7), the boiling temperature of seawater $T = T_b$ can be calculated by iteration from pressure p and salinity S, or the boiling pressure of seawater $p = p_b$ from temperature T and salinity S, or the brine salinity of seawater $S = S_b$ from p and T. At a given equilibrium state between seawater and water vapor, the properties of the seawater (brine) phase are calculated from Table 1 and the properties of the water vapor from Table 11.

At brine-vapor equilibrium, vapor is sub-saturated; i.e. at a given pressure, the temperature is higher than the saturation (boiling) temperature of pure water, and the pressure at a given temperature is below the saturation (boiling) pressure of pure water.

Note that the specific Gibbs free energy of liquid water $g^{W}(p,T)$ in Eq. (7) is evaluated from IAPWS-IF97 at conditions where the liquid phase of pure water is metastable. Due to salinity, the boiling-point elevation can be up to 2 K (see Feistel [4] for experimental results from the literature). Investigations have shown that Eq. (7) can reasonably be extrapolated to these metastable states.

Table A2 shows selected boiling temperatures for given pressures and salinities.

3.2. Phase equilibrium between seawater and ice

For the phase equilibrium between seawater and ice Ih, the following condition must be fulfilled:

$$\mu_{\rm W}(p,T,S) = g^{\rm Ih}(p,T) \tag{11}$$

or equivalently:

Numerical values of the coefficients and exponents of the ideal-gas contribution γ^{0} of the dimensionless Gibbs free energy for region 2, Eq. (9)

i	J_i^{o}	n_i^0	i	J_i^{o}	n_i^{o}
1	0	-0.969 276 865 002 17×10^{1}	6	-2	$0.142\ 408\ 191\ 714\ 44 \times 10^{1}$
2	1	$0.100 866 559 680 18 \times 10^2$	7	-1	-0.438 395 113 194 50×10^{1}
3	-5	$-0.560 879 112 830 20 \times 10^{-2}$	8	2	-0.284 086 324 607 72
4	-4	$0.714 \ 527 \ 380 \ 814 \ 55 \times 10^{-1}$	9	3	$0.212\ 684\ 637\ 533\ 07 \times 10^{-1}$
5	-3	-0.407 104 982 239 28			

Table 8

Numerical values of the coefficients and exponents of the residual contribution γ^{r} of the dimensionless Gibbs free energy for region 2, Eq. (10)

i	I_i	J _i	n _i	i	I_i	J _i	n _i
1	1	0	-0.177 317 424 732 13×10^{-2}	23	7	0	$-0.590\ 595\ 643\ 242\ 70 \times 10^{-17}$
2	1	1	$-0.178 348 622 923 58 \times 10^{-1}$	24	7	11	-0.126 218 088 991 01×10^{-5}
3	1	2	$-0.459 960 136 963 65 \times 10^{-1}$	25	7	25	$-0.389 468 424 357 39 \times 10^{-1}$
4	1	3	$-0.575 812 590 834 32 \times 10^{-1}$	26	8	8	$0.112\ 562\ 113\ 604\ 59\times 10^{-10}$
5	1	6	$-0.503\ 252\ 787\ 279\ 30 \times 10^{-1}$	27	8	36	-0.823 113 408 979 98×10^{1}
6	2	1	-0.330 326 416 702 03×10^{-4}	28	9	13	$0.198\ 097\ 128\ 020\ 88 \times 10^{-7}$
7	2	2	$-0.189\ 489\ 875\ 163\ 15 \times 10^{-3}$	29	10	4	$0.104\ 069\ 652\ 101\ 74\times 10^{-18}$
8	2	4	$-0.393 927 772 433 55 \times 10^{-2}$	30	10	10	$-0.102 347 470 959 29 \times 10^{-12}$
9	2	7	$-0.437 972 956 505 73 \times 10^{-1}$	31	10	14	-0.100 181 793 795 11×10^{-8}
10	2	36	$-0.266\ 745\ 479\ 140\ 87\times 10^{-4}$	32	16	29	$-0.808 \ 829 \ 086 \ 469 \ 85 \times 10^{-10}$
11	3	0	$0.204 817 376 923 09 \times 10^{-7}$	33	16	50	0.106 930 318 794 09
12	3	1	$0.438\ 706\ 672\ 844\ 35 \times 10^{-6}$	34	18	57	-0.336 622 505 741 71
13	3	3	$-0.32277677238570 \times 10^{-4}$	35	20	20	$0.891 \ 858 \ 453 \ 554 \ 21 \times 10^{-24}$
14	3	6	$-0.150\ 339\ 245\ 421\ 48 \times 10^{-2}$	36	20	35	$0.306\ 293\ 168\ 762\ 32 \times 10^{-12}$
15	3	35	$-0.406\ 682\ 535\ 626\ 49 \times 10^{-1}$	37	20	48	$-0.420\ 024\ 676\ 982\ 08 \times 10^{-5}$
16	4	1	-0.788 473 095 593 67 \times 10 ⁻⁹	38	21	21	$-0.590\ 560\ 296\ 856\ 39 \times 10^{-25}$
17	4	2	$0.127 \ 907 \ 178 \ 522 \ 85 \times 10^{-7}$	39	22	53	0.378 269 476 134 57 $\times 10^{-5}$
18	4	3	$0.482\ 253\ 727\ 185\ 07 \times 10^{-6}$	40	23	39	-0.127 686 089 346 81×10^{-14}
19	5	7	$0.229\ 220\ 763\ 376\ 61 \times 10^{-5}$	41	24	26	0.730 876 105 950 61×10^{-28}
20	6	3	$-0.167 \ 147 \ 664 \ 510 \ 61 \times 10^{-10}$	42	24	40	$0.554 \ 147 \ 153 \ 507 \ 78 \times 10^{-16}$
21	6	16	-0.211 714 723 213 55×10^{-2}	43	24	58	$-0.943 697 072 412 10 \times 10^{-6}$
22	6	35	$-0.238 \ 957 \ 419 \ 341 \ 04 \times 10^2$				

Table 9

The ideal-gas contribution γ^{0} of the dimensionless Gibbs free energy and its derivatives^a according to Eq. (9)

$\overline{\gamma^{\mathrm{o}}} = \ln \pi + \sum_{i=1}^{9} n_i^{\mathrm{o}} \tau_i^{\mathrm{o}}$	$\gamma^{\mathrm{o}}_{\mathrm{ au}}=0+\sum_{i=1}^{9}n^{\mathrm{o}}_{i}J^{\mathrm{o}}_{i} au^{J^{\mathrm{o}}_{i}}-1$
$\gamma^{\mathrm{o}}_{\pi}=1/\pi+0$	$\gamma^{o}_{\tau\tau} = 0 + \sum_{i=1}^{9} n^{o}_{i} J^{o}_{i} (J^{o}_{i} - 1) \tau^{J^{o}_{i} - 2}$
$\gamma^{\mathrm{o}}_{\pi\pi}=-1/\pi^2+0$	$\gamma^{\mathrm{o}}_{\pi au}=0+0$
$\overline{{}^{\mathbf{o}}_{\mathbf{\eta}} = \begin{pmatrix} \frac{\partial \gamma^{\mathbf{o}}}{\partial \pi} \end{pmatrix}_{\mathbf{\tau}}}, \gamma^{\mathbf{o}}_{\pi\pi} = \begin{pmatrix} \frac{\partial^2 \gamma^{\mathbf{o}}}{\partial \pi^2} \end{pmatrix}_{\mathbf{\tau}}, \gamma^{\mathbf{o}}_{\mathbf{\tau}} = \begin{pmatrix} \frac{\partial \gamma^{\mathbf{o}}}{\partial \tau} \end{pmatrix}_{\pi}, \gamma^{\mathbf{o}}_{\tau\tau} = \begin{pmatrix} \frac{\partial^2 \gamma^{\mathbf{o}}}{\partial \tau^2} \end{pmatrix}_{\pi}, \gamma^{\mathbf{o}}_{\pi\tau} = \begin{pmatrix} \frac{\partial^2 \gamma^{\mathbf{o}}}{\partial \pi \partial \tau} \end{pmatrix}.$	

$$bR_{\rm m}T\phi(p,T,S) = g^{\rm W}(p,T) - g^{\rm lh}(p,T) \tag{12}$$

with $\mu_W(p,T,S)$ and $\phi(p,T,S)$ from Table 1 and $g^W(p,T)$ from Table 3. The molality *b* is determined from Eq. (3) and the value of the molar gas constant

 $R_{\rm m} = 8.314472 \,\text{kJ}\,\text{kmol}^{-1}\,\text{K}^{-1}$ is taken from [18]. In thermodynamic equilibrium, the amount of sea salt in the ice phase is assumed to be negligible. The specific Gibbs free energy of ice $g^{\text{Ih}}(p,T)$ is calculated from the Gibbs free energy equation of the IAPWS-06 Release [13]:

The residual contribution γ^{r} of the dimensionless Gibbs free energy and its derivatives^a according to Eq. (10)

$\gamma^{ m r} = \sum_{i=1}^{43} n_i \pi^{I_i} (au - 0.5)^{I_i}$	$\gamma^{ m r}_{ au} = \sum_{i=1}^{43} n_i \; \pi^{I_i} J_i (au - 0.5)^{J_i - 1}$
$\gamma_{\pi}^{\mathrm{r}} = \sum_{i=1}^{43} n_i \ I_i \ \pi^{I_i - 1} (\tau - 0.5)^{J_i}$	$\gamma^{ m r}_{ au au} = \sum_{i=1}^{43} n_i \; \pi^{I_i} J_i (J_i - 1) (au - 0.5)^{J_i - 2}$
$\gamma^{\mathrm{r}}_{\pi\pi} = \sum_{i=1}^{43} n_i I_i (I_i - 1) \pi^{I_i - 2} (\tau - 0.5)^{J_i}$	$\gamma^{ m r}_{\pi au} = \sum_{i=1}^{43} n_i \ I_i \pi^{I_i - 1} J_i (au - 0.5)^{J_i - 1}$
$\overline{{}^{a}\gamma^{r}_{\pi} = \left(\frac{\partial \gamma^{t}}{\partial \pi}\right)_{\tau}}, \gamma^{r}_{\pi\pi} = \left(\frac{\partial^{2}\gamma^{t}}{\partial \pi^{2}}\right)_{\tau}, \gamma^{r}_{\tau} = \left(\frac{\partial \gamma^{t}}{\partial \tau}\right)_{\pi}, \gamma^{r}_{\tau\tau} = \left(\frac{\partial^{2}\gamma^{t}}{\partial \tau^{2}}\right)_{\pi}, \gamma^{r}_{\pi\tau} = \left(\frac{\partial^{2}\gamma^{t}}{\partial \pi \partial \tau}\right).$	

Table 11

Relations of thermodynamic properties to the ideal-gas contribution γ^{o} and the residual contribution γ^{r} of the dimensionless Gibbs free energy and their derivatives^a when using Eq. (8)

Property	Relation
Specific volume	$v(\pi, au) = rac{RT}{n} \pi \left(\gamma^o_\pi + \gamma^r_\pi ight)$
$v = (\partial g / \partial p)_T$, р (.,
Density	$ ho(\pi, au) = rac{p}{RT} rac{1}{\pi(\gamma^0 + \gamma^r)}$
$\rho = (\partial g / \partial p)_T^{-1}$	$\kappa(\gamma_{\pi}+\gamma_{\pi})$
Specific internal energy	$u(\pi, au) = RTig[auig(\gamma^o_ au+\gamma^r_ auig) - \piig(\gamma^o_\pi+\gamma^r_\piig)ig]$
$u = g - T(\partial g / \partial T)_{p} - p(\partial g / \partial p)_{T}$	
Specific entropy	$s (\pi, au) = R \left[au \left(\gamma^{\mathrm{o}}_{ au} + \gamma^{\mathrm{r}}_{ au} ight) - (\gamma^{\mathrm{o}} + \gamma^{\mathrm{r}}) ight]$
$s = -(\partial g/\partial T)_p$	
Specific enthalpy	$h(\pi, au)=RT auig(\gamma^{\mathrm{o}}_{ au}+\gamma^{\mathrm{r}}_{ au}ig)$
$h = g - T(\partial g / \partial T)_p$	
Specific isobaric heat capacity	$c_p(\pi, au) = -R au^2ig(\gamma^{ m o}_{ au au}+\gamma^{ m r}_{ au au}ig)$
$c_p = \left(\frac{\partial h}{\partial T}\right)_p$	[
Specific isochoric heat capacity	$c_{v}(\pi,\tau) = R \left -\tau^{2} \left(\gamma_{\tau\tau}^{o} + \gamma_{\tau\tau}^{r} \right) - \frac{(1+\pi\gamma_{\pi}-\tau\pi\gamma_{\pi\tau})}{1-\pi^{2}\gamma_{\tau\pi}^{e}} \right $
$c_v = (\partial u / \partial T)_v$	$\begin{bmatrix} 1 & 2 & -x \\ -x & -2 & -x \end{bmatrix}$
Speed of sound	$w(\pi, \tau) = \sqrt{RT rac{1+2\pi \gamma_{\pi}^{2} + \pi^{-} \gamma_{\pi}^{-2}}{(1-2\pi \tau)^{1} + (1+\pi \gamma_{\pi}^{r} - \tau \pi \gamma_{\pi}^{r})^{2}}}$
$w = v\sqrt{-(\partial p/\partial v)_s}$	$\bigvee (1 - \pi^2 \gamma_{\pi\pi}) + \frac{1}{\tau^2 (\gamma_0^2 + \gamma_{\pi\tau})}$
Isentropic exponent	$\kappa(\pi, au) = rac{1}{\pi(\gamma_{\sigma}^{a} + \gamma_{\pi}^{r})} rac{1 + 2\pi \gamma_{\pi} + \pi - \gamma_{\pi}}{(1 - 2\pi r)^{4} (1 + \pi \gamma_{\pi}^{r} - \pi \pi \gamma_{\pi \pi}^{r})^{2}}$
$\kappa = -vp^{-1}(\partial p/\partial v)_s$	$(1 - \pi^{-} \gamma_{\pi\pi}) + \frac{1}{\tau^{2} (\gamma_{\tau\tau}^{0} + \gamma_{\tau\tau}^{0})}$
Isobaric cubic expansion coefficient	$lpha_{v}(\pi, au)=rac{1}{T}rac{1+tr\gamma_{\pi}-tr\gamma_{\pi au}}{1+tr\gamma_{\pi}^{*}}$
$\alpha_v = v^{-1} (\partial v / \partial T)_p$	- 1 -2·r
Isothermal compressibility	$\kappa_T(\pi, au) = rac{1-\kappa}{p}rac{\gamma_{\pi\pi}}{1+\pi\gamma^t_\pi}$
$\kappa_T = -v^{-1} (\partial v / \partial p)_T$, · · · · ·
(2r) $(2r)$ $(2r)$ $(2r)$	(2.1) (2.0)

$${}^{a}\gamma_{\pi}^{r} = \left(\frac{\partial \gamma}{\partial \pi}\right)_{\tau}, \quad \gamma_{\pi\pi}^{r} = \left(\frac{\partial^{2}\gamma}{\partial \pi^{2}}\right)_{\tau}, \quad \gamma_{\tau}^{r} = \left(\frac{\partial \gamma}{\partial \tau}\right)_{\pi}, \quad \gamma_{\tau\tau}^{r} = \left(\frac{\partial^{2}\gamma'}{\partial \tau^{2}}\right)_{\pi}, \quad \gamma_{\pi\tau}^{r} = \left(\frac{\partial^{2}\gamma'}{\partial \pi \partial \tau}\right), \quad \gamma_{\tau}^{o} = \left(\frac{\partial \gamma}{\partial \tau}\right)_{\pi}, \quad \gamma_{\tau\tau}^{o} = \left(\frac{\partial^{2}\gamma'}{\partial \tau^{2}}\right)_{\pi}$$

$$\frac{g^{\text{lh}}(p,T)}{\mathcal{S}^*} = \gamma^{\text{lh}}(\pi,\theta) = \gamma_0(\pi) - \sigma_0\theta
+ \theta_t^{\text{W}} \text{Re} \left\{ \sum_{k=1}^2 \zeta_k \left[(\theta_k - \theta) \ln(\theta_k - \theta) + (\theta_k + \theta) \ln(\theta_k + \theta) - 2\theta_k \ln(\theta_k) - \frac{\theta^2}{\theta_k} \right] \right\}$$
(13)

with

$$\gamma_{0}(\pi) = \sum_{k=0}^{4} \gamma_{0k} (\pi - \pi_{0})^{k}$$
$$\zeta_{2}(\pi) = \sum_{k=0}^{2} \zeta_{2k} (\pi - \pi_{0})^{k} \text{ and}$$
$$\sigma_{0} = s_{0} T_{t}^{W} / g^{*}$$

where the reduced temperature is $\theta = T/T_t^W$, the reduced pressure is $\pi = p/p_t^W$, the reduced atmospheric pressure is $\pi_0 = p_0/p_t^W$, and the reduced

triple-point temperature is $\theta_t^W = T_t^W/T^*$. The triple-point temperature of water is $T_t^W = 273.16$ K [16], the triple-point pressure of water is $p_t^W = 611.657 \times 10^{-6}$ MPa [5], the standard atmospheric pressure is $p_0 = 0.101$ 325 MPa [27], the reducing specific Gibbs free energy is $g^* = 1$ kJ kg⁻¹, and the reducing temperature is $T^* = 1$ K. The real constants $\gamma_{00}-\gamma_{04}$ and s_0 as well as the complex constants θ_1 , θ_2 , ζ_1 , and $\zeta_{20}-\zeta_{22}$ are listed in Table 12. The complex logarithm in Eq. (13) should be taken as its principal value.

Thermodynamic properties can be derived from Eq. (13) using the appropriate combinations of the specific Gibbs free energy and its derivatives. All required derivatives of the specific Gibbs free energy

Coefficient	Real part	Imaginary part
200	$-0.632\ 020\ 233\ 335\ 886 \times 10^3$	
Y01	$0.655\ 022\ 213\ 658\ 955 \times\ 10^{-3}$	
Y02	$-0.189 \ 369 \ 929 \ 326 \ 131 \times 10^{-10}$	
702 703	$0.339\ 746\ 123\ 271\ 053 \times 10^{-17}$	
Y04	-0.556 464 869 058 991 $\times 10^{-24}$	
<i>S</i> ₀	-3.32733756492168 kJ kg ⁻¹ K ⁻¹	
$\hat{\theta_1}$	0.368 017 112 855 051×10^{-1}	$0.510~878~114~959~572 imes 10^{-1}$
θ_2	0.337 315 741 065 416	0.335 449 415 919 309
ζ ₁	$0.447\ 050\ 716\ 285\ 388\times 10^{-1}$	$0.656 876 847 463 481 \times 10^{-1}$
ζ20	$-0.725 974 574 329 220 \times 10^{-1}$	$-0.781\ 008\ 427\ 112\ 870 \times 10^{-1}$
ζ21	$-0.557\ 107\ 698\ 030\ 123 \times 10^{-7}$	$0.464\ 578\ 634\ 580\ 806 \times 10^{-7}$
ζ22	$0.234 \ 801 \ 409 \ 215 \ 913 \times 10^{-13}$	$-0.285\ 651\ 142\ 904\ 972 \times 10^{-13}$

Table 12 Coefficients of the specific Gibbs free energy of ice, Eq. (13)

Equations for the derivatives^a of the specific Gibbs free energy of ice, Eq. (13)

$$\begin{split} \gamma_{\theta} &= -\frac{\sigma_{0}}{\theta_{t}^{W}} + \operatorname{Re}\left\{\sum_{k=1}^{2}\zeta_{k}\left[-\ln(\theta_{k}-\theta) + \ln(\theta_{k}+\theta) - 2\frac{\theta}{\theta_{k}}\right]\right\}\\ \gamma_{\pi} &= \gamma_{0,\pi} + \theta_{t}^{W}\operatorname{Re}\left\{\zeta_{2,\pi}\left[(\theta_{2}-\theta)\ln(\theta_{2}-\theta) + (\theta_{2}+\theta)\ln(\theta_{2}+\theta) - 2\theta_{2}\ln(\theta_{2}) - \frac{\theta^{2}}{\theta_{2}}\right]\right\}\\ \gamma_{\theta\theta} &= \frac{1}{\theta_{t}^{W}}\operatorname{Re}\left[\sum_{k=1}^{2}\zeta_{k}\left(\frac{1}{\theta_{k}-\theta} + \frac{1}{\theta_{k}+\theta} - \frac{2}{\theta_{k}}\right)\right]\\ \gamma_{\pi\pi} &= \gamma_{0,\pi\pi} + \theta_{t}^{W}\operatorname{Re}\left\{\zeta_{2,\pi\pi}\left[(\theta_{2}-\theta)\ln(\theta_{2}-\theta) + (\theta_{2}+\theta)\ln(\theta_{2}+\theta) - 2\theta_{2}\ln(\theta_{2}) - \frac{\theta^{2}}{\theta_{2}}\right]\right\}\\ \gamma_{\pi\theta} &= \operatorname{Re}\left\{\zeta_{2,\pi}\left[-\ln(\theta_{2}-\theta) + \ln(\theta_{2}+\theta) - 2\frac{\theta}{\theta_{2}}\right]\right\} \end{split}$$

 $\gamma_0(\pi)$ equation and its derivatives^b

 $\zeta_2(\pi)$ equation and its derivatives^b

$\gamma_0(\pi) = \sum_{k=0}^4 \gamma_{0k} (\pi - \pi_0)^k$	$\zeta_2(\pi) = \sum_{k=0}^2 \zeta_{2k} (\pi - \pi_0)^k$
$\gamma_{0,\pi} = \sum_{k=1}^{4} \gamma_{0k} rac{k}{p_{t}^{w}} (\pi - \pi_{0})^{k-1}$	$\zeta_{2,\pi} = \sum_{k=1}^{2} \zeta_{2k} rac{k}{p_{t}^{\mathrm{W}}} (\pi - \pi_{0})^{k-1}$
$\gamma_{0,\pi\pi} = \sum_{k=2}^{4} \gamma_{0k} \frac{k(k-1)}{(p_{t}^{W})^{2}} (\pi - \pi_{0})^{k-2}$	$\zeta_{2,\pi\pi} = \zeta_{22} \frac{2}{(p_t^{\rm W})^2}$
${}^{a}g = g^{*}\gamma, \left(\frac{\partial g}{\partial T}\right)_{p} = \frac{g^{*}}{T^{*}}\gamma_{\theta}, \left(\frac{\partial g}{\partial p}\right)_{T} = \frac{g^{*}}{p^{*}}\gamma_{\pi}, \left(\frac{\partial^{2}g}{\partial T^{2}}\right)_{p} = \frac{g^{*}}{T^{*2}}\gamma_{\theta\theta}, \left(\frac{\partial^{2}g}{\partial p^{2}}\right)_{T} = \frac{g^{*}}{p^{*2}}\gamma_{\pi\pi}, \left(\frac{\partial^{2}g}{\partial p\partial T}\right) = \frac{g^{*}}{p^{*}T^{*}}\gamma_{\pi\theta}.$	
${}^{\mathbf{b}}\gamma_{0}, \pi = \left(\frac{\partial\gamma_{0}}{\partial\pi}\right)_{\theta}, \gamma_{0,\pi\pi} = \left(\frac{\partial^{2}\gamma_{0}}{\partial\pi^{2}}\right)_{\theta}, \zeta_{2,\pi} = \left(\frac{\partial\zeta_{2}}{\partial\pi}\right)_{\theta}, \zeta_{2,\pi\pi} = \left(\frac{\partial^{2}\zeta_{2}}{\partial\pi^{2}}\right)_{\theta}.$	

are explicitly given in Table 13. Relations between thermodynamic properties and g(p,T) and its derivatives are summarized in Table 14.

Using Eqs. (11) or (12), the freezing temperature $T = T_f$ can be calculated by iteration from pressure p and salinity S, or the freezing pressure $p = p_f$ from T and S, or brine salinity $S = S_f$, from p and T. At a given equilibrium state between seawater and ice, the properties of the seawater (brine) phase are calculated from Table 1 and the properties of the ice phase from Table 14.

At brine-ice equilibrium, the temperature is lower than the melting (freezing) temperature at a given pressure of pure ice, and the pressure at a given temperature is below the melting (freezing) pressure of pure ice. Note that the specific Gibbs free energy of liquid water $g^{W}(p,T)$ in Eq. (12) is evaluated from IAPWS-IF97 at conditions where the liquid phase of pure water is metastable. Due to salinity, the freezing-point depression can be up to 8 K (see Feistel [4] for experimental results from the literature). Investigations have shown that Eq. (12) can reasonably be extrapolated to these metastable states.

Table A3 shows selected freezing temperatures for given pressures and salinities.

3.3. Triple-point temperatures and pressures

The triple-point temperatures $T = T_t(S)$ and related triple-point pressures $p = p_t(S)$ of seawater are calculated for given salinity *S* by iteration from both Eqs.

Relations of the thermodynamic properties to the equation for the specific Gibbs free energy of ice, Eq. (13), and its derivatives^a

Property	Relation
Specific volume	$v(\pi, heta) = \gamma_{\pi}$
$v(p,T) = (\partial g/\partial p)_T$	
Density	$ ho(\pi, heta)=\gamma_\pi^{-1}$
$\rho(p,T) = (\partial g / \partial p)_T^{-1}$	
Specific internal energy	$u(\pi, heta) = \gamma - T \ \gamma_{ heta} - p \ \gamma_{\pi}$
u(p,T) = g + T s - p v	
Specific entropy	$s(\pi, heta)=-\gamma_ heta$
$s(p,T) = -(\partial g/\partial T)_p$	
Specific enthalpy	$h(\pi, heta)=\gamma-T\;\gamma_ heta$
h(p,T) = g + T s	
Specific isobaric heat capacity	$c_p(\pi, heta)=- heta\gamma_{ heta heta}$
$c_p(p,T) = T \left(\frac{\partial s}{\partial T} \right)_p$	(.2)
Specific isochoric heat capacity	$c_v(\pi, heta) = heta \left(rac{\gamma_{\pi heta}}{\gamma_{\pi au}} - \gamma_{ heta heta} ight)$
$c_v(p,T) = (\partial u / \partial T)_v$	('##
Speed of sound	$w(\pi, heta) = \gamma_{\pi \sqrt{\gamma_{2}^2 - \gamma_{00} \gamma_{\pi\pi}}}$
$w(p,T) = v\sqrt{-(\partial p/\partial v)_s}$	∇ , $\pi\theta$, $\theta\theta$, $\pi\pi$
Isentropic exponent	$\kappa(\pi, \theta) = rac{1}{p} rac{\gamma_{\pi} \gamma_{\theta \theta}}{\gamma_{\pi}^2 - \gamma_{\theta \theta} \gamma_{\pi\pi}}$
$\kappa(p,T) = -vp^{-1}(\partial p/\partial v)_s$	$7 \pi 0$ 700 7 km
Isobaric cubic expansion coefficient	$lpha_{v}(\pi, heta)=rac{\gamma_{\pi heta}}{\gamma_{\pi}}$
$lpha_v(p,T) = v^{-1} (\partial v / \partial T)_p$	
Isothermal compressibility	$\kappa_T(\pi, heta) = -rac{\gamma_{\pi\pi}}{\gamma_{\pi}}$
$\kappa_T(p,T) = -v^{-1}(\partial v/\partial p)_T$	• #

$${}^{\mathbf{a}}\gamma_{\theta} = \left(\frac{\partial\gamma}{\partial\theta}\right)_{\pi}, \quad \gamma_{\pi} = \left(\frac{\partial\gamma}{\partial\pi}\right)_{\theta}, \quad \gamma_{\theta\theta} = \left(\frac{\partial^{2}\gamma}{\partial\theta^{2}}\right)_{\pi}, \quad \gamma_{\pi\pi} = \left(\frac{\partial^{2}\gamma}{\partial\pi^{2}}\right)_{\theta}, \quad \gamma_{\pi\theta} = \left(\frac{\partial^{2}\gamma}{\partial\pi\partial\theta}\right).$$

(6) and (11) or from both Eqs. (7) and (12). Table A4 contains selected triple-point temperatures and triple-point pressures for given salinities.

3.4. Osmotic pressure

On the two sides of a membrane permeable to water but not to sea salt, equilibrium between liquid water and seawater causes an excess pressure of seawater, the osmotic pressure p_{osm} , computed from the condition

$$\mu_{\rm W}[(p+p_{\rm osm}), T, S] = g^{\rm W}(p, T) \tag{14}$$

or equivalently from

$$bR_{\rm m}T \ \phi[(p+p_{\rm osm}), T, S] = g^{\rm W}[(p+p_{\rm osm}), T] - g^{\rm W}(T, p)$$
(15)

with μ_W and ϕ from Table 1 and g^W from Eq. (4). The molality *b* is determined from Eq. (3) and the value of the molar gas constant $R_m = 8.314 472 \text{ kJ kmol}^{-1} \text{ K}^{-1}$ is taken from [18].

Using Eqs. (14) or (15), the osmotic pressure p_{osm} is calculated by iteration for pressure p, temperature T, and salinity S.

3.5. Properties of brine-vapor mixture

The properties for the two-phase composite of brine and water vapor, commonly termed brine-vapor mixture, can be computed from the combined Gibbs free energy equation

$$g^{\rm BV}(p,T,S) = (1-x)g(p,T,S_{\rm b}) + xg^{\rm vap}(p,T)$$
(16)

where *p* is the pressure, *T* is the temperature, and *S* is the salinity of the mixture including water vapor. The boiling-brine salinity $S_b = S_b(p,T)$ is calculated for pressure *p* and temperature *T* using Eq. (6) by iteration. The mass fraction of water vapor in the mixture (vapor fraction) *x* can be determined from the equation

$$x = 1 - \frac{S}{S_{\rm b}(p,T)} \tag{17}$$

The specific Gibbs free energy of the brine $g(p, T, S_b)$ is calculated from Eq. (1) and the specific Gibbs free energy of water vapor $g^{\text{vap}}(p, T)$ from Eq. (8).

Brine-vapor properties can be computed from the equation $g^{\text{BV}}(p,T,S)$, Eq. (16), and its derivatives in

analogy to Table 1. The derivatives of the included $g^{vap}(p, T)$, Eq. (8), for water vapor can be taken from [7]. As an example, the specific enthalpy of brine-vapor mixture is calculated from the equation

$$h^{\rm BV}(p,T,S) = (1-x)h(p,T,S_{\rm b}) + xh^{\rm vap}(p,T)$$
 (18)

where the determination of $h(p, T, S_b)$ is given in Table 1 and of $h^{\text{vap}}(p, T)$ in [7].

Further properties such as specific volume $v^{\text{BV}}(p,T,S)$, specific internal energy $u^{\text{BV}}(p,T,S)$, and specific entropy $s^{\text{BV}}(p,T,S)$ are computed analogously.

Table A5 shows values for the brine contribution, the vapor contribution, and the brine-vapor mixture of selected properties at given pressure, temperature, and salinity.

3.6. Properties of brine-ice mixture

The properties for the two-phase composite of brine and ice Ih, termed brine-ice mixture or sea ice, can be computed from the combined Gibbs free energy equation

$$g^{\rm BI}(p,T,S) = (1-y)g(p,T,S_{\rm f}) + yg^{\rm Ih}(p,T)$$
(19)

where *p* is the pressure, *T* is the temperature, and *S* is the salinity of the mixture including solid ice Ih. The freezing-brine salinity $S_f = S_f(p,T)$ is calculated for pressure *p* and temperature *T* using Eq. (11) by iteration. The mass fraction of ice Ih in the mixture (ice fraction) *y* can be determined from the equation

$$y = 1 - \frac{S}{S_{\rm f}(p,T)} \tag{20}$$

The specific Gibbs free energy of the brine $g(p, T, S_f)$ is calculated from Eq. (1) and the specific Gibbs free energy of ice Ih $g^{\text{Ih}}(p, T)$ from Eq. (13).

Brine-ice mixture properties can be computed from the equation $g^{BI}(p, T, S)$, Eq. (19), and its derivatives in analogy to Table 1. The derivatives of the included $g^{Ih}(p, T)$, Eq. (13), for ice Ih can be taken from [13]. As an example, the specific enthalpy of brine-ice mixture is calculated from the equation

$$h^{\rm BI}(p,T,S) = (1-y)h(p,T,S_{\rm f}) + yh^{\rm Ih}(p,T)$$
 (21)

where the determination of $h(p, T, S_f)$ is given in Table 1 and of $h^{\text{Ih}}(p, T)$ in [13].

Further properties such as specific volume $v^{\text{BI}}(p, T, S)$, specific internal energy $u^{\text{BI}}(p, T, S)$, and specific entropy $s^{\text{BI}}(p, T, S)$ are computed analogously.

Table A6 shows values for the brine contribution, the ice contribution, and the brine-ice mixture of selected properties at given pressure, temperature, and salinity.

4. Reference states

According to the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater [1], the specific enthalpy and the specific entropy of seawater calculated from Eq. (1) have been set to zero,

$$h = 0$$
 and $s = 0$

at $p = p_0 = 0.101 325 \text{ MPa}$, $T = T_0 = 273.15 \text{ K}$, and $S = S_n = 0.035 165 04 \text{ kg kg}^{-1}$, where S_n is the normal salinity of seawater [12].

In addition, the reference-state conditions of Eq. (1) for pure liquid water, water vapor, and ice require that the specific internal energy and the specific entropy of pure liquid water at the IAPWS-95 numerical triple point ($p_t^W = 611.654771007.9 \times 10^{-6}$ MPa, $T_t^W = 273.16$ K, and S = 0) are:

u = 0 and s = 0

The four independent conditions specify four numerical parameters, namely those related to the absolute energies and the absolute entropies of water substance and of dissolved sea salt which are not available from thermodynamic measurements. A detailed discussion of these conditions is given in Feistel et al. [29].

From u = 0 it follows that the specific enthalpy of liquid pure water is

$$h = 0.000 \ 611 \ 783 \ \text{kJ} \ \text{kg}^{-1}$$

at this triple point. These values also apply to the reference state of IAPWS-IF97 for pure water.

5. Range of validity

Fig. 1 shows a *p*-*T*-*S* graphical representation of the range of validity of the equation of state, Eq. (1), which is bordered by bold lines. In addition, the four two-dimensional plots of Figs. 2–5 display the range of validity of seawater in one *T*-*S* diagram at standard atmospheric pressure and in three *p*-*T* diagrams for salinities of S = 0, S = 0.035 kg kg⁻¹, and S = 0.12 kg kg⁻¹. The freezing surface (and the freezing line) is defined by Eqs. (11) and (12), the boiling

Fig. 1. Phase diagram of seawater with the regions A to E of *p*-*T*-*S* space (values of salinity *S* in kg kg⁻¹). Regions A, B, and E are three-dimensional volumes. Region C is planar at p = 0.1 MPa, region D is planar at S = 0. The intersection of the boiling surface with the plane S = 0 is the saturation curve of pure water (not indicated in the graph).

surface (and the boiling line) by Eqs. (6) and (7); the triple line (and the triple point) obeys the freezing and the boiling equations. The sublimation line is the phase equilibrium between water vapor and ice of pure water. The equation of state, Eq. (1), is valid for IAPSO Standard Seawater with sea salt of the Reference Composition [12] in specified regions inside the

following pressure, temperature, and salinity ranges 0.3 kPa $\leq p \leq 100$ MPa, 261 K $\leq T \leq 353$ K, and $0 \leq S \leq 0.12$ kg kg⁻¹.

All properties of Table 1 can be calculated with an accuracy, as specified in Section 6, in the temperature range $T_f(p,S) \le T \le 313$ K for 0.101 325 MPa $\le p \le 100$ MPa and $0 \le S \le 0.042$ kg kg⁻¹ (Region A in

Fig. 2. *T-S* diagram of seawater at standard atmospheric pressure $p_0 = 0.101$ 325 MPa with the regions C and D of the *T-S* plane and the intersections of the regions A, B, and E with region C (C-A, C-B, C-E).

Fig. 3. *p*-*T* diagram of seawater at salinity S = 0 (pure water) with the regions C and D of the *p*-*T* plane and the intersections of the regions A and B with region D (D-A, D-B).

Figs. 1–4) or for $p_t(S) \le p \le 0.101$ 325 MPa and $0 \le S \le 0.05 \text{ kg kg}^{-1}$ (Region B in Figs. 1–4), where $p_t(S)$ is the pressure at the triple line (Section 3.3), which varies between $p_t(0) = 0.61$ kPa for pure water and $p_t(0.05 \text{ kg kg}^{-1}) = 0.485$ kPa, and can be approximated by $p_t(S) = (0.61 - 2.5S)$ kPa, see Table A4.

Outside the regions A and B, properties of Table 1 except those depending on pressure derivatives can be calculated with an accuracy, as specified in Section 6, at standard atmospheric pressure $p_0 = 0.101$ 325 MPa for $T_f(p_0,S) \le T \le 353$ K and $0 \le S \le 0.12$ kg kg⁻¹ (Region C in Figs. 1–5).

At this *T-S* plane, outside its intersection with the regions A, B, or D (described below), the pressure derivatives of the Gibbs function, g_{pr} , g_{pSr} , g_{pTr} , and g_{ppr} of Table 1 give values extrapolated beyond their range of validity for the density and its derivatives. Due to the lack of experimental data, no statements can be made about the accuracy at high pressures for temperatures greater than 313 K and salinities greater than 0.042 kg kg⁻¹.

As summarized in Table 15, the saline contribution of the specific Gibbs free energy at standard atmospheric pressure p_0 , $g^{\rm S}(p_0,T,S)$, represents the experimental thermal and colligative data for salinity from pure water to 0.12 kg kg⁻¹ and for temperatures from the freezing point to 353 K in region C of Figs. 1 and 2. The pressure-dependent contribution of the Gibbs function, $g^{\rm S}(p,T,S)-g^{\rm S}(p_0,T,S)$, represents highly accurate experimental data of density and sound speed in the regions A and B of Fig. 1.

The validity region D is the zero-salinity limit of dilute seawater in the range S = 0, $T_f(p, S = 0) \le T \le 353$ K, and $p^{\text{vap}} \le p \le 100$ MPa (Region D in Figs. 1 and 3),

which is inside the validity range of the IAPWS-IF97 formulation for temperatures $T \ge 273.15$ K. Fig. 6 displays in a *p*-*T* diagram of pure water (salinity S = 0) different Gibbs equations of IAPWS-IF97 and IAPWS-06. Extensive comparisons for the algorithms of IAPWS-IF97 to IAPWS-95 were carried out including temperatures below 273.15 K and showed (see Section 6), that the differences are very small and therefore the algorithms of IAPWS-IF97 can also be used in this specified range of validity for temperatures below 273.15 K (gray-shaded area in Fig. 6). In the two-dimensional p-T region D, outside its intersection with the regions A, B, or C, the salinity derivative of the Gibbs function, g_{5} , of Table 1 cannot be evaluated at zero salinity. For physical reasons, the ideal-solution contributions to the relative chemical potential and the chemical potential of sea salt, both from Table 1, possess logarithmic singularities for $S \rightarrow 0$. This singularity mathematically reflects the fact that perfect desalination of seawater requires infinite effort.

In the prism-shaped region E, the extrapolation of the density derivatives g_{pS} , g_{pT} , and g_{pp} (which appear in Table 1) outside their validity range may result in values that are obviously unreasonable or even invalid. For the pressure range $p_b(T,S) \le p \le 100$ MPa (Region E in Figs. 1, 2, 4, and 5), this region is found inside a triangle given by the conditions $T/K + 450 S/(kg kg^{-1}) \ge 362$, $S \le 0.12 \text{ kg kg}^{-1}$, and $T \le 353 \text{ K}$.

In particular, the use of these derivatives is restricted to T < 308 K at the highest salinity, S = 0.12 kg kg⁻¹, and to S < 0.02 kg kg⁻¹ at the highest temperature, T = 353 K.

The logarithmic term of Eq. (5) follows Planck's theory of ideal solutions. The series expansion of Eq.

1191

Quantity	S interval in kg kg ^{-1}	T interval in K	p interval in MPa	u_{08}	$\Delta_{\rm RMS}$	и
$\left \frac{\Delta \rho}{\rho}\right $	0-0.04	273–313	0.1	4×10^{-6}	2.9×10^{-6}	5×10^{-6}
·ρ·	0.04-0.05	288-303	0.1	1×10^{-5}	1.3×10^{-6}	1×10^{-5}
	0.005-0.04	273-313	0.1-10	1×10^{-5}	2.6×10^{-6}	1×10^{-5}
	0.005-0.04	273-313	10-100	2×10^{-5}	5.3×10^{-6}	2×10^{-5}
	0.04-0.12	293-313	0.1	3×10^{-4}	4.2×10^{-6}	3×10^{-4}
	0-0.04	313-333	0.1	4×10^{-4}	1.3×10^{-5}	4×10^{-4}
	0.04-0.08	313-333	0.1	9×10^{-4}	1.3×10^{-5}	9×10^{-4}
	0.08-0.12	313-333	0.1	3×10^{-3}	1.3×10^{-5}	3×10^{-3}
	0-0.04	333-353	0.1	1.4×10^{-3}	1.5×10^{-5}	1.4×10^{-3}
	0.04-0.08	333-353	0.1	4×10^{-3}	$1.5 imes 10^{-5}$	4×10^{-3}
	0.08-0.12	333–353	0.1	1.3×10^{-2}	1.6×10^{-5}	1.3×10^{-2}
$ \Delta lpha_v $	0.01–0.03	267–274	0.7–33	$6 \times 10^{-7} \mathrm{K}^{-1}$	$1\times 10^{-6}K^{-1}$	$1\times 10^{-6}K^{-1}$
$\left \frac{\Delta w}{m}\right $	0.029-0.043	273–308	0.1–2	3×10^{-5}	8.2×10^{-4}	8.2×10^{-4}
· w ·	0.029-0.043	273-303	0.1–5	3×10^{-5}	6.4×10^{-4}	6.4×10^{-4}
	0.033-0.037	273–278	0.1–100	5×10^{-5}	1.8×10^{-4}	1.8×10^{-4}
$\left \frac{\Delta p^{\text{vap}}}{ $	0.02-0.12	293–353	0.002-0.05	1×10^{-3}	3.9×10^{-5}	1×10^{-3}
1 p ^{vap} 1	0.018-0.04	298	0.003	2×10^{-4}	1.5×10^{-5}	2×10^{-4}
$ \Delta T_{ m f} $	0.004–0.04	271–273	0.1	2 mK	0.014 mK	2 mK
$ \Delta T_{\rm b} $	0.006-0.07	333–353	0.02-0.05	2 mK	1.2 mK	2.3 mK
$\left \frac{\Delta\phi}{4}\right $	0.004-0.04	273	0.1	2×10^{-3}	_a	2×10^{-3}
ιφι	0.0017-0.038	298	0.1	2×10^{-3}	_a	2×10^{-3}
	0.01–0.12	273–278	0.1	3×10^{-3}	_a	3×10^{-3}
$ \Delta c_p^{ m S} $	0–0.04	273–313	0.1	$0.5 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$	_ ^a	$0.5 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$
$ \Delta c_p $	0-0.12	273–353	0.1	$4 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}$	$1.3 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$	$4.2 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$

Table 15 Uncertainties of selected quantities in specified regions of p-T-S space estimated for Eq. (1)

^aThe quantity is only dependent on the saline contribution of Eq. (1).

Fig. 4. *p*-*T* diagram of seawater at salinity $S = 0.035 \text{ kg kg}^{-1}$ with the regions A, B, C, and E of the *p*-*T* plane.

Fig. 5. *p*-*T* diagram of seawater at salinity $S = 0.12 \text{ kg kg}^{-1}$ with the regions C and E of the *p*-*T* plane.

Fig. 6. *p*-*T* diagram of pure water (salinity S = 0) showing the Gibbs equations of Region 1 (liquid) and Region 2 (vapor) of IAPWS-IF97 as well as the Gibbs equation of the ice Ih region of IAPWS-06. In the gray-shaded area, the Gibbs equation of IAPWS-IF97 Region 1 is extrapolated to temperatures below its range of validity in the metastable region.

(5) in terms of the salinity root is consistent with the Debye-Hückel limiting law of dilute electrolytes. In this formulation, both theoretical expressions adopted from statistical thermodynamics support a smooth crossover of calculated seawater properties in the limiting case of vanishing salinity where measurements are unavailable.

In several regions of the world's oceans, in particular in coastal waters or estuaries, the composition of the local seawater differs from that of IAPSO Standard Seawater [12]. The related deviation between the directly measured density and the density computed from Eq. (1), based on salinity measurements carried out on the currently valid, conductivity-based international Practical Salinity Scale of 1978 [12], is up to 0.005% in the open ocean and up to 0.013% in the Baltic Sea.

The range of validity given here does not consider the solubility of sea salt components such as gypsum (CaSO₄) or lime (CaCO₃) which may become supersaturated or precipitate at a salinity even less than 0.12 kg kg^{-1} . Currently, saturation concentrations are not sufficiently well known and are discussed in Marion et al. [30,31].

6. Uncertainty

A summary of estimated combined standard uncertainties u (coverage factor k = 1) of selected

quantities for the industrial seawater formulation in specified regions of *p*-*T*-*S* space is given in Table 15. The total uncertainty of the industrial seawater formulation has been estimated by the equation

$$u = \sqrt{u_{08}^2 + \Delta_{\text{RMS}}^2} \tag{22}$$

where u_{08} represents the uncertainty of the IAPWS-08 seawater formulation [1], which uses IAPWS-95 for the pure-water contribution, and Δ_{RMS} represents the root-mean-square deviation caused by the difference between IAPWS-IF97 and IAPWS-95 and is computed from $\Delta_{\text{RMS}} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\Delta x_n)^2}$, where Δx_n can be either absolute or percentage difference between the corresponding quantities *x*; *N* is the number of Δx_n values.

Estimated values of u_{08} , Δ_{RMS} , and u are given in Table 15. 100,000 points uniformly distributed over the respective intervals given in Table 15 were used to calculate the values for Δ_{RMS} .

Table 15 shows that, for all salinities considered, the deviations in calculated properties caused by the Table 16

Computing-time ratios of important properties calculated from Eq. (23)

Property	CTR
Specific volume <i>v</i>	243
Specific enthalpy <i>h</i>	236
Specific entropy s	220
Specific isobaric heat capacity c_v	430
Chemical potential of water in seawater $\mu_{\rm w}$	134
Boiling temperature of seawater $T_{\rm b}$	206
Freezing temperature of seawater $T_{\rm f}$	32

of IAPWS-IF97, so-called NIFBENCH [33], on a PC using an Intel Core i7 920 with 2.64 GHz as CPU in combination with a 32-bit Windows 7 operating system.¹

The measured computing times were used to calculate computing-time ratios (CTR) between the 2008 IAPWS seawater formulation and the industrial formulation of this work:

computing time for a quantity calculated from IAPWS - 08

 $CTR = \frac{computing time for this quantity calculated from the industrial formulation$

(23)

use of IAPWS-IF97 instead of IAPWS-95 are small compared to the uncertainties in IAPWS-08. Therefore, the total uncertainties of the industrial seawater formulation are generally equivalent to those of the IAPWS-08 formulation.

7. Computing-time comparisons

One important reason to use IAPWS-IF97 instead of IAPWS-95 for calculating the water contribution of the IAPWS seawater functions is the computing-speed difference, which is particularly important in computer-intensive process modeling calculations. A comparison of the computing speed of the seawater functions of the 2008 IAPWS seawater formulation [1] (which uses IAPWS-95) with that of the industrial formulation for seawater documented in this work (using IAPWS-IF97) was reported in [32]. The relevant functions of the 2008 IAPWS seawater formulation and the industrial seawater formulation were programmed with regard to short computing times. The tests were performed using the same code as for the evaluation

The results of these calculations are shown in Table 16.

In summary, the calculation of seawater properties using the industrial seawater formulation is approximately 200 times faster than the calculation using the IAPWS 2008 formulation. It should also be noted that the observed improvement depends on the efficiency with which IAPWS-95 is programmed (and also on the machine and compiler used). Nevertheless, the use of IAPWS-IF97 clearly produces a significant reduction in computing time.

8. Summary and conclusions

In this paper, the industrial calculation of seawater properties was carried out using the algorithms of IAPWS-IF97 for pure water. This was a requirement

¹Certain commercial products are identified in this paper, but only to adequately specify the procedure. Such identification neither constitutes nor implies recommendation or endorsement by either the US government or the National Institute of Standards and Technology.

by industry which routinely uses the industrial formulation IAPWS-IF97 for process calculations that are often demanding on computer time. An advantage of using the algorithms of IAPWS-IF97 instead of IAPWS-95 is to avoid iterative calculations from the IAPWS-95 Helmholtz free energy equation, which is computationally intensive and therefore undesirable in applications where processing speed is important.

Because the algorithms to calculate different properties for the liquid region 1 of IAPWS-IF97 are expressed as a Gibbs free energy equation, their implementation into the seawater equation of state, which is also formulated in the Gibbs free energy, can be made with no additional conversions or adaptations. Furthermore, equations to calculate colligative properties are also given here, along with algorithms for the mixtures of brine with water vapor and with ice Ih.

To verify the accuracy of the industrial formulation of seawater, extensive comparisons were carried out for the difference in calculated properties between the algorithms of the industrial formulation for seawater and the scientific formulation IAPWS-08. The results showed that the differences between the two seawater formulations are very small. Consequently, the accuracy of this industrial formulation is nearly the same as that of IAPWS-08. The range of validity of the industrial formulation of seawater is the same as given for IAPWS-08. The computing-time comparison presented here leads to the conclusion that the calculation of seawater properties using the industrial seawater formulation is approximately 200 times faster than calculation using the original IAPWS-08 Formulation. In conclusion, the industrial formulation presented here is recommended for use in industrial applications, such as desalination or cooling processes.

For convenient use of this industrial formulation in the daily work of an engineer, the property library LibSeaWa [34] was developed. For the scientific formulation IAPWS-08, the Sea-Ice-Air (SIA) library [35,36] and the Gibbs-SeaWater Oceanographic Toolbox [37] can be used specifically for ocean and climate modeling. In addition, the properties of seawater using the industrial formulation can be calculated online [38].

Acknowledgment

The authors express their gratitude to the reviewers whose comprehensive comments improved the quality of this paper.

List of symbols

Symbol	Unit	physical quantity
b	kmol kg ⁻¹	molality of salt in seawater
c_p	kJ kg $^{-1}$ K $^{-1}$	specific isobaric heat capacity of seawater
Cv	$kJ kg^{-1} K^{-1}$	specific isochoric heat capacity of seawater
CTR		computing-time ratio,
		determined by Eq. (23)
f	kJ kg ⁻¹	specific Helmholtz free energy of
,	. 0	seawater
8	kJ kg ⁻¹	specific Gibbs free energy of
U		seawater
$g^{\rm BI}$	kJ kg ⁻¹	specific Gibbs free energy of
U		brine-ice mixture (sea ice)
$g^{\rm BV}$	kJ kg ⁻¹	specific Gibbs free energy of
0	. 0	brine-vapor mixture
g^{Ih}	kJ kg ⁻¹	specific Gibbs free energy of ice
0	. 0	Ih
g^{S}	kJ kg ^{-1}	saline contribution of the specific
0	<i>,</i> 0	Gibbs free energy of seawater
g^{vap}	kJ kg ⁻¹	specific Gibbs free energy of
0	. 0	water vapor
g^{W}	kJ kg ⁻¹	water contribution of the specific
0	. 0	Gibbs free energy of seawater
h	kJ kg ⁻¹	specific enthalpy of seawater
h^{W}	$kJ kg^{-1}$	specific enthalpy of water
$M_{\rm S}$	kg kmol ⁻¹	molar mass of sea salt
m	kg	mass of seawater including water
	0	vapor or ice
$m_{\rm S}$	kg	mass of sea salt in seawater
$m_{\rm W}$	kg	mass of water in seawater
р	MPa	pressure
p^{vap}	MPa	pressure at the phase equilibrium
,		between seawater and water
		vapor
$p_{ m b}$	MPa	boiling pressure of seawater
$p_{\rm f}$	MPa	freezing pressure of seawater
p_{osm}	MPa	osmotic pressure of seawater
$p_{\rm t}$	MPa	triple-point pressure of seawater
$R_{\rm m}$	kJ kmol ^{-1} K ^{-1}	molar gas constant
$R_{ m W}$	$kJ kg^{-1} K^{-1}$	specific gas constant of water
Re		real part of a complex number
RMS		root-mean-square value of a
		quantity
S	kg kg $^{-1}$	salinity, mass fraction of sea salt
		in seawater including water
		vapor or ice
$S_{\rm b}$	kg kg ⁻¹	salinity of boiling brine
$S_{ m f}$	kg kg ⁻¹	salinity of freezing brine
S _n	kg kg ⁻¹	normal salinity of seawater
S	$kJ kg^{-1} K^{-1}$	specific entropy of seawater
s^{W}	kJ kg ⁻¹ K ⁻¹	specific entropy of water
Т	Κ	absolute temperature (ITS-90)

$T_{\rm b}$	K	boiling temperature of seawater
$T_{\rm f}$	K	freezing temperature of seawater
$T_{\rm t}$	K	triple-point temperature of
		seawater
и		uncertainty of a property given
		in Table 15
и	kI kg ⁻¹	specific internal energy of
		seawater
u^{W}	kI kg ^{-1}	specific internal energy of water
v	$m^{3} kg^{-1}$	specific volume of seawater
717	$m s^{-1}$	speed of sound of seawater
x	$kg kg^{-1}$	mass fraction of the vapor phase
		in the brine-vapor mixture of
		seawater (vapor fraction)
1/	ka ka ⁻¹	mass fraction of the ice phase in
9	NG NG	the brine-ice mixture (ice
		fraction)
~	K^{-1}	isobaric cubic expansion
a.	K	coefficient (thermal expansion
		coefficient) of segwater
ß	$k \alpha k \alpha^{-1}$	haling contraction coefficient of
ρ	ng ng	name contraction coefficient of
		reduced Cibbs free energy
ρ		reduced Gibbs free energy
0		isontronic exponent of convetor
κ	D - ⁻¹	is the second se
κ_T	Pa	isothermal compressibility of
	1.7.1=1	seawater
μ	kj kg	relative chemical potential of
	1111	seawater
$\mu_{ m S}$	kj kg	chemical potential of sea salt in
	1 7 1 -1	seawater
$\mu_{ m W}$	kj kg	chemical potential of water in
		seawater
ζ		reduced salinity root
π	1 -3	reduced pressure
ρ	kg m	mass density of seawater
τ		inverse reduced temperature
ϕ		osmotic coefficient of seawater

References

- [1] IAPWS, Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam, 2008. Available from: http://www.iapws.org.
- [2] R. Feistel, A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr. 58 (2003) 43–114.
- [3] R. Feistel, Corrigendum to: A new extended Gibbs thermodynamic potential of seawater (Progress in Oceanography 58 (2003) 43–114), Prog. Oceanogr. 61 (2004) 99.
- [4] R. Feistel, A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg⁻¹, Deep-Sea Res. I 55 (2008) 1639–1671.
- [5] IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. The International Association for the Properties of Water and Steam, 2009. Available from: http://www.iapws.org.

- [6] W. Wagner, A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31 (2002) 387–535.
- [7] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (The Revision only Relates to the Extension of Region 5 to 50 MPa), The International Association for the Properties of Water and Steam, 2007. Available from: http://www.iapws.org.
- [8] W. Wagner, J.R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach, Th. Willkommen, The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, J. Eng. Gas Turbines Power 122 (2000) 150–182.
- [9] IAPWS, Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater, The International Association for the Properties of Water and Steam, 2013. Available from: http://www.iapws.org.
- [10] IAPWS, Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use, The International Association for the Properties of Water and Steam, 2009. Available from: http://www.iapws.org.
- [11] M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Thermophysical properties of seawater: A review of existing correlations and data, Desalin. Water Treat. 16 (2010) 354–380.
- [12] F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of standard seawater and the definition of the reference-composition salinity scale, Deep Sea Res. I 55 (2008) 50–72.
- [13] IAPWS, Revised Release on the Equation of State 2006 for H₂O Ice Ih, The International Association for the Properties of Water and Steam, 2009. Available from: http://www.iapws.org.
- [14] R. Feistel, W. Wagner, A new equation of state for H_2O ice Ih, J. Phys. Chem. Ref. Data 35 (2006) 1021–1047.
- [15] IOC, SCOR, IAPSO, The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, Paris, 2010. Available from: http://www. TEOS-10.org.
- [16] H. Preston-Thomas, The international temperature scale of 1990 (ITS-90), Metrologia 27 (1990) 3–10.
- [17] H. Preston-Thomas, The international temperature scale of 1990 (ITS-90), Metrologia 27 (1990) 107 (Erratum).
- [18] CODATA, 2006 CODATA Recommended Values, Committee on Data for Science and Technology, 2006. Published as: P.J. Mohr, B.N. Taylor, D.B. Newell, CO-DATA Recommended Values of the Fundamental Physical Constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730; ibid. J. Phys. Chem. Ref. Data 37 (2008) 1187–1284.
- [19] IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations, The International Association for the Properties of Water and Steam, 2008. Available from: http://www.iapws.org.
- [20] W. Wagner, H.-J. Kretzschmar, International Steam Tables, second ed., Springer-Verlag, Berlin, 2008.

- [21] W.T. Parry, J.C. Bellows, J.S. Gallagher, A.H. Harvey, R.D. Harwood, ASME International Steam Tables for Industrial Use, third ed., The American Society of Mechanical Engineers, New York, NY, 2014.
- [22] JSME, JSME Steam Tables, Based on IAPWS-IF97, The Japan Society of Mechanical Engineers, Tokyo, 1999.
- [23] A.A. Alexandrov, K.A. Orlov, V.F. Ochkov, Thermophysical Properties of Working Substances of Thermal Engineering: Reference Book, MPEI Publishing House, Moskva, 2009.
- [24] R. Mareš, O. Šifner, J. Kadrnožka, Tables of Properties of Water and Steam, VUTIUM, Brno, 1999.
- [25] IAPWS, Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance, The International Association for the Properties of Water and Steam, 2011. Available from: http://www.iapws.org.
- [26] W. Wagner, T. Riethmann, R. Feistel, A.H. Harvey, New equations for the sublimation pressure and melting pressure of H₂O ice Ih, J. Phys. Chem. Ref. Data 40 (2011) 043103.
- [27] ISO, ISO Standards Handbook: Quantities and Units, International Organization for Standardization, Geneva, 1993.
- [28] CODATA, 2010 CODATA Recommended Values, Committee on Data for Science and Technology. Available from: http://physics.nist.gov/cuu/Con stants/index.html. Published as: P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84 (2012) 1527–1605; ibid., J. Phys. Chem. Ref. Data 41 (2012) 043109.
- [29] R. Feistel, D.G. Wright, D.R. Jackett, K. Miyagawa, J.H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion, Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air—Part 1: Background and equations, Ocean Sci. 6 (2010) 633–677. Available from: http:// www.ocean-sci.net/6/633/2010/.
- [30] G.M. Marion, J.S. Kargel, Cold Aqueous Planetary Geochemistry with FREZCHEM: From Modeling to the Search for Life at the Limits, Springer-Verlag, Berlin, 2008.

- [31] G.M. Marion, F.J. Millero, R. Feistel, Precipitation of solid phase calcium carbonates and their effect on application of seawater S_A-T-P models, Ocean Sci. 5 (2009) 285–291. Available from: http://www. ocean-sci.net/5/285/2009/.
- [32] K. Miyagawa, Test Report on the Computing Time for the IAPWS Seawater Functions, Report to IAPWS, 2013.
- [33] K. Miyagawa, Assessment of the computing time for the IAPWS-IF97 equations, J. Eng. Gas Turbines Power 129 (2006) 885–887.
- [34] H.-J. Kretzschmar, I. Stoecker, T. Gubsch, M. Kunick, T. Goepfert, Property Library LibSeaWa for Calculating Thermodynamic and Transport Properties of Seawater from the IAPWS Industrial Formulation 2013, Zittau/Goerlitz University of Applied Sciences, Department of Technical Thermodynamics, Zittau, 2013. Available from: http://www.thermodynamicszittau.de.
- [35] R. Feistel, D.G. Wright, K. Miyagawa, A.H. Harvey, J. Hruby, D.R. Jackett, T.J. McDougall, W. Wagner, Mutually consistent thermodynamic potentials for fluid water, ice and seawater: A new standard for oceanography, Ocean Sci. 4 (2008) 275–291. Available from: http://www.ocean-sci.net/4/275/2008/.
- [36] D.G. Wright, R. Feistel, J.H. Reissmann, K. Miyagawa, D.R. Jackett, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion, Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air—Part 2: The library routines, Ocean Sci. 6 (2010) 695–718. Available from: http://www. ocean-sci.net/6/695/2010/.
- [37] T.J. McDougall, P.M. Barker, Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011. Available from: http://www. teos-10.org.
- teos-10.org.
 [38] K. Orlov, V. Ochkov, Thermodynamic Properties of Seawater for Industrial Use, 2013. Available from: http://twt.mpei.ac.ru/mcs/worksheets/iapws/seawa ter-industrial.xmcd.

Appendix

Table A1.

Numerical check values for the water contribution computed from $g^{W}(p,T)$, Eq. (4), and its derivatives, for the saline contribution computed from $g^{S}(p,T,S)$, Eq. (5), and its derivatives, for the seawater properties computed from the Gibbs function g(p,T,S), Eq. (1), and its derivatives and for selected seawater properties of Table 1 at given points (p,T,S)

Quantity	Water contribution	Saline contribution	Property of seawater	Unit
Properties at $p =$	= 0.101 325 MPa, T = 273.15 K	$S = S_{\rm n} = 0.035 \ 165 \ 04 \ {\rm kg \ kg^{-1}}$	1	
8	0.101 359 446	-0.101 342 742	$0.167~05 \times 10^{-4}$	kJ kg $^{-1}$
$(\partial g/\partial p)_{T,S}$	$0.100\ 015\ 572 \times 10^{-2}$	$-0.274 957 224 \times 10^{-4}$	$0.972\ 659\ 995 \times 10^{-3}$	$m^3 kg^{-1}$
$(\partial^2 g / \partial p^2)_{TS}$	-0.508 885 499 $\times 10^{-12}$	$0.581\ 535\ 172 \times 10^{-13}$	$-0.450731982 \times 10^{-12}$	$m^{3} kg^{-1} Pa^{-1}$
$(\partial q/\partial T)_n s$	$0.147\ 711\ 823 \times 10^{-3}$	$-0.147643376 \times 10^{-3}$	$0.684 \ 47 \times 10^{-7}$	kJ kg ^{-1} K ^{-1}
$(\partial^2 q / \partial T^2)_{ns}$	$-0.154\ 473\ 013 \times 10^{-1}$	$0.852\ 861\ 151 \times 10^{-3}$	$-0.145944401 \times 10^{-1}$	$kI kg^{-1} K^{-1}$
$(\partial^2 q / \partial n \partial T)_c$	$-0.676992620 \times 10^{-7}$	$0.119\ 286\ 787 \times 10^{-6}$	$0.515\ 875\ 254 \times 10^{-7}$	$m^{3}kg^{-1}K^{-1}$
$(\partial \alpha / \partial S)_{mT}$	0	$0.639\ 974\ 067 \times 10^2$	$0.639\ 974\ 0.67 \times 10^2$	$kI kg^{-1}$
$(\partial^2 \sigma / \partial n \partial S)_{T}$	0	$-0.759 615 412 \times 10^{-3}$	$-0.759 615 412 \times 10^{-3}$	$m^3 k \sigma^{-1}$
(0 8/0p00/1	0100015572×10^{-2}	$-0.274957224 \times 10^{-4}$	$0.972 659 995 \times 10^{-3}$	$m^3 k \sigma^{-1}$
1/	$-0.403288161 \times 10^{-1}$	$-0.582\ 279\ 494 \times 10^{-1}$	-0.985 567 655 × 10 ⁻¹	$kI k\sigma^{-1}$
h	$0.610 \ 119 \ 617 \times 10^{-1}$	$-0.610, 139, 535 \times 10^{-1}$	$-0.199.16 \times 10^{-5}$	$kI k\sigma^{-1}$
c	$-0.147\ 711\ 823 \times 10^{-3}$	$0.147 643 376 \times 10^{-3}$	$-0.684.47 \times 10^{-7}$	$kJ kg^{-1} K^{-1}$
S C	$0.147711023 \times 10^{1}$ 0.421.943.034 × 10 ¹	_0 232 959 023	$0.398\ 647\ 132 \times 10^{1}$	$k k c^{-1} K^{-1}$
<i>c</i> _p	$0.140 243 979 \times 10^4$	_a	0.396047132×10^{4} $0.144.907123\times 10^{4}$	$m e^{-1}$
<i>u</i>	0.101 359 446	-0.235 181 411 × 10 ¹	$-0.225 0.045 466 \times 10^{1}$	$k k \alpha^{-1}$
$\mu_{ m W}$	0.101 559 440	-0.233 101 411 ^ 10	-0.223 043 400 ^ 10	kj kg
Properties at <i>p</i> =	= 0.101 325 MPa, T = 353 K, S	$= 0.1 \text{ kg kg}^{-1}$		
8	$-0.446\ 091\ 363 \times 10^2$	$0.150 \ 871 \ 740 \times 10^2$	$-0.295\ 219\ 623 \times 10^2$	kJ kg ⁻¹
$(\partial g/\partial p)_{T,S}$	$0.102 891 627 \times 10^{-2}$	$-0.579\ 227\ 286 \times 10^{-4}$	$0.970 \ 993 \ 546 \times 10^{-3}$	$m^3 kg^{-1}$
$(\partial^2 g/\partial p^2)_{T,S}$	$-0.473\ 220\ 602 \times 10^{-12}$	$0.213\ 0.013\ 154 \times 10^{-12}$	$-0.260\ 134\ 448 \times 10^{-12}$	$m^{3} kg^{-1} Pa^{-1}$
$(\partial g/\partial T)_{n,S}$	$-0.107 357 342 \times 10^{1}$	0.156 230 907	-0.917 342 513	$kJ kg^{-1} K^{-1}$
$(\partial^2 g / \partial T^2)_{n,S}$	$-0.118 849 543 \times 10^{-1}$	$0.127 922 649 \times 10^{-2}$	$-0.106\ 057\ 278 \times 10^{-1}$	$kJ kg^{-1} K^{-1}$
$(\partial^2 g / \partial p \partial T)_S$	$0.659\ 344\ 070 \times 10^{-6}$	$0.803\ 061\ 596 \times 10^{-6}$	$0.146\ 240\ 567 \times 10^{-5}$	$m^{3} kg^{-1} K^{-1}$
$(\partial g/\partial S)_{nT}$	0	$0.251 957 276 \times 10^{3}$	$0.251 957 276 \times 10^{3}$	kJ kg ^{-1}
$(\partial^2 g / \partial p \partial S)_T$	0	$-0.305957802 \times 10^{-3}$	$-0.305957802 \times 10^{-3}$	$m^3 kg^{-1}$
v or i v	$0.102 891 627 \times 10^{-2}$	$-0.579\ 227\ 286 \times 10^{-4}$	$0.970\ 993\ 546 \times 10^{-3}$	$m^3 kg^{-1}$
и	$0.334\ 258\ 026 \times 10^3$	$-0.400564673 \times 10^{2}$	$0.294\ 201\ 559 \times 10^3$	kJ kg ^{-1}
h	0.334 362 281 × 10 ³	$-0.400\ 623\ 363 \times 10^2$	$0.294\ 299\ 945 \times 10^3$	$kI kg^{-1}$
S	$0.107 357 342 \times 10^{1}$	-0.156 230 907	0.917 342 513	$k k k g^{-1} K^{-1}$
Cm	$0.419538887 \times 10^{1}$	-0.451 566 952	$0.374\ 382\ 192 \times 10^{1}$	$k k k g^{-1} K^{-1}$
-p 71)	$0.155\ 710\ 273 \times 10^4$	_a	$0.401,505,044 \times 10^4$	$m s^{-1}$
11	$-0.446\ 0.91\ 363 \times 10^2$	$-0.101\ 0.0085\ 5.36\times10^{2}$	-0.547 176 899 × 10 ²	kI k σ^{-1}
PW				
Properties at <i>p</i> =	= 100 MPa, $T = 273.15$ K, $S = 3$	$S_{\rm n} = 0.035 \ 165 \ 04 \ \rm kg \ \rm kg^{-1}$	2	1
8	$0.977\ 302\ 204 \times 10^2$	$-0.260\ 093\ 051 \times 10^{1}$	$0.951\ 292\ 899 \times 10^2$	kJ kg ⁻¹
$(\partial g/\partial p)_{T,S}$	$0.956\ 686\ 939 \times 10^{-3}$	$-0.229\ 123\ 842 \times 10^{-4}$	$0.933\ 774\ 555 \times 10^{-3}$	$m^3 kg^{-1}$
$(\partial^2 g/\partial p^2)_{T,S}$	$-0.371\ 594\ 622 \times 10^{-12}$	$0.357\ 345\ 736 \times 10^{-13}$	$-0.335\ 860\ 049 \times 10^{-12}$	$m^3 kg^{-1} Pa^{-1}$
$(\partial g/\partial T)_{p,S}$	$0.858\ 228\ 709 \times 10^{-2}$	$0.754\ 045\ 685 \times 10^{-2}$	$0.161\ 227\ 439 \times 10^{-1}$	$kJ kg^{-1} K^{-1}$
$(\partial^2 g/\partial T^2)_{p,S}$	$-0.142987096 \times 10^{-1}$	$0.488\ 076\ 974 \times 10^{-3}$	$-0.138\ 106\ 326 \times 10^{-1}$	$kJ kg^{-1} K^{-1}$
$(\partial^2 g/\partial p\partial T)_S$	$0.202 974 451 \times 10^{-6}$	$0.466\ 284\ 412 \times 10^{-7}$	$0.249\ 602\ 892 \times 10^{-6}$	$m^3 kg^{-1} K^{-1}$
$(\partial g/\partial S)_{p,T}$	0	-0.545 861 581 \times 10 ¹	-0.545 861 581 \times 10 ¹	kJ kg ^{−1}
$(\partial^2 g/\partial p \partial S)_T$	0	$-0.640\ 757\ 619 \times 10^{-3}$	$-0.640\ 757\ 619 \times 10^{-3}$	$\mathrm{m}^{3}\mathrm{kg}^{-1}$
υ	$0.956\ 686\ 939 \times 10^{-3}$	$-0.229 123 842 \times 10^{-4}$	$0.933\ 774\ 555 \times 10^{-3}$	$m^3 kg^{-1}$
и	-0.282 725 255	$-0.236 936 788 \times 10^1$	$-0.265\ 209\ 313 \times 10^{1}$	kJ kg ⁻¹
h	$0.953\ 859\ 687 \times 10^2$	$-0.466\ 060\ 630\times 10^1$	$0.907\ 253\ 624 \times 10^2$	kJ kg^{-1}
S	$-0.858\ 228\ 709 \times 10^{-2}$	$-0.754\ 045\ 685\times 10^{-2}$	$-0.161\ 227\ 439 \times 10^{-1}$	kJ $kg^{-1}K^{-1}$
c_p	$0.390\ 569\ 252 \times 10^1$	-0.133 318 225	$0.377\ 237\ 430 \times 10^{1}$	kJ $kg^{-1}K^{-1}$
w	$0.157\ 552\ 544 \times 10^4$	_a	$0.162\ 218\ 081 \times 10^4$	m s ^{-1}
μ_{W}	$0.977 \ 302 \ 204 \times 10^2$	$-0.240 897 806 \times 10^{1}$	$0.953\ 212\ 423 \times 10^2$	kJ kg ⁻¹

^aThis contribution cannot be computed from g^{S} alone because it is a nonlinear expression in g.

	Salinity S in kg kg ^{-1}						
Pressure p in MPa	0	0.02	0.04	0.06	0.08	0.10	0.12
0.001	280.12	280.27	280.43	280.61	280.80	281.01	281.25
0.005	306.03	306.21	306.41	306.63	306.87	307.14	307.44
0.010	318.96	319.16	319.38	319.62	319.89	320.19	320.52
0.015	327.12	327.34	327.57	327.83	328.11	328.42	328.78
0.020	333.21	333.44	333.68	333.95	334.24	334.57	334.94
0.025	338.11	338.35	338.60	338.88	339.18	339.52	339.91
0.030	342.25	342.49	342.75	343.03	343.34	343.69	344.09
0.035	345.83	346.08	346.34	346.63	346.95	347.31	347.72
0.040	349.01	349.26	349.53	349.83	350.15	350.52	350.94

Boiling temperatures T_b in K of seawater for selected points (*p*,*S*) calculated by iteration from Eq. (6) or Eq. (7)

Table A3 Freezing temperatures T_f in K of seawater for selected points (*p*,*S*) calculated by iteration from Eq. (11) or Eq. (12)

Pressure p in	Salinity S in kg kg ⁻¹								
MPa	0	0.02	0.04	0.06	0.08	0.10	0.12		
0.001	273.1600	272.0823	270.9611	269.7618	268.4609	267.0397	265.4900		
0.005	273.1597	272.0820	270.9608	269.7615	268.4606	267.0394	265.4897		
0.01	273.1593	272.0816	270.9604	269.7612	268.4602	267.0390	265.4893		
0.05	273.156	272.079	270.957	269.758	268.457	267.036	265.486		
0.1	273.153	272.075	270.954	269.754	268.453	267.032	265.482		
1	273.09	272.01	270.89	_ ^a	_ ^a	_ ^a	_ ^a		
10	272.40	271.32	270.20	_a	_ ^a	_ ^a	_ ^a		
20	271.61	270.53	269.40	_a	_ ^a	_ ^a	_ ^a		
50	269.06	267.97	266.82	_ ^a	_ ^a	_ ^a	_ ^a		
100	264.21	263.09	261.92	_ ^a	_ ^a	_ ^a	_ ^a		

^aThis state point is out of the range of validity of Eq. (1).

Table A4

Triple-point temperatures T_t and related triple-point pressures p_t of seawater for selected salinities *S* calculated by iteration from both Eqs. (6) and (11) or from Eqs. (7) and (12)

Salinity S in kg kg ^{-1}	0	0.02	0.04	0.06	0.08	0.10	0.12
Triple-point temperature T_t in K	273.16	272.08	270.96	269.76	268.46	267.04	265.49
Triple-point pressure p_t in kPa	0.61168	0.55953	0.50961	0.46073	0.41257	0.36524	0.31932

Table A2

Table A5

Numerical check values for the brine contribution computed from $g(p, T, S_b)$, Eq. (1), and its derivatives, for the vapor contribution computed from $g^{W}(p, T)$, Eq. (4), and its derivatives, and for the brine-vapor properties computed from $g^{BV}(p, T, S)$, Eq. (16), for specific volume, specific internal energy, specific enthalpy, and specific entropy at p = 0.04 MPa, T = 350.15 K, and S = 0.06 kg kg⁻¹ ($S_b = 0.079$ 781 386 1 kg kg⁻¹ and x = 0.247 944 879)

Quantity	Brine contribution	Vapor contribution	Property of brine-vapor mixture	Unit
v	$0.975\ 269\ 274 \times 10^{-3}$	$0.400\ 679\ 744 \times 10^{1}$	0.994 198 363	$m^3 kg^{-1}$
и	$0.291\ 183\ 170 \times 10^3$	$0.247 806 401 \times 10^4$	$0.833\ 409\ 076 \times 10^3$	kJ kg ⁻¹
h	$0.291\ 222\ 180 \times 10^3$	$0.263 833 591 \times 10^4$	$0.873\ 177\ 011 \times 10^3$	kJ k g^{-1}
S	0.922 324 233	$0.767~550~581 \times 10^{1}$	$0.259\ 674\ 102 \times 10^{1}$	$kJ kg^{-1} K^{-1}$

Table A6

Numerical check values for the brine contribution computed from $g(p, T, S_f)$, Eq. (1), and its derivatives, for the ice contribution computed from $g^{\text{Ih}}(p, T)$, Eq. (13), and its derivatives, and for the brine-ice properties computed from $g^{\text{BI}}(p, T, S)$, Eq. (19), for specific volume, specific internal energy, specific enthalpy, and specific entropy at p = 0.04 MPa, T = 270.15 K, and S = 0.04 kg kg⁻¹ ($S_f = 0.053$ 643 523 5 kg kg⁻¹ and y = 0.254 336 826)

Quantity	Brine contribution	Ice contribution	Property of brine-ice mixture	Unit
v	$0.958\ 594\ 509\times 10^{-3}$	$0.109\ 033\ 070 \times 10^{-2}$	$0.992\ 099\ 875 \times 10^{-3}$	$m^3 kg^{-1}$
и	$-0.122\ 140\ 337 \times 10^2$	$-0.339\ 724\ 684 \times 10^3$	$-0.955\ 120\ 530 \times 10^2$	kJ kg ⁻¹
h	$-0.121756899 \times 10^{2}$	$-0.339\ 681\ 071 \times 10^3$	$-0.954\ 723\ 690 \times 10^2$	kJ k g^{-1}
S	$-0.500 \ 174 \ 577 \times 10^{-1}$	-0.124 381 107 \times 10 ¹	-0.353 643 136	kJ $kg^{-1}K^{-1}$