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ABSTRACT

In this study, response surface methodology (RSM) and artificial neural network (ANN)
were employed to develop prediction models for Acid Red 88 dye removal from synthetic
wastewater using electro-oxidation. Experiments were carried out in a continuous stirred
tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-
coated Titanium as anode and stainless steel sheet as cathode. The four operational parame-
ters such as, effluent flow rate, initial dye concentration, current density, and pH, on
chemical oxygen demand removal has been observed as a response. Experiments were con-
ducted as per RSM of Box–Behnken design. The operating parameters were optimized and
the models were developed using RSM and ANN. The ANN model of three hidden layers
with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.

Keywords: Acid Red 88; Artificial neural network; Chemical oxygen demand; Electro-oxidation;
Response surface methodology

1. Introduction

The effluents discharged from textile industries are
known to be strongly colored, have high chemical
oxygen demand (COD), BOD, and fluctuating pH.
Generally textile dye effluents can be treated by differ-
ent methods such as biological methods, flocculation,
adsorption on activated carbon, chemical oxidation
methods, reverse osmosis, and advanced oxidation
processes [1,2]. Conventional treatment process such
as biological method, physical and chemical methods

are found to be unsuccessful [3–5]. In recent years,
researchers are focusing on advanced oxidation
processes such as electrochemical technique [6], wet
air oxidation [7], ozonation [8], photocatalytic oxida-
tion [9], and ultrasonication [10] method for the degra-
dation of organic pollutants. Among these advanced
oxidation processes, the electrochemical treatment has
been receiving greater attention in recent years due to
its unique features, such as versatility, energy effi-
ciency, automation, and cost effectiveness [11]. In
recent years, there has been increasing interest in the
use of electrochemical technique for the treatment of
dye house effluent. The pollutants present in effluent,*Corresponding author.
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are destroyed by an indirect anodic process via pro-
duction of oxidants such as hypochloride, hydroxyl
radicals. This technique has been successfully applied
in the treatment of several industrial effluents [12,13].

Electrochemical process depends on various
process parameters such as current density, effluent
flow rate, supporting electrolyte concentration, pH,
and initial effluent concentration. In conventional
experimentation, experiments are conducted keeping
all the variables constant except the parameter whose
influence is being studied. But this approach does not
determine the combined effect of all process parame-
ters. Experimental design is an effective and efficient
optimization strategy to overcome this drawback,
which has gained wide application in chemical
engineering optimization [14–16].

Researchers have applied response surface meth-
odology (RSM) and artificial neural network (ANN)
tools for the various processes. Ghosh et al. [17] stud-
ied copper removal from aqueous solution by chemi-
cally modified orange peel using central composite
design for optimization and ANN for modeling.
Marchitan et al. [18] compared RSM and ANN model-
ing for the reactive extraction of tartaric acid from
aqueous solutions. Sinha et al. [19,20] applied RSM
and ANN for the natural dye extraction from pome-
granate rind and seeds of Bixa orellana. The author
suggested that ANN has better prediction perfor-
mance as compared to RSM. Geyikci et al. [21] studied
RSM and ANN to develop models for lead removal
from industrial sludge leachate using red mud. The
author reported, ANN results were found to be more
reliable than RSM. Bingol et al. [22] compared RSM
and ANN for the biosorption of lead using black
cumin. The authors reported that ANN model is much
more accurate in prediction when compared to RSM
of the central composite design.

RSM and ANN have been used for modeling vari-
ous batch operation processes [23–25], but this paper
is focused on continuous treatment of synthetic waste-
water using electro-oxidation. ANN has become
increasingly recommended for applications where the
mechanistic description of the interdependence
between variables is either unknown or the model is
very complex, and requires lot of simplifications. One
of the characteristics of modeling based on ANN is
that it does not require the mathematical description
of the phenomena involved in the process, and might
therefore prove useful in simulating and up-scaling
complex electrochemical systems. The objective of the
study is to treat the Acid Red 88 dye effluent using
Ruthenium oxide-coated Titanium as anode and stain-
less as a cathode in CSTER and develop a model
using RSM and ANN techniques.

2. Materials and methods

All the chemicals used were of analytical grade
(Ranbaxy, India). The synthetic wastewater of Acid Red
88 was prepared by dissolving the required amounts of
dye in distilled water. The supporting electrolyte con-
centration (sodium chloride) was maintained constant
at 750mg l−1. The pH of the initial dye solution is main-
tained by adding 0.1 N hydrochloric acid and 0.1 N
sodium hydroxide solutions, and is monitored using a
digital pH meter (Eclico, Model Li 120). The initial dye
concentrations (50, 75, and 100mg l−1) are estimated by
a standard estimation procedure [26] in terms of chemi-
cal oxygen demand (300, 475, and 650mg l−1). Color of
the dye is measured using UV–vis spectrophotometer
as absorbance and calculated in terms of concentration
using the calibration chart (concentration of the dye vs.
absorbance). After electro-oxidation, the absorbance is
measured and the corresponding concentration is calcu-
lated using the calibration chart. Then the percentage
color removal is calculated as:

Color removal ð%Þ
¼ initial dye concentration� final dye concentration

initial dye concentration
� 100

(1)

2.1. Experimental setup

The experimental setup of the once through mode
of operation is schematically represented in Fig. 1. The
continuous stirred tank electrochemical reactor
(CSTER), consists of a stainless steel sheet cathode and
Ruthenium oxide-coated Titanium as anode, measur-
ing 6.5 × 5 cm2. The reactor volume is 300ml and elec-
trodes used were fixed inside the reactor with a 1 cm
space between them. The flow rates are adjusted by a
peristaltic pump. The flow rates are varied (25, 50,
and 75mlmin−1) to get their corresponding residence
times (12, 6, and 4min).

2.2. Treatment in once through mode

The electrochemical cell has an inlet and outlet at
the bottom and top, respectively. The electrodes were
connected to a 5 A, 30 V DC-regulated power supply
(HIL model 3161). The other components of the setup
such as feed reservoir having a capacity of 1 l and a
peristaltic pump are connected using silicone rubber
tubes. The reservoir was filled with necessary quantity
of synthetic effluent for various initial concentrations.
The supporting electrolyte (sodium chloride) concentra-
tion of 750mg l−1 is maintained constant for all studies.
The flow rate required through the reactor was
established by the peristaltic pump. Various operating
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parameters such as effluent flow rate (25–100mlmin−1),
initial dye concentration (50–100mg l−1), current den-
sity (2–10 mA cm−2), and initial solution pH (4–10) were
selected for the percentage COD removal estimation.
Every experimental run samples were collected from
the reactor, at a steady-state condition for the determi-
nation of color and COD removal.

2.3. Box–Behnken design

In the present work, the Box–Behnken experimen-
tal design has been chosen to find the relation
between the output response and input variables.
Box–Behnken design is a rotatable second-order
design based on three level incomplete factorial
designs. For the present investigation, Table 1 shows
the level of each variable. Table 2 shows experimental
runs for a three-level, four-factor Box–Behnken design
with three center points designed using MINITAB 14
(PA, USA). The analysis was focused on the COD

reduction which is influenced by independent
variables, i.e. effluent flow rate (A), initial dye
concentration (B), current density (C), and pH (D).

3. Results and discussion

3.1. Single-pass flow

Pollutant removal of the single-pass flow reactor
was studied by varying current density (2–10mA cm−2)
and flow rate (25–100mlmin−1). Fig. 2 shows that an
increase in current density improves the pollutant
removal. In other words, operation of the cell at a
higher current density increases the COD removal. This
is due to the fact that the rate of generation of hypochlo-
rite ion increases with an increase in current density,
which eventually increases the pollutant degradation. It
is also observed from Fig. 2, the amount of COD
removal in the reactor is less due to lower residence
time for the higher flow rate. Based on the single-pass
flow experiments, the level of the experimental
parameters has been selected for the RSM.

3.2. RSM modeling

The mathematical relationship of COD removal
with operating variables such as flow rate (A), initial
dye concentration (B), current density (C), and initial
solution pH (D) can be given as uncoded form:

%COD ¼ 55:799þ 1:016A� 1:347Bþ 3:419C� 2:444D

� 0:008A2 þ 0:008B2 þ 0:020C2 þ 0:962D2

þ 0:003ABþ 0:006AC� 0:126AD� 0:0116BC
� 0:02BDþ 0:072CD

(2)

Fig. 1. Schematic representation of CSTER; (1) effluent storage tank; (2) peristaltic pump; (3) anode; (4) cathode; (5)
magnetic stirrer; and (6) DC power supply.

Table 1
Range of variables chosen for electro-oxidation of Acid
Red 88 using Box–Behnken design

Factor Variables Unit

Range of
actual and
coded
variables

−1 0 +1

A Flow rate mlmin−1 25 50 75
B Initial dye concentration mg l−1 50 75 100
C Current density mA cm−2 2 6 10
D pH – 4 7 10
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The prediction of COD removal using the above
equation has been compared with experimental values
given in Table 2 (Fig. 3). It is observed from Fig. 3, the

model predictions match satisfactorily with the experi-
mental values. The parameters according to Eq. (2),
have been optimized for the maximum percentage
COD removal and the optimized values for 95% COD
removal is 25mlmin−1 of effluent flow rate, 50 mg l−1

of initial dye concentration, 10mA cm−2 of current
density, and pH of the dye solution is 10.

The RSM has been applied to electro-oxidation of
Acid Red 88 dye effluent in CSTER and the results are
presented in three-dimensional surface plots. The
interaction between effluent flow rate and initial efflu-
ent concentration is given in Fig. 4. It is observed from
Fig. 4, that the percentage COD removal increases
with decrease in initial dye concentration and flow
rate of effluent. This is evident that the generation
of organic intermediates is more stable for the high-
initial dye concentration and thus decreases the COD
removal.

The combined effects of initial dye concentration
and current density on percentage COD removal is
shown in Fig. 5. It is observed from Fig. 5 that the

Table 2
Actual design of experiments and Color, COD removal for electro-oxidation

Exp. run
A B C D a b c d Color

removal (%)
COD
removal (%)mlmin−1 mg l−1 mA cm−2 –

(Uncoded unit) Coded unit

1 25 50 6 7 −1 −1 0 0 61.15 55.00
2 25 100 6 7 −1 1 0 0 45.05 38.62
3 25 75 2 7 −1 0 −1 0 37.12 29.30
4 25 75 10 7 −1 0 1 0 57.58 55.82
5 25 75 6 4 −1 0 0 −1 45.21 29.88
6 25 75 6 10 −1 0 0 1 85.20 75.49
7 50 75 2 4 0 0 −1 −1 28.05 21.24
8 50 75 10 4 0 0 1 −1 58.75 48.87
9 50 75 2 10 0 0 −1 1 52.99 43.59
10 50 75 10 10 0 0 1 1 87.53 74.77
11 50 50 6 4 0 −1 0 −1 55.00 51.00
12 50 100 6 4 0 1 0 −1 46.00 44.91
13 50 50 6 10 0 −1 0 1 75.53 57.59
14 50 100 6 10 0 1 0 1 59.47 55.51
15 50 50 2 7 0 −1 −1 0 30.00 28.57
16 50 100 2 7 0 1 −1 0 24.37 21.54
17 50 50 10 7 0 −1 1 0 60.00 58.57
18 50 100 10 7 0 1 1 0 55.00 45.89
19 50 75 6 7 0 0 0 0 45.23 37.50
20 50 75 6 7 0 0 0 0 45.23 37.50
21 50 75 6 7 0 0 0 0 45.23 37.5
22 75 50 6 7 1 −1 0 0 35.25 34.00
23 75 100 6 7 1 1 0 0 32.00 25.00
24 75 75 2 7 1 0 −1 0 15.08 14.90
25 75 75 10 7 1 0 1 0 47.50 44.60
26 75 75 6 4 1 0 0 −1 35.21 15.93
27 75 75 6 10 1 0 0 1 32.85 25.55

Fig. 2. Effect of effluent flow rate on percentage COD
removal.
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percentage COD removal increases with increase in
current density and decreases with increase in initial
dye concentration. Increasing current density increases
the hypochlorite formation which results in increase in
percentage COD removal.

The analysis on combined effect of initial dye
concentration and pH on percentage COD removal is
given in the three-dimensional surface plots. It is
ascertained from Fig. 6 that COD removal increases
with increase in pH and decreases with increase in
initial dye concentration. The reaction is favorable in
basic due to increased formation OCl− ion. At high-
initial dye concentration, the generation of organic
intermediates is more stable compared to low initial
dye concentration which results in decrease in per-
centage COD removal. The individual plots of various
process parameters on percentage COD removal are
shown in Fig. 7. It is observed from this figure that
the percentage COD removal decreases with increase

in effluent flow rate, initial dye concentration, and
COD removal increases with increase in current
density and initial pH of the effluent.

Analysis of variance (ANOVA) is applied to deter-
mine the significant effects of process variables on out-
put response and the results are shown in Table 3.
The F values comparison has been performed at 5%
level. It is noticed from Table 3 that the F values for
percentage COD removal is higher which indicates
that the variation in the responses can be explained by
the present model. Further, the associated P values are
used to estimate whether the F values are large
enough to indicate statistical significance or not. It is
noticed that, the F value of 10.79 (Table 3) is higher
than the standard F0.05(14,12) value of 2.60, which
shows that percentage COD removal is significant. In
general, P values less than 0.01 are considered to be
significant in statistical model. It is observed from
Table 3, the P values obtained using Eq. (1) is 0.000,

Fig. 3. Comparison of model prediction with experimental
observations on percentage COD removal.

Fig. 4. Response surface plot of flow rate and initial dye
concentration on percentage COD removal. Current
density: 6mA cm−2; pH 7.0.

Fig. 5. Response surface plot of initial dye concentration
and current density on percentage COD removal. Flow
rate: 25mlmin−1; pH 7.0.

Fig. 6. Response surface plot of initial dye concentration and
pH on percentage COD removal. Flow rate: 25mlmin−1;
current density: 6mA cm−2.
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show that the present model is significant. The present
model equations are further checked by regression
coefficients (R2 and R2

adj) and the values of R2 and R2
adj

are 0.926 and 0.841, which indicate that the model is
highly significant.

3.3. ANN modeling

Several models for ANN exist. The back propaga-
tion neural network (BPNN) is most widely used in
chemical engineering. In the present study, BPNN,
Trainlm, and Tannsig functions are selected as a net-
work, training function, and transfer function, respec-
tively. Generally neural networks consist of input
layer, hidden layers, and output layer. Different hid-
den layers and neurons are selected for training and
prediction of output response of the process. In the
present work for the development of ANN Model, 120
different combinations of experimental runs were

selected by changing one parameter at a time keeping
all the other three parameters constant. Out of which
80 were randomly selected for the training, 15 were
used for the validation, and 25 were used for the
simulation. The input variables are effluent flow rate,
initial dye concentration, current density, and pH.
Percentage COD removal is the output layer for the
ANN model. Training is started from one hidden
layer to three hidden layers. The number of neurons
that varied for the present model is shown in Table 4.
A feed-forward ANN model is designed in
back-propagation training algorithm using the neural
network toolbox of MATLAB 7. All the outputs are
linearly normalized using Eq. (3) before entering in to
ANN,

Ai ¼ ðXi � XminÞ
ðXmax � XminÞ ðrmax � rminÞ þ rmin (3)

Fig. 7. Individual plot for percentage COD removal.

Table 3
ANOVA for percentage COD removal using RSM

Source Degree of freedom Sum of square Mean square F P

Regression 14 6784.70 484.621 10.79 0.000
Linear 4 5497.63 92.737 2.07 0.149
Square 4 894.29 223.572 4.98 0.013
Interaction 6 392.78 65.463 1.46 0.272
Residual error 12 538.89 44.907
Lack-of-fit 10 538.89 53.889
Pure error 2 0.00 0.000
Total 26 7323.58

Note: R2 = 0.925; R2
adj = 0.841.
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where Xi is input or output of the network, Ai is the
normalized value of Xi, Xmin and Xmax are extreme
values of Xi, and rmin and rmax define the limits of the
range where Xi is scaled. In the present work, input
and output data were normalized between −1 to 1;
and 0–0.9, respectively. After modeling, results are
converted to original state. The hidden layer and neu-
rons are selected based on following equations and
the values are tabulated in Table 4.
Root-mean-square-error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðEp;i � Ea;iÞ2
N

s
(4)

Maximum average percentage error (MAPE)

MAPE ¼ 1

N

XN
i¼1

jEp;i � Ea;ij
Ea;i

� 100 (5)

where Ep and Ea are the predicted and actual values,
respectively. N is the number of data-set. It is observed
form Table 4, that three hidden layer with two neurons
show less RMSE and MAPE values. The predicted
value using ANN model compared with experimental
observation is shown in Fig. 8. It is observed from the
figure, the ANN model with three hidden layers and
two neuron networks, 4-2-2-2-1, satisfactorily matches
with the experimental observations.

4. Conclusions

In the present study, electro-oxidation of Acid Red
88 dye house effluent was studied using Ruthenium
oxide-coated electrode in a CSTER. An effort has been
made to model the electro-oxidation process using
RSM and ANN. Response surface plot provides a good
way of visualizing the parameter’s interaction and the
resulting model with R2 = 0.925 shows that the model is
in good agreement with the experimental COD
removal for the electro oxidation of dye effluent. The
ANN model with network structure 4-2-2-2-1, satisfac-
torily matches with the experimental observations.
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