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ABSTRACT

In the present study, an indigenous strain of Vibrio parahaemolyticus PG02 has been used for
mercury elimination from aqueous solutions. A test was performed for evaluating minimum
inhibitory concentration of HgCl2 on the growth of PG02, which revealed that it tolerated
up to 45mg l−1 Hg2+. When the bacteria initially exposed to 5mg l−1 mercury in the med-
ium, during 40 h of incubation, it could remove more than 87% of the initial mercury while
this value decreased to 79% when initially exposed to 10mg l−1 mercury. The intelligent
modeling systems including artificial neural network (ANN) and adaptive neuro-fuzzy
inference system were proposed due to the complexity and nonlinearity of such process.
They were constructed on the experimental data which obtained using central composite
design under response surface methodology. The results of fitting the experimental data
revealed an excellent fitting by all of three examined models. This suggests reliable models
for prediction of the current process performance. However, verification experiments, which
were conducted to confirm the precision of proposed models, introduced the ANN model
as the best for mercury removal from aqueous solution by bacterial strain of Vibrio
parahaemolyticus PG02.
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1. Introduction

Traditional physico-chemical techniques that have
been used to remove heavy metal contaminations
from water or wastewater sources have not been suc-
cessful enough due to the high costs, production of
hazardous by-products, and low efficiencies. Such
specifications are related to operations such as

precipitation, adsorption, ion exchange, coagulation,
flocculation, reverse osmosis, complexation, and elec-
trochemical operations [1–3]. In recent years, microbial
bioremediation has been introduced as an affordable
technique for heavy metals removal from environment
because of low cost, environmentally friendly, and
good efficiency especially at low metal concentrations
[2,4,5]. The elimination of mercury, as one of the most
dangerous elements for human health, has received
more attention than other heavy metals [3,5,6].*Corresponding author.
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Complete bacterial detoxification of mercury is
obtained by reduction of Hg2+ to Hg0, using mercury
reductase enzymes and diffusional loss of Hg0 from
the cell [7]. Many investigations in this field suggest
that there are many microorganisms as biomasses of
bacteria, algae, and fungi, which exhibit interesting
capacities for mercury removal from water or waste-
water [1,8–14].

An efficient process modeling helps to optimize
the process performance while prevents extra expen-
sive experiments and waste of time. When a system is
complex to interpret and also the detailed information
is not available, or the process have a nonlinear time
variable behavior, the results of analytical modeling
using knowledge-based approaches may not be con-
vincing. For such complex processes, the simplifying
assumptions may limit the accuracy of proposed mod-
els. However, for some processes, it is possible to
obtain an analytical model with a sufficient accuracy
[15]. These ambiguities have made strong tendencies
on modeling based on direct use of empirical data
using intelligent systems such as artificial neural net-
work (ANN), adaptive neuro-fuzzy inference systems
(ANFIS), and fuzzy logic (FL) [16,17]. The mentioned
predictive models provide results with excellent corre-
lations and can be used to model the nonlinear rela-
tions over a wide range of input variables [15].

The capability of these modeling methods has been
approved before in economics, robotic, material sci-
ence, chemistry and chemical industry, environment,
new energy sources, oil industry, etc. [18–20]. In this
contribution, there has been a wide range of chemical
engineering publications such as studies on catalyst
behavior [17], normal cutting forces [16], water treat-
ment [21–24], thermosyphon thermal performance
[25], crude oil viscosity [19,20], wind generator opti-
mized performance [19], cavity thermal performance
[26], and membrane processes [18].

The accuracy of such models may be more impres-
sive when the operating parameters of process are opti-
mized by a technique such as response surface
methodology (RSM) [15]. Rahmanian et al. used RSM in
order to optimize the lead removal from aqueous solu-
tions using micellar-enhanced ultrafiltration followed
by FL model to simulate the process [23]. Xie et al. pro-
posed a FL model and RSM approach in an effort to
reduce the number of experiments [15]. In another
study, Kim and Rhee proposed a FL controller with
RSM [27]. Ravikumar et al. used RSM and ANN
approaches for the optimization and modeling of decol-
orization process of distillery spent wash by Phormidium
valderianum [28]. Mohamed et al. employed RSM to
study the effect of medium variables on biomass con-
centration of microalgae Tetraselmis sp. and lipid yield.

An ANN approach was then employed for predicting a
composition that would result in maximum lipid
productivity by the studied strain [29].

In this study, the performance of mercury bioreme-
diation process using an indigenous resistant strain of
Vibrio parahaemolyticus PG02 was simulated using
ANN and ANFIS approaches. An experimental design
strategy using CCD was conducted in order to evalu-
ate the effect of operative parameters such as pH, tem-
perature, and initial mercury concentration on the
mercury removal percentage as well as comparing the
precision of proposed model by RSM with ANN and
ANFIS models. A verification study was also con-
ducted to assess the precision of the proposed models.

2. Theory

2.1. Response surface methodology

RSM is a collection of mathematical and statistical
techniques that has been applied to optimize and model
in numerous chemical and biochemical processes in the
last few years [30–32]. It can simultaneously represent
the effects of main factors and their interactions on
desired response and also determines the optimum val-
ues [33]. The required number of experiments that can
be designed by RSM are much less than a full experi-
mental design at the same level [23].

The relationship between response and indepen-
dent factors usually is described by an empirical sec-
ond-order polynomial model as is presented in Eq. (1)
[30,31,33]:

Y ¼ b0 þ
Xk

i¼1

bixi þ
Xk
i¼1

biix
2
i þ

Xk�1

i¼1

Xk

j¼2

bijxixj (1)

where xi, x
2
i , and xixj are the linear or main, squared,

and the interaction effects of independent factors,
respectively; and β0, βi, βii, and βij are the constant, lin-
ear, squared, and the interaction effect coefficients,
respectively. The accuracy of fit of the proposed
model is interpreted by the coefficient of determina-
tions, R2 and adjusted R2 [29].

2.2. Artificial neural network

Neural networks (NNs) which are inspired by bio-
logical systems are computer algorithms comprised of
elements called neurons. They are applied for infor-
mation processing purposes. Actually, they are neuro-
computers which possess parallel distributed
processors [26]. Neurons are the main elements of
NNs which are connected to the networks by a set of
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connections called assigned weights. The performance
of a network is strongly dependent on weights values.
The neurons are organized in input, output, and the
hidden layers. A neural network performs the model-
ing affair in a way that receives the input, sums them
with their weights and adds a bias to the result of
summation, then sends the results as an argument to
the transfer function.

There are several types of NNs, where multilayer
perception (MLP) is the most common one [34]. The
MLP network has one input layer, one output layer,
and usually one hidden layer. The number of input
and output variables of the network depends on the
type of process [20]. As mentioned in majority of
cases, a network with one hidden layer leads to satis-
factory results. Therefore, the number of hidden layer
is the considered one in this paper. Each neuron in a
layer is usually connected to the neurons of the latter
one.

The network training is done by assigning a pat-
tern to the input pattern, after that the results of acti-
vation level calculation are propagated forward
toward the output layer. Calculation units sum the
inputs and utilize a function to calculate the output.
Finally, the output of the network is achieved in the
output layer. The improvement of network conver-
gence is done by the addition of a constant term by
the bias units of the input and hidden layers to the
weighted sum. When the network outputs are com-
pared with the target values, the errors of hidden
units are determined, and then their weights are
manipulated to minimize the error. This procedure is
shown in Fig. 1. Generally, it can be claimed that the
reduction of global error is the consequent of weight
and bias adjustment using training algorithms.

The neuron k can be expressed mathematically
using Eqs. (2) and (3):

uk ¼
Xm
j¼1

wkjxj (2)

yk ¼ uðuk þ bkÞ (3)

where xj is the input signal, wkj is the neuron’s weight,
uk is the linear combiner output due to input signals,
bk is its bias, φ is the activation function, and yk is the
output signal of neuron.

MLP neural network is used in the current study,
where it is trained by the Levenberg–Marquardt (LM)
algorithm. The transfer functions of hidden and out-
put layers are linear. The current training algorithm
has provided the lowest error value; consequently, the
optimal number of hidden layer neurons has been
achieved. The operating parameters are pH of the
medium, temperature, and initial Hg+2 concentration,
so the input layer of the network has three neurons.
The output is Hg+2 removal percentage, which results
in one neuron in the output layer. The number of hid-
den layer neurons is achieved by the training of sev-
eral networks with different number of hidden layer
neurons and the comparison between the results of
predictions for the desired output. The number of hid-
den layer’s neurons is equal to 20 in this network. The
adequacy criterion for the optimized number of neu-
rons is determined by the calculation of mean squared
error (MSE) between the network output and the
training data. MSE is calculated by the following
equation:

MSE ¼
Pn

i¼1ðYModel;i � Yexp;iÞ2
n

(4)

2.3. Adaptive neuro-fuzzy inference system

The main purpose of a computer software which is
based on artificial intelligence is the achievement of a
set of input–output relationships which describe spe-
cific processes [35]. The word specific implies pro-
cesses which have difficulties in mathematical
modeling such as nonlinear, adaptive learning, and
real time processes.

The learning ability of NNs combined with fuzzy
modeling has created the ANFIS system which is
actually a fuzzy inference in the form of adaptive net-
works [36]. In other words, ANFIS is a hybrid neuro-
fuzzy system which utilizes the appropriate features of
ANN and fuzzy models while corrects their inappro-
priate properties [37]. ANFIS has a FL context and uses
ANN to determine the shape of rule extraction andFig. 1. A schematics of ANN model and weight and bias

adjustment.
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membership functions (MFs) [38]. It can be said that
ANFIS is the combination of low-level calculation of
ANN along with the high reasoning ability of a FL sys-
tem [19].

In the modeling of nonlinear systems based on
ANFIS, the input space is divided into many local
regions. A simple local is developed for each one
based on linear functions or adjustable coefficients,
then ANFIS uses the MFs to divide dimensions of
each input. Several local regions can be activated
simultaneously, while the input space is covered by
the overlapping MFs. The MFs and the ANFIS layers
play an important role in approximation ability of
ANFIS model [26].

ANFIS comprises two parts. The first part is ante-
cedent and the second is conclusion part. Fuzzy rules
relate these two parts.

A common fuzzy if-then rule is as the following
equation:

Rule 1:
If x1 is A1 and x2 is B1 and etc.; then

f1 ¼ p1x1 þ q1x2 þ � � � þ r1;
Rule 2:
If x2 is A2 and x2 is B2 and etc.; then

f1 ¼ p2x1 þ q2x2 þ � � � þ r2
where Ai, Bi and, fi are the fuzzy and output sets. pi,
qi, and ri are the design variables which are deter-
mined during the learning [39].

ANFIS modeling is done in five layers as illus-
trated in Fig. 2 [36].

The nodes of the first layer are adaptive nodes
with the following function (Eq. (5)):

lAiðxÞ ¼ e�
x�x�
r2

� �
(5)

where x* and σ* are premise parameters which are
adapted by a hybrid algorithm and x is the input vari-
able. In the second layer, the firing strength of each
rule is determined by quantifying the extent of each

rule’s input data. The output of a layer is the algebraic
product of input signals:

O2;iðxÞ ¼ xi ¼ lAiðx1Þ � . . . � lCiðxnÞ (6)

The normalization is performed in the third layer. It is
done by the calculation of ratio of ith, rule’s firing
strength to the summation result of all rule’s firing
strength, it is calculated by each node as the following:

O3;iðxÞ ¼ �xl ¼ xi

ðxi þ . . .þ xnÞ (7)

The output of each node is calculated in the fourth
layer as following equation:

O4;i ¼
X

�xifi (8)

The total output is determined as the summation of
all input signals in the fifth layer. The calculation of
wave height in layer five is done using the following
equation [19,24,40]:

O5;i ¼
Pn

i¼1 xifiPn
i¼1 xi

(9)

It is obvious that the first and the fourth layers are
adaptive. Ci and Oi are premise parameters of input
fuzzy MFs in layer 1 [39]. As mentioned, the fifth layer
gives the total output as the sum of all input signals.

Several ANFIS models have been applied to per-
form the modeling using MATLAB software. Addi-
tionally, the coverage threshold is equal to 0.045. It is
worth noting that the Gaussian MFs have been used
in this work.

3. Material and methods

3.1. Microorganism

The bacterial strain which was used in the present
work had been previously isolated from contaminated
sediments of Bushehr (Iran) coast and identified as
Vibrio parahaemolyticus PG02 [41]. This strain has been
deposited in NCBI GenBank under accession number
of KC990033. Pure colonies were maintained on Tryp-
tic Soy Agar plates at 4˚C.

3.2. Minimum inhibitory concentration test

In order to study the maximum bacterial resistance
to mercury, the minimum inhibitory concentrationFig. 2. The structure of ANFIS model.
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(MIC) test was conducted. It is known as the lowest
concentration of Hg2+ that completely prevents the
growth of microorganism [42]. In order to calculate
the MIC, 1ml aliquots of overnight cultures were inoc-
ulated in 99ml of Tryptic Soy Broth (TSB) and 5ml
was distributed in 20 test tubes. Various concentra-
tions of Hg2+ were added (from 5 to 100mg l−1). Tubes
were then incubated in a shaker incubator at 160 rpm
and 35˚C for 24 h [41]. The optical density of each cul-
ture was detected at a wavelength of 560 nm, using a
UV–visible spectrophotometer (PerkinElmer, Lambda
25, USA) [13]. The Control samples containing culture
medium and mercuric chloride, without bacteria, were
also assessed simultaneously with the main tests. It is
worth noting that the experiments were carried out in
duplicate.

3.3. The rate of mercury bioremediation by strain PG02

The toxicity of heavy metals especially mercury
has deathlike effects on living cells, and this will
appear as declining specific growth rate of microor-
ganisms as well as premature death [43,44]. So it can
be acclaimed that the heavy metal bioremediation pro-
cess will be performed as long as the microorganisms
are metabolically active. Therefore, in order to investi-
gate the approximate time to accomplish the mercury
bioremediation process, which means after that there
is no significant change in mercury concentration in
the medium, some experiments were conducted to
monitor the mercury concentration in the culture med-
ium over time. Therefore, three 500ml flasks contain-
ing 250ml TSB with the initial concentrations of 5, 10,
and 40mg l−1 Hg2+ were inoculated with 12.5 ml (5%)
of overnight culture and incubated at 160 rpm, 35˚C,
and pH value of (8.1 ± 0.1) in a conventional shaker
incubator. The bacterial-free mediums containing
defined mercury concentrations were incubated as
control runs. Sampling was done in certain time inter-
vals followed by centrifugation (7,000 × g for 20min)
in order to analyze the residual mercury in superna-
tant by flameless Atomic Absorption Spectrophotome-
ter (PG Instruments AAS 500, England). All of the
experiments were carried out in triplicate and
confidence intervals of 95% were calculated for the
averages.

3.4. Design of experiment using RSM

The central composite design (CCD) under RSM
was applied using MINITAB software (version 14.1)
as an experimental design strategy and modeling the
mercury removal process. The ANN and ANFIS

modeling approaches were constructed on the experi-
mental data obtained by this design strategy. Initial
pH of medium (levels of 2, 3, 5, 7, and 8), temperature
(levels of 20, 25, 35, 45, and 50˚C), and initial Hg2+

concentration (levels of 5, 10, 20, 30, and 35mg l−1)
were considered as three independent factors affecting
the mercury removal percentage, as response. Forty
experiments were employed with two replicates in
100ml flasks containing 50ml TSB culture medium
under specified conditions to evaluate the effect of
three independent factors on mercury removal by
PG02. The runs were incubated at 160 rpm in a con-
ventional shaker incubator. The samples were with-
drawn after 40 h of incubation followed by
centrifugation (7,000 × g for 20min) and analyzing the
supernatant by AAS. The removal percentage
(response) was calculated according to Eq. (10):

% removal ¼ ðCi � CtÞ
Ci

� 100 (10)

where Ci and Ct are the initial and the residual mer-
cury concentrations (mg l−1) at time t, respectively.

4. Results and discussion

4.1. The rate of mercury bioremediation

The experiments have showed that PG02 can resist
up to 45mg l−1 Hg2+. It is significantly more resistant
in comparison with some other reported Vibrio species
with MIC values of 2.71 and 12–16mg l−1 Hg2+ [45,46].
However, it is weaker than Pseudomonas sp. with MIC
= 100mg l−1 Hg2+ [47]. Plasmid-containing feature of
Vibrio parahaemolyticus makes it resistant against high
concentrations of pollutants [45]. Therefore, the
bioremediation studies by PG02 were conducted
below 45mg l−1 Hg2+ concentrations.

Tracing the mercury concentration in the culture
medium under adjusted conditions (35˚C, 160 rpm and
pH of 8.1 ± 0.1) revealed that increasing the initial
mercury concentration decreased the rate of bioreme-
diation (Fig. 3). As was previously claimed, it is due
to the bacterial deactivation. In Fig. 3, it can also be
seen that when the initial mercury concentration was
5mg l−1 in the medium, the concentration decreased
rapidly during the first 20 h of incubation and reaches
to 1mg l−1 (79% mercury removal). It occurred during
the logarithmic phase of growth. However, during the
next 20 h, when the bacteria placed in the stationary
phase, fewer changes were observed in mercury con-
centration such that it only decreased to 0.6 mg l−1

(87% mercury removal). After that, no significant
changes were observed in mercury concentration in

S.A. Jafari and D. Jafari / Desalination and Water Treatment 55 (2015) 1467–1479 1471



the medium and the bioremediation process gradually
stopped.

The same trend was observed when the initial
mercury concentration was adjusted to 10mg l−1 in the
medium (Fig. 3). However, the whole decreasing
phase of mercury concentration in the medium
occurred during the first 30 h of incubation (79% mer-
cury removal) and beyond this time there were not
any significant changes in the mercury removal. It
means that the increase of the mercury concentration
time required to carry out the bioremediation process
is decreased. The diagram of 40mg l−1 mercury con-
centration was not depicted since no significant reduc-
tion was observed in its concentration during the
incubation time and the rate of bioremediation was
almost negligible (less than 10% mercury removal). It
was previously confirmed by Schmitz et al. [44] that
the specific growth rate of V. fischeri was significantly
decreased in the presence of Chromium, Manganese,
and selenium. Kafilzadeh and Mirzaei also demon-
strated that Klebsiella and Pseudomonas almost became
disabled in the presence of 20mg l−1 mercury in the
medium [43].

According to Fig. 3, a slight depletion was
observed in mercury concentrations during the control
runs which were indicated by dash lines. It is presum-
ably due to the sorption of mercury ions by the glass
surface of the flask. As it was approved by Stas’ et al.
[48], glass can adsorb cations. In the present research,
less than 5% of initial mercury concentrations were
disappeared in control runs, which can be ignored.

By these findings, the sampling was done in the
following RSM experiments after 40 h of incubation.

4.2. Prediction results of RSM

Samples were withdrawn from all of the 40 experi-
ments that were designed by RSM after 40 h of incuba-
tion in order to measure their residual mercury
contents by AAS. After analyzing the obtained experi-
mental data by MINITAB, a modified polynomial qua-
dratic model was achieved as a function of studied
factors which was indicated in Eq. (11):

Y ðMercury Removal %Þ ¼ 17:2162þ 8:0917� pH
þ 2:6818� Temp� 1:4346

�Hg Conc.� 0:6735� pH2

� 0:0399� Temp2 � 0:0307

�Hg Conc.2

þ 0:0384 pH.Temp
þ 0:0087 Temp.Hg Conc.

(11)

As it can be seen from Eq. (11), the mathematical signs
of the main effects indicate that pH and temperature
have positive influence on the response while initial
Hg concentration has a negative influence [33]. In addi-
tion, the larger coefficient of pH (8.0917) compared
with the other main effects represents the greater
impact of this factor on the response, Y. The high val-
ues of R2 = 0.999 and adjusted R2 = 0.998 indicate an

Fig. 3. Decrease in mercury concentration by Vibrio parahaemolyticus PG02 over time when the initial mercury concentra-
tion was (♦) 5 mg l−1 and (■) 10mg l−1 along with the control runs (–), Temperature of 35˚C, 160 rpm and pH 8.1 ± 0.1.
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excellent agreement between the experimental and the
predicted values as illustrated in Fig. 4.

Fitting evaluation based on R2
adj is more accurate

than by R2 [29]. However, the statistical significance of
the model should also be assessed by P-values of the
model and lack-of-fit terms. The former should be
significant with value less than 0.05 and the latter
should be insignificant with value more than 0.05
[29,49]. Here, both of these terms were satisfactorily
accepted by the values of 0.000 and 0.172, respectively.
Therefore, the modeling by RSM can be considered
reliable for prediction of mercury removal by studied
strain, PG02. Verification experiments were also per-
formed to assess the precision of the model.

It was found that increasing the pH value up to 7.2
increased the mercury removal sharply, while the
response decreased slowly at higher pH values. The
temperature also showed to have a similar effect. The
value of 37.5˚C exerted the most significant effect on
mercury removal among the considered values. Such
an effect can be interpreted as the stimulation of
bacterial activity and cell division by environmental
factors such as pH and temperature [50]. However, the
increase in the pH leads to the deprotonation of func-
tional groups on the cell surface and this, in turn,
increases the attractive forces between the cell wall and
Hg2+ ions [5]. On the other hand, the bioaccumulation
is a temperature-dependent mechanism [51,52], but
excessive temperature destroys or deactivates the cells
[50]. The initial Hg2+ concentration exerted a reverse
effect on the mercury removal percentage by PG02.
Increasing the initial mercury concentration from 5 to
30mg l−1 decreased the removal percentage from 90 to
33%. As was previously discussed, high concentrations

of mercury decreased the bacterial growth and conse-
quently the mercury bioremediation.

4.3. Prediction results of ANN

The input variables of NNs significantly affect their
efficiency, since they reflect the physical principles of
the studied system. The input data have been

Fig. 4. Comparison of experimental data and predicted values by RSM for mercury removal by PG02.

Fig. 5. ANN model structure for the prediction of Hg2+

removal percentage.

Table 1
Statistical parameters for ANN and ANFIS models

ANN ANFIS

R2 0.997324526 0.996752844
SD 0.025438019 0.020938672
SSE 6.9395E−06 6.9395E−06
MSE 1.73488E−07 1.73488E−07
RMSE 0.000416518 0.000416518
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normalized between zero and one prior to training step.
The input variables in this study, as mentioned before,
are initial pH of medium, temperature, and initial Hg2+

concentration. The structure of ANN in this study is
illustrated in Fig. 5. As it can be seen, the network
comprises three layers, including input, hidden, and
the output. There are three nodes in input layer corre-
sponded to three input operating variable. The inputs
are directly sent from the input nodes to the hidden
layer (considered one) by the weights, where the main
data processing is performed there by the calculation of
inputs weighted summation. The output layer has one
node since there is only one output variable, Hg2+

removal percentage. It is worth noting that a set of
initial values are assigned to weights which are
corrected during the training through the comparison
between experimental data and the model results. The
minimization of errors is done as the result of their back
propagation.

Seventy-five percent of all of experimental data are
randomly selected for the training and the rest were
used for the network testing. The hidden layer neuron
number is determined through the minimization of dif-
ference between the validation set of data and the
results of network calculations. LM algorithm
presented more accurate results during the training
compared with scaled conjugate gradient, gradient des-
cent with momentum, adaptive learning rate back-
propagation, and resilient back-propagation. Therefore,
the current network was trained using LM algorithm.
After the training, the network was tested by the new
set of data which were not used during the training.
Fig. 6 represents the graphical comparison between the
experimental data and the results of ANN modeling.
The value of correlation coefficient was 0.997, which

denotes that the model output follows the target
properly. It can be said that there is an excellent
agreement between the experimental data and the
results of modeling.

The standard deviation (SD) for the results of
ANN modeling is equal to 0.025. The values of stan-
dard squared error (SSE), mean squared error (MSE),
root-mean-square error (RMSE), R2, and SD are
reported in Table 1.

The high value of R2 and the reported errors show
that the output variations are shown well by the tar-
get. The results of modeling approved the fact that
ANN is an appropriate tool to predict the perfor-
mance of mercury bioremediation process.

Fig. 7 shows the evaluation of network error in
training, validation, and testing as a function of learn-
ing epochs. The MSE became constant after 2 epochs
which denotes the network convergence. Therefore,
the acceptable error was achieved by 2 epochs.

4.4. Prediction results of ANFIS model

The structure of ANFIS model is illustrated in
Fig. 8. Gaussian MF types were used during the cur-
rent modeling study. The visual comparison between
the experimental data and the results of ANFIS model
has been shown in Fig. 9 with high value of R2 = 0.996.
This approves the high capability of ANFIS for the
study of Hg2+ removal by the studied strain of PG02.

The deviation of predicted data by RSM, ANN,
and ANFIS models from the Hg2+ removal percentage
experimental data is illustrated in Fig. 10. The devia-
tion intervals of RSM, ANN, and ANFIS predicted
data are (−0.01296 to 0.013325), (−0.0192 to 0.03085),
and (−0.02599 to 0.024057), respectively. Fig. 11 shows

Fig. 6. Comparison of experimental data and predicted values by ANN for mercury removal by PG02.
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the comparison between the results of RSM, ANN,
and ANFIS models and experimental data. There is an
excellent agreement between the simulation results
and the real data.

The results of ANN and ANFIS models can be
compared with each other using Table 1 data through
the reported figures for R2, SD, SSE, and RMSE for
two proposed models for prediction of Hg2+ removal
percentage. These statistical parameters are calculated
using Eqs. ((12)–(16)):

R2 ¼
Pn

i¼1ðYExp;i � YModel�MeanÞ2 �
Pn

i¼1ðYModel;i � Yexp;iÞ2Pn
i¼1ðYExp;i � YModel�MeanÞ2

(12)

Fig. 8. The ANFIS structure for Hg2+ removal percentage
modeling.

Fig. 7. Evolution of MSE values of training, validation, and test errors during ANN training.

Fig. 9. Comparison of experimental data and predicted values by ANFIS for mercury removal by PG02.
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SD ¼
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Fig. 11. Comparison of experimental mercury removal percentage and predicted values by ANN, ANFIS, and RSM in
each run.

Fig. 10. The residuals vs. the predicted mercury removal percentage by ANN (■), ANFIS (▲), and RSM (♦).
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4.5. Verification tests

In order to approve the accuracy of the proposed
models by RSM, ANN, and ANFIS approaches to pre-
dict mercury removal from aqueous solution by indig-
enous strain of V. parahaemolyticus PG02, four
additional experiments were performed randomly
under the optimum conditions which were achieved
by Eq. (11). Table 2 shows the experimental results of
the verification studies under the optimum factors
along with the predicted values by RSM, ANN, and
ANFIS models. Corresponding percentage errors have
also been provided in order to compare the precisions.

As can be seen from Table 2, the maximum per-
centage error value for RSM results is 4.38%, while it
is reported to be 3.74 and 4.17% for ANN and AN-
FIS, respectively. By taking the average of four per-
centage errors, it was found that the minimum
obtained error value within the verification tests
belonged to ANN model with the value of 1.70%,
while the maximum value, 2.36%, obtained for RSM
model. The small error values suggest significantly
good predictions by the proposed models for mer-
cury removal from aqueous solutions by the indige-
nous PG02 strain. However, the proposed ANN
model was introduced as the best one.

5. Conclusions

Vibrio parahaemolyticus PG02, as an indigenous bac-
terial strain, can resist up to 45mg l−1 mercury. The
results showed that mercury removal ability by the
strain decreased by increasing the mercury concentra-
tion in the medium. This was due to bacterial inactiva-
tion by their exposure to mercury. The investigations
revealed that in the presence of initial 5 mg l−1 mer-
cury, the PG02 survived for 40 h while simultaneously
decreased the mercury concentrations in the medium.
As the initial mercury concentration increased, the
survival time decreased and consequently the rate of

bioremediation decreased too. An experimental design
strategy was performed by CCD under RSM in order
to investigate the effect of studied factors on the
response (mercury removal percentage) as well as
evaluation of the proficiency of its modeling to predict
the response. ANN and ANFIS were also established
on the obtained experimental data to simulate the pro-
cess and comparing their results. The high values of
correlation of coefficients, R2, revealed that each of
these three approaches well fitted the experimental
data and can be applicable for prediction of the
process.

References

[1] C. Green-Ruiz, Mercury(II) removal from aqueous
solutions by nonviable Bacillus sp. from a tropical
estuary, Bioresour. Technol. 97 (2006) 1907–1911.
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