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ABSTRACT

In small-scale pumped-storage reservoirs, physical disturbances have been suggested to be
one of the main factors influencing phytoplankton structure and water quality. This study
presented data on dynamic changes of the phytoplankton structure and the quality of raw
water sampled monthly from January 2011 to June 2012, in three locations (with two differ-
ent water levels each) of a small pumped-storage reservoir of Macau main storage reservoir.
The trophic state index, phytoplankton structure indices, and multivariate statistical
techniques were applied for assessing trophic state, phytoplankton community, and spatio-
temporal variations of the reservoir, respectively. The results showed that the reservoir was
categorized as a eutrophic–hypereutrophic reservoir, with the dominance of Cyanophyta in
2011, and of Chlorophyta and Bacillariophyta in 2012. Lowest diversity/evenness and highest
dominance happened in June 2011, while highest diversity/evenness and lowest dominance
occurred in May 2012. Principle component analysis identified four factors that can explain
80.8% of the total variance of the water quality data, and cluster analysis generated two
clusters of spatial similarity among the six sampling points and two clusters of temporal
similarity among the 18 months. Discriminant analysis results revealed only three parame-
ters (TP, NO3-N, and Chl-a) that could afford 100% correct assignation in temporal analysis,
while no spatial variation was found in spatial analysis. This study highlighted the useful-
ness of combination of these methods for the evaluation and interpretation of complex
water quality data-sets and assessment of pollution level of small-scale eutrophic reservoirs.
The results from the study can be used in developing monitoring program of freshwater
bodies.
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1. Introduction

Phytoplankton structure and water quality in
freshwater eutrophic reservoirs are becoming a serious
concern, which may lead to proliferation of harmful
phytoplankton (called algal blooms) under favorable
conditions. Algal blooms disturb the ecosystem, dete-
riorate the water quality, and most importantly pro-
duce cyanotoxins that pose a serious health hazard for
humans [1,2]. To better understand the problem of
algal blooms and prevent their occurrences, it is
imperative to analyze the phytoplankton structure and
the corresponding water quality. Understanding the
spatial and temporal variations of phytoplankton com-
munity and water quality could help in developing
regular monitoring program that is a helpful tool not
only to evaluate the impacts of pollution sources but
also to ensure an efficient management of water
resources and the protection of aquatic ecosystems.

Human activities such as periodic pulses of mixing
have influenced reservoirs features including retention
times and water level fluctuations [3]. Due to physical
disturbances in small-scale pumped-storage eutrophic
reservoirs, changes of phytoplankton community
structure in response to water quality tend to be more
pronounced [4,5]. These changes can reveal important
aspects of susceptibilities and tolerances of the species
present that form the community, which is fundamen-
tal to biological monitoring of the reservoirs. Previous
studies on reservoirs have generally dealt with the
structural compositions of the phytoplankton commu-
nity, focusing on the taxonomic surveys and ecological
studies [6–8]. Diversity and community comparison
indices of Shannon–Wiener diversity, Simpson diver-
sity, Pielou’s evenness, Stander’s similarity index
(SIMI), and Margalef’s richness have been recognized
as useful ways for analyzing phytoplankton structure
in different water bodies all over the world [9–12].

For analyzing the complex data-set obtained from
large numbers of samples and water quality parame-
ters at different times and places, univariate and
bivariate statistical techniques were traditionally used,
which could be far from adequate. Recently, multivari-
ate statistical techniques including principle compo-
nent analysis (PCA), cluster analysis (CA), and
discriminant analysis (DA) have been proved to be
more helpful in the interpretation of complex data
matrices to better understand the water quality. These
methods have been employed to evaluate and exam-
ine the spatial and temporal variations and trends in
water bodies [13–15]. PCA is a very powerful tech-
nique applied to reduce the dimensionality of a data-
set consisting of a large number of inter-related
variables, while retaining as much as possible the

variability present in data-set. It uses an orthogonal
transformation to convert a set of observations of pos-
sibly correlated variables into a set of values of uncor-
related variables called PCs, thus reducing the
complexity of multidimensional system by maximiza-
tion of component loadings variance and elimination
of invalid components. PCA technique was previously
used alone or in combination with other methods, to
simplify the interpretation of the relationship within
complex data-set and model aquatic, environmental,
and ecological processes [16,17]. In analyzing the tem-
poral and spatial difference of the samples, CA and
DA analyses were applied. CA can group objects
(cases) into classes (clusters) on the basis of similari-
ties within a class and dissimilarities between different
classes, so that the objects in the same cluster are more
similar to each other than to those in other clusters,
helping in mining the data and indicate patterns [18].
DA provides statistical classification of samples and it
is performed with prior knowledge of membership of
objects to particular group or cluster (such as temporal
or spatial grouping of a sample is known from its
sampling time or site). The DA results are able to
group the samples sharing common properties and
help in prediction [19].

Main storage reservoir (MSR), a small pumped
MSR of Macau, was reported to have experienced
increasing frequency of algal blooms, with high con-
centrations of Cylindrospermopsis spp. and Microcystis
spp. which were producing cyanotoxins [20]. However,
detailed information about the phytoplankton compo-
sition and the spatio-temporal variations in water qual-
ity of MSR are still lacking. There is also only sparse
literature integrating phytoplankton structure indices
and multiple statistical analysis for studying the spa-
tio-temporal variation of phytoplankton community
and water quality in small-size freshwater reservoirs.
We hypothesized that phytoplankton composition and
water quality would be affected greatly in such small-
scale ecosystem. The objectives of this study were to
analyze the spatio-temporal variations of phytoplank-
ton structure including dominant species, diversity,
evenness, and similarity, and to perform multivariate
statistical techniques (PCA, CA, and DA) for dynamic
changes of water quality in MSR. These results will be
used in evaluating the pollution level and developing
a water monitoring program in the reservoir.

2. Materials and methods

2.1. Site description and sampling

MSR (22º12´12´´N, 113º33´´12´´E), located in the east
part of Macau peninsula, is the biggest reservoir in

2238 W. Zhang et al. / Desalination and Water Treatment 55 (2015) 2237–2252



Macau, with the capacity of about 1.9 million m3 and
the water surface area of 0.35 km2. It is a small
pumped-storage reservoir that receives raw water from
the West River of the Pearl River network and can pro-
vide water supply to the whole area of Macau for
about one week. MSR is particularly important as the
temporary water source during the salty tide period,
when high salinity concentration is caused by intrusion
of sea water to the water intake location. However,
algal bloom problems occur from time to time in the
summers, and the situation appeared to be more wors-
ening in recent years, with high phytoplankton abun-
dance in which Microcystis spp. and Cylindrospermopsis
spp. were detected as the dominant species.

During the study period, water samples were col-
lected monthly in MSR from January 2011 to June
2012. Six sampling points were selected at three sta-
tions S1–S3 (Fig. 1) with two different water depths
(0.5 and 3.5m below the water surface) each. Stations
S1 and S3 are located in the inlet and outlet, respec-
tively, while station S2 is at the center of MSR. P1
(P2), P3 (P4), and P5 (P6) are defined as the sampling
points at 0.5 m (3.5 m) below the water surface at sta-
tion S1, S2, and S3, respectively.

2.2. Water quality parameters

2.2.1. Abiotic parameters

Sampling, preservation, and transportation of the
water samples to the laboratory were performed

according to standard methods [21]. The samples were
analyzed for 15 abiotic parameters including water
temperature (WT), secchi depth (SD), electrical con-
ductivity (EC), pH, dissolved oxygen (DO), total nitro-
gen (TN), nitrate nitrogen (NO3-N), nitrite nitrogen
(NO2-N), ammonia nitrogen (NH3-N), total phospho-
rus (TP), orthophosphate phosphorus, chlorophyll-a
(Chl-a), microcystin (MC) and cylindrospermopsin
(CYN) concentrations, and precipitation. Precipitation
was obtained from Macau Meteorological Center
(http://www.smg.gov.mo/www/te_smgmail.php).
WT and SD were measured in situ with a mercury
thermometer and a Secchi disk. pH was determined in
the laboratory with a pH meter (DKKTOA, HM-30R).
Conductivity was measured with an EC meter (DKK-
TOA, CM-30R). DO, NH3-N, NO3-N, NO2-N, TN, TP,
and PO3�

4 were measured according to the standard
methods [21]. Chl-a was determined by UV–vis
recording Spectrophotometer (SHIMADZU, UV-
2401PC). Identification of the planktons was
conducted following Smith [22]. MC and CYN concen-
trations were measured using HPLC technique.

2.2.2. Biotic parameters

The phytoplankton samples were immediately
fixed using Lugol’s iodine solution for phytoplankton
counting with an inverted microscope following the
method of McAlice [23]. After 72 h sedimentation,
algal species were identified based on morphological

Fig. 1. Layout of MSR and location of water sampling.
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criteria and quantified at ×100 magnification along a
Sedgewick-Rafter chamber, according to the method
described by Utermöhl [24].

2.3. Data analysis

2.3.1. Trophic state index

Trophic status was assessed using trophic state
index (TSI), the most commonly used index, to
describe trophic levels of lakes and reservoirs. The
overall TSI was calculated based on TP concentration,
Chl-a concentration, and SD, according to the follow-
ing equations [25].

TSIðSDÞ ¼ 10� 6� ln SD

ln 2

� �
(1)

TSIðTPÞ ¼ 10� 6� ln ð48TPÞ
ln 2

� �
(2)

TSIðChlÞ ¼ 10� 6� 2:04� 0:68 lnChl

ln 2

� �
(3)

TSIðoverallÞ ¼ TSIðSDÞ þ TSIðTPÞ þ TSIðChlÞ
3

(4)

Four classes, oligotrophic, mesotrophic, eutrophic, and
hypereutrophic states with the corresponding TSI of
< 30–40, 40–50, 50–70, 70–100+ are defined, from low
to high primary productivity.

2.3.2. Community comparison indices

(1) The diversity was estimated using the Shannon
and Wiener index [26]:

H0 ¼ �
Xs

i¼1

pi log2 pi (5)

where pi is the proportion of individuals in species i
and s is the number of species encountered.

(2) The Simpson index (D) of diversity was first
introduced by Simpson [27], and it is used to
measure the degree of dominance:

D ¼
Xs

i¼1

p2i (6)

(3) The evenness was assessed using H0 [28] as
follows:

J0 ¼ H0

log2 s
(7)

where H0 is the Shannon’s index in a sample and s is
the number of species.

(4) Margalef’s richness [29] index:

s� 1

lnNi
(8)

where s is the number of species and Ni is the number
of individuals. The richness referred to the number of
algal taxa registered in each sample. Generally, in a
healthy environment, Margalef’s richness index is
higher in the range of 2.5–3.5 [30].

(5) The Stander’s [31] SIMI is calculated to com-
pare two successive phytoplankton communi-
ties:

SIMI ¼
P

aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a2i

P
b2i

q (9)

where ai is the ratio of the number of individuals of
species i to the total number of individuals N in sam-
ple A; bi is the ratio of the number of individuals of
species i to the total number of individuals N in sam-
ple B; and s is the total number of species in both
samples. The range of SIMI value is from 0 (no simi-
larity) to 1 (identical). The criteria [32] can be divided
into five categories to evaluate the meaning of the
SIMI index: 0.00–0.199 represents dissimilarity,
0.20–0.499 is low similarity, 0.50–0.699 is medium sim-
ilarity, 0.70–0.899 is similarity, and 0.90–0.999 is high
similarity. Our study period was divided into six
groups (January–Mar 2011, April–June 2011, July–Sep-
tember 2011, October–December 2011, January–March
2012, and April–June 2012) to compare the similarity
and quantify the differences in the kinds of species
present and their abundance data.

2.3.3. Statistical analysis

Statistical analyses (PCA, CA and DA) were car-
ried out using PASW 19 software package (SPSS Inc.).
DA was applied to the raw data, whereas PCA and
CA were performed on standardized data through
normalized transformation due to the wide ranges of
data dimensionality and different units of measure-
ments [15,33,34].
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2.4. Principal component analysis

Kaiser–Meyer–Olkin (KMO) and Bartlett’s spheric-
ity tests were performed to examine the suitability of
the data for PCA [15,19]. KMO is a measure of sam-
pling adequacy which indicates the proportion of vari-
ance that is common, while Bartlett’s test of sphericity
indicates whether a correlation matrix is an identity
matrix, which would indicate that variables are unre-
lated. The significance level indicated that whether
there were significant relationships among the vari-
ables. In our case, the selected 14 variables with com-
plete data-set were accessed with KMO and Bartlett’s
test of sphericity to verify the applicability of PCA.
Only parameters with communalities great than 0.5
were used for analysis.

2.5. Cluster analysis

The purpose of CA is to group a set of objects into
different clusters based on their similarity to each
other. It is the most common approach to decide
which clusters should be combined or formed. The
clusters are formed sequentially by starting with the
most similar pair of objects and grouping higher clus-
ters in a step-by-step method. The Ward’s method
with Euclidean distance [35] is usually applied to
show similarities between two samples, and a “dis-
tance” can be represented by the “difference” between
analytical values from both of the samples. CA deter-
mines the variability of the data-set using the linkage
distance, which is expressed as Dlink/Dmax. It is tra-
ditional to use the quotient multiplied by 100 as a
way to standardize the linkage distance [36]. In our
case, CA was applied to the water quality data-set to
group the similar spatial (6 points) and temporal (18
months) among all the water samples, resulting in the
spatial and temporal dendrograms.

2.6. Discriminant analysis

DA is the analysis used to determine which contin-
uous variables discriminate between two or more nat-
urally occurring groups. The details have been
described in previous studies [34,37]. It performs anal-
ysis on raw data and its technique set up a discrimi-
nant function (DF) for each group, as written by the
following equation:

fðGiÞ ¼ ki þ
Xn
j¼1

WijPij (10)

where i is the number of groups (G), ki is the constant
inherent to each group, n is the number of parameters
used to classify a set of data into a given group, Wj is
the weight coefficient, assigned by DA to a given
selected parameters (Pj). However, there is only one
DF for a 2-group DA. Wilk’s lambda is used to test if
the discriminant model is significant, where “Sig.”
p value <0.05 is required. If DA is effective for a set of
data, the classification table of correct and incorrect
estimates will yield a high correct percentage. In this
study, DA was performed on grouped periods and
sections based on the CA results.

3. Results

3.1. Water quality in MSR

3.1.1. Abiotic parameters

The rainfall in the study period (data not shown
here) was 2,131.8 mm yearly in average, with two
peaks in the summers (June 2011 and April 2012) and
nearly no precipitation in the dry and cold seasons.
Other water quality parameters were measured and
summarized in Fig. 2. It was showed that the physical
parameters, temperature, SD, conductivity, and Chl-a
fluctuated from time to time, while DO and pH main-
tained relatively stable (Fig. 2(a)). Variations in nitro-
gen and phosphorus concentrations (Fig. 2(b) and (c))
were observed during the study. High concentrations
of TN and TP were observed from July to January,
resulting in high phytoplankton density in summer
(Fig. 3). Low phytoplankton abundance from Novem-
ber to January was because of the low temperature in
winter which is another more important factor affect-
ing the micro-organisms’ growth. Furthermore, low
TN/TP ratio (<10) for most time was found in MSR,
thus favored the blue algae (Fig. 3). The concentrations
of CYN and MC (Fig. 2(d)) showed one peak in Febru-
ary 2011, after which both concentrations decreased to
nearly zero in March and April of 2011. Then both cy-
anotoxins showed different behaviors: the CYN dra-
matically increased and kept at a high level until the
end of 2011, while MC maintained at a low level until
the April of 2012 and started to increase in May and
June. These results were consistent with the dynamic
changes of the corresponding species, Cylindrospermopsis
spp. and Microcystis spp. (Fig. 5), particularly
Microcystis spp. maintained an extremely low level of
cell number during the whole year of 2011 and gradu-
ally increased in 2012, while Cylindrospermopsis spp.
had high concentrations in 2011 and dramatically
decreased in 2012.
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The TSI (SD), TSI (TP), and TSI (Chl) of the reser-
voir were calculated as 62–75, 66–96, and 49–74,
respectively, from which the overall TSI was estimated

as 65–82 by taking the average of the three values.
The results indicated that MSR was categorized as a
reservoir between eutrophic and hypereutrophic
status.

3.2. MSR phytoplankton community

3.2.1. Phytoplankton species compositions and densities

Thirty-five taxa from the six divisions including
Cyanophyta, Chlorophyta, Bacillariophyta, Cryptophyta,
Pyrrophyta, and Euglenophyta were identified and
shown in Table 1.

Cyanophyta, Chlorophyta, and Bacillariophyta were
the most important phytoplankton constituents, occu-
pying more than 95% of the total phytoplankton, with
small variations of the monthly counting data among
different sampling points observed (Fig. 3). It should
be noted that Cyanophyta was dominant in 2011,
especially during the summer and autumn, while
Chlorophyta and Bacillariophyta were the dominant con-
stitutes in 2012 (Fig. 4). Further species-level micro-
scopic counting results indicated that Pseudanabaena
spp., Cylindrospermopsis spp., Dactylococcopsis spp.,
Merismopedia spp., Scenedesmus spp., and Chlorella spp.
were the dominant species in the study period
(Fig. 5). Starting from March 2011, cyanobacteria dom-
inated with relative abundances more than 95%. It
became dominant very rapidly and remained at high
level until the end of the year. Though Pseudanabaena
spp. was the dominant species of cyanobacteria for
most of the time, it was not considered to be the noto-
rious species, as it releases no cyanotoxins, reported
from literature, but may only clog the filters during
the treatment process. Different from Microcystis spp.
that was the dominant species causing algal blooms in
previous years, Cylindrospermopsis raciborskii was the
dominant toxic species in the study period. It was also
found that, compared to that of 2011, phytoplankton
abundance in the first half of the year 2012 was dra-
matically decreased, which was due to the partial
change of source water from the mainland China. This
change would definitely affect the water quality, thus
resulting in the change of phytoplankton structure, in
the small-scale pumped-storage reservoir.

The total phytoplankton maintained at a high level
during April–November 2011, which was positively
correlated with temperature (rs = 0.58, p < 0.01), pH
(rs = 0.73, p < 0.01), NH4-N (rs = 0.74, p < 0.01), and Chl-
a (rs = 0.90, p < 0.01), and anti-correlated with SD
(rs = −0.56, p < 0.01), conductivity (rs = −0.62, p < 0.01),
NO3-N (rs = −0.88, p < 0.01), and NO2-N (rs = −0.76,
p < 0.01). These results suggested that the most
important water parameters associated with the

Fig. 2. Variations of 14 abiotic water parameters, with (a)
temperature, pH, DO, Chl-a, SD, and conductivity; (b) TN,
NO�

3 -N, NO�
2 -N, and NHþ

4 -N; (c) TP and PO3�
4 ; and (d)

CYN and MC. The error bars represented the standard
deviations of the six samples.
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development of the algal blooms were temperature,
pH, nitrogen source, and conductivity. Besides, the
high correlation between phytoplankton abundances
and Chl-a concentrations confirmed that the Chl-a is a
good indicator of the phytoplankton measurement,
reflecting the abundance of algae in the reservoirs.

3.2.2. Diversity, dominance, evenness, richness, and
similarity

The seasonal variations in phytoplankton species
were estimated using five indices, Shannon and Wie-
ner index, Simpson index, Evenness index, Margalef’s
richness, and Stander’s SIMI, to reveal the diversity,
dominance, evenness, richness, and similarity of MSR,
respectively, and the results were summarized in
Fig. 6. The indices calculation was based on the num-
ber of individuals for each species, thus showing more
information and further relationship of all the identi-
fied species than those of the only three dominant
phyla as shown in Figs. 3 and 4. Small spatial

variations of the monthly calculated indices data were
observed, indicating that there is no much difference
of those indices among different sampling points.

It was showed that diversity and dominance var-
ied irregularly throughout the study period. The high-
est diversity (H0 = 3.09) and the lowest dominance
(D = 0.19) occurred in May 2012, while the lowest
diversity (H0 = 0.29) and highest dominance (D = 0.94)
happened in June 2011.

Pielou’s index revealed the evenness of distribu-
tion of various species in the samples. Our results
showed that the evenness indices had a similar pat-
tern to the diversity indices, indicating that the phyto-
plankton community was satisfactorily even in May
2012 (J0 = 0.73), while it was uneven in June 2011
(J0 = 0.07). These results could be explained by the
number of countable species and their percentage
(Fig. 5). Pseudanabaena spp. had a peak in June 2011,
occupying 96.89% of the total phytoplankton, i.e. other
species only had a very small portion, resulting in low
diversity and evenness. On the contrary, in May 2012

Table 1
Phytoplankton species composition in MSR

Phyla Species composition

Cyanophyta Pseudanabaena galeata, Cylindrospermopsis spp., Planktothrix spp., Dactylococcopsis spp., Merismopedia spp.,
Chroococcus spp., Microcystis spp., Oscillatoria spp., Aphanocapsa spp., Anabaena spp.

Chlorophyta Scenedesmus spp., Chlorella spp., Tetraedron minimum, Ankistrodesmus falcatus, Chlamydomonas spp.,
Schroederia spp., Cosmarium spp., Selenastrum spp., Oocystia spp., Pediastrum spp., Coelastrum spp.,
Staurastrum spp., Tetraedron caudatum, Micractinium spp., Westella spp.

Bacillariophyta Cyclotella spp., Achnanthes spp., Navicula spp., Fragilaria spp., Aulacoseira granulata
Cryptophyta Cryptomonads spp.
Pyrrophyta Peridinium spp., Ceratium hirundinella
Euglenophyta Phacus spp., Trachelomonas spp.

Fig. 3. Densities of phytoplankton and principal phyla during study period. The error bars represented the standard devi-
ations of the six sampling points.
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the total phytoplankton grew in low density (Fig. 3),
with the species appeared at balanced percentages
(33.78% Scenedesmus spp., 9.44% Tetraedron minimum,
6.95% Cyclotella spp., 4.97% Chlorella spp., and 4.47%
Pseudanabaena spp. of the total population), leading to
the highest levels of diversity and evenness.

The Margalef’s richness index in MSR was esti-
mated as 0.43–1.24 (Fig. 6), which was far below the
range of 2.5–3.5 as reported by Khan et al. [30].

The SIMI results varied irregularly in our study.
Comparison between two pairs of each 3-month per-
iod (Table 2) showed that MSR had similarity or high
similarity (>0.7) in 2011. However, there was much
dissimilarity or very low similarity (<0.2) between Jan-
uary–March 2012 and April–June 2012, indicating that
the variations of phytoplankton species were high in
2012. This result was consistent with the variations of
densities and percentages of the phytoplankton (Figs. 3
and 4), which was probably due to the partial change

of the source water from the Mainland China in the
January of 2012.

Further statistical analysis indicated that the diver-
sity was positively correlated with evenness (rs = 0.98,
p < 0.01), while anti-correlated with both the domi-
nance (rs = −0.88, p < 0.01) and phytoplankton density
(rs = −0.73, p < 0.01). However, the correlation between
diversity and Margalef’s richness was not high
(rs = 0.47, p < 0.01).

3.3. Principal component analysis

The PCA was performed on 14 selected variables
(13 abiotic parameters and 1 biotic parameter) and
total phytoplankton to compare the compositional pat-
tern between the water samples and determine the
factors influencing each other in MSR. The value of
KMO was 0.602, which is above the criteria value of
0.6. The value of χ2, calculated as 210.06 with p-value

Fig. 4. Monthly proportions of Cyanophyta, Chlorophyta, and Bacillariophyta in total phytoplankton.

Fig. 5. Densities of dominant species (belonging to Cyanophyta, Chlorophyta, and Bacillariophyta) during the study period.
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less than 0.0005 by Bartlett’s test of sphericity test,
indicated that the analysis was applicable [38]. The
scree test suggested that there were four components
(PC) with the eigen values greater than 1, in which all
the 14 variables were included. PCA explained 80.84%
of the variance from the total data in PC1–PC4. The
biplot (Fig. 7) indicated that PC1 (44.92%) was mainly
composed of nitrogen sources, physical, and biological
parameters. PC2 (17.77%) was mostly influenced by
climatic parameters and TN. PC3 (10.13%) and PC4
(8.03%) were defined as the phosphorus source and
SD (not shown here), respectively. The results from
PCA suggested that most of the variations can be
explained by the nutrients, physical, and soluble salts.
Though PCA did not reduce the number of data in
this study (as all the variables were included), it
served as a means to identify those parameters that
had the greatest contribution to variation in the water
quality of reservoirs and indicated possible sets of pol-
lutant sources.

3.4. Temporal variations

3.4.1. Cluster analysis

The difference of all the sampling months was rep-
resented by the length of each two branch lines as
shown in the dendrogram: the greater the length, the
greater the difference. Temporal CA generated the
dendrogram (Fig. 8) that grouped the 18months into
two clusters at (Dlink/Dmax) *100 = 20, with Cluster 1
in April–December 2011, and Cluster 2 in January–
March 2011 and January–June 2012. The two clusters
classification was in accordance with the cyanobacteria-
blooming period and cyanobacteria-depression period
(Figs. 3 and 4) and was also consistent with the corre-
sponding SD, conductivity, NO3-N, NH4-N, and Chl-a
(Fig. 2) in both the periods, implying that sampling
only during these two periods in a year possibly suf-
ficed for assessment of temporal variations in water
quality of MSR, assuming that other factors were
insignificant.

Fig. 6. Indices of diversity, dominance, evenness, and richness over time. The error bars represented the standard devia-
tions of the six sampling points.

Table 2
SIMI comparisons in the study period

2011 2012

January–
March

April–
June

July–
September

October–
December

January–
March

April–
June

2011 January–March 1
April–June 0.910 1
July–September 0.873 0.955 1
October–
December

0.686 0.744 0.906 1

2012 January–March 0.214 0.134 0.155 0.185 1
April–June 0.086 0.046 0.042 0.053 0.105 1
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Fig. 7. PCA results in the ordination space of the first and second PCA axis (PC1 and PC2).

Fig. 8. Dendrogram showing hierarchical clustering of monitoring periods according to Ward’s method with Euclidean
distance (CA).
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3.4.2. Discriminant analysis

Temporal DA was performed on the two period
clusters (April–December 2011/January–March 2011
and January–June 2012). DFs obtained from the stan-
dard and stepwise modes of DA were listed in Table 3,
in which in the standard mode all water parameters
were included, while in the stepwise mode, only three
parameters were considered, thus reducing variables
in the further analysis. However, whatever the stan-
dard mode or stepwise mode was used, it rendered
the corresponding classification matrices (CMs) assign-
ing 100% cases correctly. These results showed that
TP, NO3-N, and Chl-a were the most significant vari-
ables to discriminate between the two periods, i.e.
accounting for most of the expected temporal varia-
tions in MSR. Therefore, nitrogen and phosphorus
sources may contribute to the concentration of Chl-a,
the indicator of phytoplankton abundance.

3.5. Spatial variations

3.5.1. Cluster analysis

Spatial CA results were shown in a dendrogram
(Fig. 9) where all six sampling points on the reservoirs
were grouped into two statistically significant clusters
at (Dlink/Dmax) *100 = 20. Cluster 1 consisted of four
sampling points (p1, p2, p3, and p4, i.e. the center and

the inlet of MSR) and cluster two consisted of the
other points (p5 and p6, i.e. the outlet of MSR). These
results showed that there was a certain level of spatial
fluctuation on the water quality between the inlet/cen-
ter and the outlet, in spite of the small-scale reservoir
of MSR.

Both Figs. 8 and 9 confirmed that MSR is a small
pumped-storage reservoir with no significant spatial
difference but with high temporal difference. Thus,
this information could provide a guide for the Macao
Water Utility to monitor the water quality only at
different times without taking samples at different
locations.

3.5.2. Discriminant analysis

Spatial DA was also performed on the two section
clusters (p1-p2-p3-p4/p5-p6) using standard and step-
wise modes. However, the results using both modes
showed the significance level approaching to 1, i.e.
failing to complete DA. The reason was mainly
because in such a small pumped-reservoir of MSR,
water quality characteristics at different points were
similar. This result was also consistent with that per-
formed by CA where the water parameters in MSR
are relatively uniform, and nearly no spatial variations
were found between the different sampling points.

Based on the results from CA and DA, we can con-
clude that there is no spatial difference for water qual-
ity variables, while much difference between different
periods exists. It is recommended that, in the future
water quality monitoring program and strategy, more
efforts should be placed to increase the sampling fre-
quency at different times, instead of increasing sam-
pling points of MSR. Probably a couple of sampling
points are enough to extract enough information for
further analysis.

4. Discussion

MSR is a small pumped-storage reservoir with a
short hydraulic retention time (HRT) (~90 d), thus its
water qualities are greatly influenced by the external
source water and the anthropogenic activities. Due to
the change of source water from the Mainland China
in the January of 2012, the SD and Chl-a concentration
varied dramatically from 0.4 to 0.75 m and 45 to
10mg/m3, respectively. Our overall monthly TSI
results indicated that MSR was classified as eutrophic
reservoir in rainy and cold seasons (December–March)
and as hypereutrophic reservoir in rainy and hot sea-
sons (April–November). These findings were similar
to our previous study [20], which can be explained by

Table 3
Classification functions for DA of temporal variations in
MSR

Parameters

Coefficient

Standard mode Stepwise mode
Function Function

Temperature 0.709
SD 14.159
Conductivity 0.173
pH 0.748
DO 2.430
TN 16.720
TP 3.582 5.327
NO3-N −71.442 −14.276
NO2-N 0.023
NH4-N 43.465
Orthophosphate 148.374
Chl-a 0.126 0.046
MC 817.505
CYN 1.544
Rainfall −0.006
Phytoplankton 0.000
(Constant) −103.023 1.801
Sig. 0.005 0.000
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that during the rainy and hot period, it increases the
risk of the pollutants from the land that are washed
out and enter the reservoir, resulting in high level of
eutrophic state in the small-scale ecosystem. In addi-
tion, the maximum density of Cyanophyta (April–
November) can influence the TSI and water quality in
reservoir. Katsiapi [39] showed that high percentage
of cyanobacteria deteriorates the water quality from
good to moderate, based on the Alert Levels Frame-
work established by the World Health Organization.

Due to the small capacity of the reservoir, only 35
phytoplankton species are found, which showed fewer
taxa than the large water bodies with the species more
than 100. Besides, the Margalef’s richness index in our
study was far below the range of 2.5–3.5 stated by
Khan et al. [30], indicating that the biodiversity level
of MSR was not high enough. The report on low val-
ues for phytoplankton species and biodiversity indices
in small eutrophic reservoir is common, as environ-
mental conditions in a situation of trophy tend to
favor a small number of species that have large densi-
ties and alternate in the dominance of the community
[40]. Other researches [41,42] also found that com-
pared with mesotrophic reservoirs in which coexis-
tence of more species is possible, a trend to lower
diversity indices in small-scale eutrophic reservoir

further confirmed that diversity was more affected by
the evenness than by phytoplankton density and rich-
ness [43].

Cyanophyta, Chlorophyta, and Bacillariophyta were
the most important phytoplankton constituents in
MSR, which was observed in other trophic reservoirs
[7,12]. Both the total phytoplankton and Cyanophyta
exhibited larger densities during hypereutrophic per-
iod of 2011, and the dominance of cyanobacteria in
eutrophic reservoirs has been mentioned in the previ-
ous studies [12,44,45], involving the factors to favor
cyanobacterial blooms: high nutrient status and high
WT [45–47]. Interestingly, starting from the late sum-
mer to the end of 2011, Cylindrospermopsis spp.
increased dramatically and became one of the domi-
nant species, coexisting with Pseudanabaena spp. High
temperature seems to be essential for Cylindrospermopsis
spp. to develop [48], and perennial populations
have been observed in tropical areas [49–51].
Cylindrospermopsis spp. allows it to grow in relatively
low levels of phosphate [52,53], and their preferred
nitrogen source is ammonium [48,52], which also
happened in MSR. It was also noted that Microcystis
spp. was not counted in most of the time during 2011,
while it was the common species in 2012. This is
probably because Cylindrospermopsis raciborskii, the

Fig. 9. Dendrogram showing hierarchical clustering of monitoring sites according to Ward’s method with Euclidean
distance (CA).
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dominant toxic species in 2011, release high concentra-
tion of CYN that reduced the growth of Microcystis
spp., as CYN is able to inhibit the protein synthesis of
phytoplankton [54]. Furthermore, the two important
cyanotoxin-producing species, Cylindrospermopsis raci-
borskii and Microcystis spp., alternatively became the
dominant toxic species in such a relatively simple eco-
system as MSR. Though the mechanisms of such
changes are still unclear, it should be taken into con-
sideration when developing the monitoring program
of the raw water and treated water, particularly for
Cylindrospermopsis raciborskii whose releasing toxin
(CYN) is not a regulatory parameter.

Phytoplankton experienced low growth rates in Jan-
uary–March 2011 and January–June 2012, and the domi-
nant organisms changed from Cyanophyta to Chlorophyta
and Bacillariophyta, which was also observed in Fernán-
dez et al. [12]. However, the explanations for such a
change were complicated, and the physical distur-
bances due to temperature and partial change of the
raw water from the mainland China would probably be
the major two reasons. Generally, Chlorophyta and Bacil-
lariophyta favor in the shallow and enriched systems
[55], and their dominant species, Scenedesmus spp., Chlo-
rella spp., Achnanthes spp., and Fragilaria spp., varied
greatly, which was consistent with the SIMI results indi-
cating that the large variations in phytoplankton com-
positions happened in 2012.

Shannon index is not only the indicator of diver-
sity, but also the indicator of pollution level of water
bodies, with the H´ of 3.0–4.5 as slight, 2.0–3.0 as light,
1.0–2.0 as moderate, and 0.1–1 as heavy pollution [56].
Our results showed that 12 of 18months in the study
were classified as moderate pollution state, which was
similar to that in Mumbai coast [56]. This can be
explained by that Macau urban area is densely popu-
lated and susceptible to heavy anthropogenic stresses.

To further study on the spatial and temporal varia-
tions in water quality, PCA was served as a means to
identify those parameters that had the greatest contri-
bution to variation in the water quality of reservoirs
and indicated possible sets of pollutant sources
[34,57]. In our study, phytoplankton was found to be
correlated with water temperature, pH, DO, NH4-N,
and Chl-a, and anti-correlated with conductivity, NO3-
N, NO2-N, and SD, suggesting that high temperature,
sufficient DO, appropriate alkalinity condition, and
soluble nitrogen sources favor the phytoplankton
abundance. High density of phytoplankton resulted in
high concentrations of Chl-a, NH4-N, and low SD.

Compared to PCA which is used to identify the
principle parameters for explaining the variations of
water qualities, CA is a method to classify the similar
and dissimilar groups. It has been successfully applied

in water quality assessment programs and designed
the sampling strategy [19,34,36]. Different from SIMI
index which is calculated based on the phytoplankton
structure, CA was based on water quality including
abiotic and biotic parameters. In the present temporal
analysis of CA, two periods identified was consistent
with the classification of cyanobacteria-blooming per-
iod and cyanobacteria-depression period. In the spatial
analysis of CA, if the criterion of (Dlink /Dmax)*100
< 60 in previous studies [34,58] was applied, our sam-
pling points did not show any difference, implying
that only one sampling point may be enough for the
rapid assessment of water quality in MSR. This is
because in such a small reservoir with a short HRT,
the hydrography is homogenous and the hydraulic
exchange is high [59]. The stratification in MSR is thus
absent or very weak, which is likely to have an impact
on phytoplankton compositions and water quality
from different depths that are sharing the same char-
acteristics.

Besides, our DA results suggested that TP, NO3-N,
and Chl-a were the most significant variables among
all the water parameters in temporal analysis, which
was consistent with the PCA results that NO3-N and
Chl-a were the principle components for explaining
the variations, and the temporal CA study showed that
the two periods, algal blooms and non-algal blooms
periods, can be divided. Actually, the TP and Chl-a
were parameters used in calculating the TSI of the res-
ervoir, while NO3-N is the most important nutrient fac-
tor for phytoplankton growth. In spite of TP being a
relatively independent factor in MSR, it was often
selected as one of the most important parameters to
monitor and reported as the environmental factor
affecting the blue-green algae biomass [12,60].

5. Conclusions

In small-scale eutrophic lakes or reservoirs, physi-
cal disturbances caused by natural and anthropogenic
activities have great impacts on the variations of phy-
toplankton structure and water quality. This study
presented data on dynamic changes of the phyto-
plankton structure and water quality of a short HRT
reservoir that is experiencing algal blooms in recent
years. The reservoir showed a high TSI level of 65–82
and was determined to be in eutrophic–hypereutroph-
ic status. Lowest diversity/evenness and highest dom-
inance happened in June 2011, while highest
diversity/evenness and lowest dominance occurred in
May 2012, which was consistent with the number of
countable species and their relative proportions. The
SIMI index revealed that the variations of phytoplank-
ton species were significant in 2012, while maintained
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relatively stable in 2011. Margalef’s richness index
revealed that the overall phytoplankton species rich-
ness level of MSR was not too high and within the
range of 0.43–1.24.

PCA identified four factors, which were responsi-
ble for the data structure explaining 80.84% of the
total variance of the complete data-set. CA generated
two groups of spatial similarity from six sampling
points and two groups of temporal similarity among
18months, and DA provided an important data reduc-
tion, with only three parameters (TP, NO3-N, and Chl-a)
that could afford 100% right assignations in temporal
analysis. However, there is no spatial variation found,
mainly due to the small capacity of the reservoir. This
study highlighted the usefulness of combination of
various methods for the evaluation and interpretation
of complex water quality data-sets and assessment of
pollution level of small-scale eutrophic reservoirs. The
results from this study confirmed the variations of
phytoplankton structures and water quality in tempo-
ral distribution, as well as relative homogeneity in
spatial distribution, which can help in developing a
future plan to determine the optimal sampling
locations and sampling frequency in the monitoring
program of MSR.
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