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ABSTRACT

In water treatment process such as membrane bioreactors (MBRs), transmembrane pressure
(TMP) must be monitored for process control when the process is operated under a condi-
tion of constant-rate filtration. One of the reasons making it difficult to monitor, predict,
and control TMP is TMP jumps, which means that TMP rise-up rapidly even under the crit-
ical flux. We previously constructed a statistical model that predicts the time of a TMP jump
by inputting elapsed time, flux, TMP, and other MBR parameters such as operating condi-
tions and water quality. This model is called a TMP jump prediction model. The predictive
ability of the TMP jump prediction model was demonstrated through many data sets
obtained from real MBRs. In this study, we analyzed the TMP jump prediction model to
search optimal operating conditions that can prevent TMP jumps. By changing the values of
operating conditions and predicting the time of TMP jumps for each candidate of operating
conditions, we could control the time of a TMP jump in a full-scale MBR.
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1. Introduction

Membrane bioreactors (MBRs) have been widely
used in water treatment fields such as sewage treat-
ment and industrial wastewater treatment to purify
wastewater for reuse [1]. MBRs combine biological
treatment with membrane filtration. First, bacteria
within activated sludge metabolize the organic pollu-
tants and produce environmentally-acceptable metabo-
lites, then a microfiltration or ultrafiltration membrane
separates liquids from solids. MBR can be distributed

at various locations such as residential sections and
industrial plants. Thus, we can create an environment
in which treated water is effectively reused in society.

However, MBRs have some practical problems.
One of the critical problems is membrane fouling [2].
Membrane fouling is a phenomenon wherein foulants,
such as activated sludge, sparingly soluble com-
pounds, and high-molecular-weight solutes and col-
loids, absorb or deposit on the membrane surface and
absorb into and block the membrane pores. To clean
membrane with chemicals at an appropriate time,
membrane fouling must be predicted in the long term
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[3–8]. When an MBR plant is operated under a condi-
tion of constant-rate filtration, this corresponds to pre-
diction of the transmembrane pressure (TMP) [9–17].

One of the reasons to make TMP difficult to pre-
dict is a TMP jump [18]. After the long-term operation
of MBR under the condition of constant-rate filtration,
TMP increases rapidly [19]. This is called a TMP jump.
Yu et al. proposed a mechanism for the TMP jump
whereby the membrane is partially blocked by
foulants, after which the local flux exceeds the critical
flux [20], below which only reversible fouling happens
and irreversible fouling can be neglected [21]. It can
be said that a TMP jump is a rapid increase in TMP
after a period of processing even though the measured
flux is less than the critical flux.

We previously proposed the construction of a
model that predicts the elapsed time of a TMP jump
[22]. The model where input variables X are time, flux,
TMP and other MBR parameters such as operating
conditions (aeration rate, hydraulic retention time,
sludge retention time, and so on) and water quality
(water temperature, total organic carbon, concentra-
tions of extracellular polymeric substances and soluble
microbial products, and so on), and output variable y
is a label variable representing whether TMP jumps
happen or not is constructed by using physical and
statistical approaches. The model used to detect a
TMP jump is called a TMP jump prediction model.
This model f is represented as follows:

y ¼ fðXÞ þ e; (1)

where e means the errors of y. A support vector
machine (SVM) [23], which is a nonlinear classification
method, was applied for the construction of f. By
inputting new data of X into f, we can estimate
whether a TMP jump happens or not at the time when
the new data are measured. Additionally, the presence
of a TMP jump can be predicted at the target time by
inputting setting values into f. The predictive ability of
the TMP jump prediction model was demonstrated
through many data sets obtained from real MBRs [24].
In addition, the domains where a TMP jump predic-
tion model estimates TMP jumps will happen can be
visualized to discuss the possibility of TMP jumps and
the ways to prevent TMP jumps in the future [25].

In this study, we search appropriate MBR operat-
ing conditions where a TMP jump never happens by
analyzing the constructed TMP jump prediction
model. This type of analysis is called as inverse analy-
sis. For example, set values of flux for each time or set
values of aeration for each time are changed, and
then, these values are input into the TMP jump

prediction model. Afterwards, the predicted time of a
TMP jump can be obtained. By repeating the changes
of set values and the check of the prediction results,
the appropriate operating condition with which a
TMP jump does not happen can be found. The effec-
tiveness of the proposed method is demonstrated
through a case study using a full-scale MBR plant.

2. Method

The basic concept of the TMP jump discriminant
model is shown in Fig. 1 [24]. X-variables are elapsed
time, flux, TMP and other MBR parameters, and a
y-variable is a label variable representing whether
there are TMP jumps. The data before TMP jumps are
labeled −1, the data after TMP jumps are labeled 1,
and an SVM model determining values of −1 and 1 is
then constructed for X and y. The details of SVM are
shown in Appendix A.

In the prediction of a TMP jump in the long term,
the target time is input, a set flux relating to the con-
stant-rate filtration is input, and the predicted TMP
should be inputted into the SVM model. Fortunately,
the increase in TMP is represented as a linear function
of time because the initial increase in the fouling resis-
tance can be assumed to be due to cake fouling [22].
Predicted TMP values are then input into the TMP
jump prediction model. For other parameters, pre-
dicted values or set values are input into the model.
Accordingly, we can predict whether a TMP jump will
happen at the target time.

By using the constructed TMP jump prediction
model and inputting future set values of flux and
water quality with changing them, i.e. repeating trial
and error, we can search the conditions where a TMP
jump will hardly happen. MBR can be accordingly
controlled for a TMP jump not to happen in the future.
In addition, by projecting the results of a discriminant

Fig. 1. TMP jump prediction model [24].
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model to a two-dimensional map with visualization
methods such as principal component analysis [26],
kernel PCA [27], self-organizing map [28], and genera-
tive topographic mapping [29], we can discuss optimal
MBR conditions where TMP jumps hardly happen
[25].

Basically, y-values can be predicted by inputting
X-values into f (see Fig. 1), which is direct analysis.
Reversely, X-values can be also obtained to meet
desired y-values, which is inverse analysis. It is diffi-
cult to solve inverse problem compared to direct prob-
lem because X-values are underspecified for a y-value.
Then, a trial and error method, an exhaustive search
method, and an optimization method such as genetic
algorithm are used in inverse analysis. Of course,
there exist the cases that there are no X-values to meet
a required y-value.

3. Results and discussion

Data were obtained from a full-scale MBR plant
operating in Japan. A brief summary of the target MBR
plant is given in Table 1. The MBR system comprises
anaerobic, anoxic, aerobic, and membrane tanks. A
membrane module is immersed in a membrane tank.
In this case study, we used data for the first six batches
as a training data set and data for the last three batches
as a test data set to verify the predictive ability of the
proposed method for external data. A batch of data
means the operation from the start or membrane foul-
ing to next membrane cleaning or the end of the opera-
tion. An MBR operator defined the data before TMP
jumps (−1) and the data after the TMP jumps (1).

X-variables of the discriminant models are three
variables, i.e. elapsed time [h], flux [m/d], and TMP
[kPa], or seven variables, i.e. elapsed time [h], flux
[m/d], TMP [kPa], water temperature [˚C], dissolved
oxygen [mg/l], pH [−], and aeration [l/min]. Table 2

presents the results for the construction and predic-
tion of discriminant models with three and seven
X-variables using the SVM. The accuracy rate (AR), pre-
cision (PR), and the detection rate (DR) are defined as:

AR ¼ TPþ TN

TPþ FPþ TNþ FN
; (2)

PR ¼ TP

TPþ FP
; (3)

DR ¼ TP

TPþ FN
: (4)

Here, TP denotes the number of true positives, or the
number of test data for which the state after TMP
jumps is correctly detected; TN represents the number
of true negatives, or the number of test data for which
the state after TMP jumps is not detected and the tran-
sition is indeed incomplete; FP denotes the number of
false positives, or the number of test data for which
the state after TMP jumps is incorrectly detected; and
FN represents the number of false negatives, or the
number of test data for which there are actually TMP
jumps but they are not detected.

From Table 2, although the DR-value decreased a
little, the AR-value increased and the PR value signifi-
cantly increased by adding X-variables, compared to
three X-variables. Fig. 2 shows the plots of actual and
predicted time of TMP jump. The data became closer
to the diagonal with the addition of water quality and
operating conditions to X-variables. It was confirmed
that the predictive ability of the discriminant model
increased by using water quality and operating condi-
tions as X-variables. We used the TMP jump predic-
tion model constructed with seven X-variables in the
next analysis.

Table 1
Brief Summary of an MBR in Japan

Operation Constant-rate filtration

Treatment object Urban wastewater
Anaerobic tank volume 1,000 l
Anoxic tank volume 4,000 l
Aerobic tank volume 2,000 l
Membrane tank volume 4,000 l
Membrane Flat sheet
Material Polyvinylidene difluoride
Pore diameter 0.1 μm
Total membrane area 65m2

Table 2
Modeling and prediction results. AR, PR and DR values
with test data for the discriminant model. The indices are
expressed by Eqs. (2)–(4) and explained in the text

#vara 3b 7c

AR [%] 88.1 93.5
PR [%] 56.1 93.5
DR [%] 62.7 56.9

aNumber of X-variables.
bElapsed time [h], flux [m/d] and TMP [kPa].
cElapsed time [h], flux [m/d],TMP [kPa], water temperature [˚C],

dissolved oxygen [mg/l], pH [−] and aeration [l/min].
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Operating conditions with which TMP jumps
never happen were searched by using the constructed
TMP jump prediction model. The target batch is the
last batch of the test batches. Fig. 3 shows the time
plot of TMP in the target batch. The time of the TMP
jump that the MBR operator decided beforehand was
79th h.

Four scenarios shown in Table 3 were handled in
this case study. Fig. 4 shows the time plot of aeration
for each scenario. The times of the TMP jump pre-
dicted by the TMP jump prediction model for the sce-
narios are shown in Table 3. In scenario B, by
decreasing aeration compared to that of scenario A, it
is predicted that the TMP jump will happen earlier
than the TMP jump in scenario A. Low aeration could
not clean membrane well, which would cause the early
TMP jump. This early TMP jump with small aeration
is a reasonable result. Reversely, the TMP jump would
not happen by increasing aeration to 250 [l/min]. High
aeration could remove foulants on the membrane,

which would be appropriate. However, high aeration
increases the operating cost.

Therefore, we changed aeration by trial and error so
that the total amount of aeration is the same as that of
scenario A, which produced scenario D. By increasing
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Fig. 2. The plots of actual and predicted time of TMP jump. Three X-variables and seven X-variables are explained in
Table 2.
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Fig. 3. The time plot of TMP in the target batch.

Table 3
Scenarios of aeration and the predicted time of the TMP
jump for the scenarios

Operation of aeration

Predicted
timeof the
TMP jump

Scenario A Actual operation 69
Scenario B 100 l/min 55
Scenario C 250 l/min None
Scenario D Changing so that the total

amount of aeration is the
same as that of scenario A

None
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Fig. 4. The time plot of aeration for each scenario in
Table 3.
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aeration step by step as shown in Fig. 4, the TMP jump
could be prevented. It is important that the total
amount of aeration does not change and the operating
cost is also the same as that of the actual operation, i.e.
scenario A. We confirmed that the adequate operating
conditions could be searched by using the proposed
method. Actually, the water quality would change
when aeration changed, the effect of which is impor-
tant and must be considered in the future.

4. Conclusion

In this paper, we constructed a TMP jump predic-
tion model for predicting TMP jumps with MBR
parameters first, and then, analyzed the TMP jump
prediction model to investigate MBR operating condi-
tions with which a TMP jump never happened. It was
confirmed that the appropriate aeration scenario could
be found by changing the values of aeration, inputting
them into the TMP jump prediction model and check-
ing the prediction results. It is important to consider
the correlation between operating conditions and
water quality to search reliable operating conditions in
the future. Using the proposed method, we will
achieve the effective control of an MBR.

Acknowledgment

The authors acknowledge the support of the Core
Research for Evolutional Science and Technology
(CREST) project “Application of Integrated Intelligent
Satellite System (IISS) to construct regional water
resources utilization system” of the Japan Science and
Technology Agency (JST).

References

[1] F.G. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin,
F.L. Yang, Recent advances in membrane bioreactors
(MBRs): Membrane fouling and membrane material,
Water Res. 43 (2009) 1489–1512.

[2] M. Kraume, D. Wedi, J. Schaller, V. Iversen, A. Drews,
Fouling in MBR: What use are lab investigations for
full scale operation? Desalination 236 (2009) 94–103.

[3] A. Broeckmann, J. Busch, T. Wintgens, W. Marquardt,
Modeling of pore blocking and cake layer formation
in membrane filtration for wastewater treatment,
Desalination 189 (2006) 97–109.

[4] S. Jamal Khan, C. Visvanathan, V. Jegatheesanc, Pre-
diction of membrane fouling in MBR systems using
empirically estimated specific cake resistance, Biore-
sour. Technol. 100 (2009) 6233–6136.

[5] J. Wu, C. He, X. Jiang, M. Zhang, Modeling of the sub-
merged membrane bioreactor fouling by the combined
pore constriction, pore blockage and cake formation
mechanisms, Desalination 279 (2011) 127–134.

[6] M.K. Jørgensen, T.V. Bugge, M.L. Christensen, K.
Keiding, Modeling approach to determine cake
buildup and compression in a high-shear membrane
bioreactor, J. Membr. Sci. 409–410 (2012) 335–345.

[7] T.V. Bugge, M.K. Jørgensen, M.L. Christensen, K.
Keiding, Modeling cake buildup under TMP-step fil-
tration in a membrane bioreactor: Cake compressibility
is significant, Water Res. 46 (2012) 4330–4338.

[8] M. Park, J. Lee, C. Boo, S. Hong, S.A. Snyder, J.H.
Kim, Modeling of colloidal fouling in forward osmosis
membrane: Effects of reverse draw solution perme-
ation, Desalination 314 (2013) 115–123.

[9] Y. Ye, V. Chen, A.G. Fane, Modeling long-term sub-
critical filtration of model EPS solutions, Desalination
191 (2006) 318–327.
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Appendix A: SVM [23]

For constructing the above discriminant model, an
SVM method is used in this paper. An SVM is one of the
classification methods used to generate nonlinear classifi-
ers by applying the kernel approach. In a linear SVM, the
discriminant function f(x) is defined as follows (Eq. A.1):

fðxÞ ¼ x � wþ b (A.1)

where x is a query sample, w is a weight vector; and b is a
bias. The primal form of the SVM can be expressed as an
optimization problem:

Minimize (Eq. A.2)

1

2
kwk2 þ C

X
i

ni (A.2)

subject to (Eq. A.3)

yi xi � wþ bð Þ� 1� ni
yi 2 �1; 1f g (A.3)

where yi and xi represent training data; ξi is slack vari-
ables; and C is the penalizing factor that controls the
trade-off between a training error and a margin. By mini-
mizing (A.2), we can construct a discriminant model that
shows a good balance between the ability to adapt to the
training data and the ability to generalize. In our applica-
tion, a kernel function is a radial basis function as follows
(Eq. A.4):

K x; x0ð Þ ¼ exp �c x� x0k k2
� �

(A.4)

where γ is a tuning parameter that controls the width of
the kernel function. By using (A.4), a nonlinear model can
be constructed because the inner product of x and w in
(A.1) is represented as the kernel function of x. In this
study, LIBSVM [30] is used as the machine learning
software.
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