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ABSTRACT

This paper focuses on scale control approaches using a number of “green” silica scale inhib-
itors. These findings may be of interest to chemists and engineers in the fields of cooling
and boiler water, pulp and paper, detergents, oil, gas, etc. In light of increasing environ-
mental concerns, this research acquires significant interest. Also, in this paper, the effects of
biological and synthetic polymers on the formation of amorphous silica are discussed. The
importance of synergies between polyelectrolytes on silica inhibition is also discussed. A
specific example of a zwitterionic polymer phosphonomethylated chitosan (PCH) is further
analyzed for its inhibitory activity. Specifically, the ability of PCH to retard silicic acid con-
densation at circumneutral pH in aqueous supersaturated solutions is explored. Further-
more, the effects of either purely cationic (polyethyleneimine, PEI) or purely anionic
(carboxymethylinulin) polyelectrolytes on the inhibitory activity of PCH are systematically
studied. It was found that the action of inhibitor blends is not cumulative. PCH/PEI blends
stabilize the same level of silicic acid as PCH alone in both short-term (8 h) and long-term
(72 h) experiments. Lastly, six polyethylene glycol polymers are used as silica scale inhibi-
tors. Their Molecular Weights range from 1,550 to 20,000. There is a profound dependence
of inhibitory performance on the additive Molecular Weight. However, this dependence
seems to be less significant for Molecular Weights > 10,000. Mechanistic implications will be
discussed as well.

Keywords: Water treatment; Green additives; Silica scale; Scale inhibitors; Polyethylene
glycol; Inulin

1. Introduction

Nature directs the formation of amorphous hydrated
silica (biosilica) in living organisms, such as marine/
freshwater diatoms and terrestrial plants via the

important process of biosilicification [1–3]. One can put
this in perspective by considering that the gross produc-
tion of biogenic silica in surface waters was estimated to
be ~240 ± 40 terramoles of silicon per year. This means,
marine biological systems process the breathtaking
amount of about 6.7 gigatonnes of silicon annually [4].
Biosilicification is a unique kind of biomineralization.*Corresponding author.
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Its uniqueness and differentiation from a plethora of
other biogenic, metal-containing minerals (e.g. calcite,
aragonite, vaterite, octacalcium phosphate, hydroxyapa-
tite, iron sulfides, etc.) lies not only with the simple,
albeit unique, structure of the final product, amorphous
silicon dioxide (silica), but also with the intricate (and
enigmatic) mechanism of its formation. Whereas metal
carbonate and phosphate solids are crystalline ionic
materials whose formation is governed by cation–anion
association and solubility equilibria, silica is an oxide of
amorphous nature formed by a complicated inorganic
polymerization process that is controlled by organic
macromolecules, resulting in “exotic” morphologies at
the micron scale [5].

Amorphous silica appears as a recalcitrant deposit
in industrial water systems that operate with fresh
water high in silicon content (either soluble or colloi-
dal silica). There are no established methodologies for
preventing silica deposit formation. In addition, clean-
ing and removal of silica deposits from a fouled sys-
tem require either chemical approaches (using
hydrofluoric acid) or mechanical methods (requiring
system shut-downs and several man hours). It is
imperative, therefore, that silica inhibition must be
resorted to, as (perhaps) the only environment-
friendly and cost-effective approach.

Our on-going research efforts in the silicification
area focus on the inhibitory effects of polymeric mole-
cules on colloidal silica formation by studying the sta-
bilization of silicic acid by these polymers [6–12]. In a
biomimetic approach, we utilize information available
on biomacromolecule-induced biosilica formation in
order to design, synthesize, and utilize macromolecules
that may have inhibitory activity on colloidal silica for-
mation, thus extending the life of soluble silicic acid
prior to its self-condensation to form colloidal silica.

We have selected to utilize chitosan-based biopoly-
mers [13,14], Fig. 1, as additives that may stabilize
silicic acid and delay its self-condensation to yield
amorphous silica. More specifically, in this paper, we
study the polymer chitosan on which ani-
momethylenephosphonate groups have been grafted
by a Mannich-type reaction [15]. Furthermore, PCH is
synthesized from chitosan in an efficient and low-cost
manner, and also has low-aquatic toxicity.

2. Experimental protocols

2.1. Instrumentation

IR spectra were recorded on a FT-IR Perkin–Elmer
FT 1760. Measurements of soluble silicic acid were car-
ried out using a HACH 890 spectrophotometer from
the Hach Co., Loveland, CO, USA. SEM images were

collected on a scanning electron microscope LEO
VP-35 FEM.

2.2. Materials

Schematic structures of the polymers used in this
study are shown in Fig. 1. Polyethyleneimine (PEI,
branched, MW 70 kDa, ~25% primary amines, ~50%
secondary amines, and ~25% amines) was from Poly-
sciences. PCH was synthesized according to published
procedures [16–18]. Carboxymethylinulin (CMI), (pro-
prietary MW, between 2 and 3 KDa) was from Solutia
Inc. (Belgium). CMI can be prepared from the
biopolymer inulin via a carboxymethylation step [19].
The average Molecular Weight for PCH was found
~254 KDa. Solid samples of polyethylene glycol (PEG)
polymers were commercial samples. PEG 1550, PEG
6000, and PEG 20000 were from SERVA Electrophore-
sis GmbH (Germany), and PEG 2000, PEG 10000, and
PEG 12000 were from Alfa Aesar (USA).

2.3. Methods

The protocols for all experiments and measure-
ments described, herein, have been reported in detail
elsewhere [20]. Molybdate-reactive silicic acid was
measured using the silicomolybdate spectrophotomet-
ric method [21–25], which has a ± 5% accuracy. Repro-
ducibility was satisfactory.

3. Results and discussion

Our research efforts have been focusing on utiliza-
tion of “natural” or “synthetic” polymeric additives
that influence (inhibit or direct) colloidal silica forma-
tion. In particular, we have placed significant attention
on: (a) the inhibitory effect that polymeric additives
have on silica precipitate formation, while they delay
silicic acid polymerization, (b) the use of non-toxic,
environment-friendly, “green” chemical additives that
can enhance silicic acid solubility, (c) exploiting the
significant observation (by other research groups and
us) that cationic additives have profound effects on
silica particle formation, and (d) delineating various
process variables that may affect additive effective-
ness, notably, minimizing polymer dosage while maxi-
mizing inhibitory performance.

The use of PCH, a zwitter ionic polymer, that is
derived from renewable sources acts as an effective
inhibitor of colloidal silica formation. Below, results
are presented on the inhibitory effects of PCH alone,
and in combination with a purely cationic (PEI)
polymer or a purely anionic (CMI) polymer.
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3.1. Silica inhibition by phosphonomethylated chitosan

Phosphonomethylated chitosan (PCH) was tested
for its ability to stabilize silicic acid and influence
amorphous silica formation in “short-term” experi-
ments (8 h) at dosages 40, 150 and 200 ppm. The
results are presented in Fig. 2. Silicic acid condensa-
tion appears to be independent of additive dosage
within the first 8 h. Soluble silicic acid reaches a value
of ~350 ppm after 8 h. Compared to control solutions
not containing PCH this results in ~150 ppm addi-
tional silicic acid stabilization.

The long-term silicic acid stabilization by PCH was
studied over a 72 h time period with sampling every 24
h. The effect of various dosages of PCH (10, 20, 40, 60,
100, 150, and 200 ppm) on silica formation is shown in
Fig. 3. An immediate observation is that PCH can only
delay silicic acid condensation over the course of 72 h,
thus only partially inhibiting silica formation.

These experiments reveal that there is a dosage-
dependence (in contrast to 8-h experiments) on silicic
acid stabilization that reaches a maximum at 150 ppm
PCH (296 ppm silica compared with 176 ppm of the
“control”). This translates to 120 ppm silicic acid
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stabilization (over the control) for the first 24 h. Low
dosages (10 and 20 ppm) exhibit virtually no long-
term inhibitory effects.

There seems to be a sharp reduction in inhibitory
action after 24 h. This has been observed numerous
times in our experiments with a variety of additives.
Specifically, for the 150 ppm dosage, there is a 50 ppm
drop in silicic acid levels between 24 and 48 h. The
same is true for the 200 ppm dosage. As will be dis-
cussed extensively later, a reason for the reduction in
inhibitor activity is PCH entrapment in the colloidal
silica matrix. This results in unavailability of sufficient
PCH in solution to continue inhibition and in further
drop in silicic acid levels.

3.2. Silica inhibition by a blend of PCH and cationic PEI

The inhibitory effects of combinations of PEI and
PCH were tested in silicic acid polymerization. The
“short-term” and “long-term” results are shown in

Fig. 4. In spite of its profound structural differences to
PCH, the inhibitory action of PEI (20 ppm) appears to
be comparable with that of PCH (40 ppm), with only
minor differences. PEI is only slightly less active than
PCH within the first 4 h of condensation. Addition of
PEI and PCH combinations to silicic acid solutions
give also marginal differences in performance, com-
pared with that of PEI alone, or PCH alone. It is note-
worthy that there appears to be no discernible
synergy between the two additives for inhibitory
activity enhancement. Furthermore, the effect of PEI
and PCH (when both present in solution simulta-
neously) is not cumulative. If that was the case then
PEI (at 20 ppm dosage) and PCH (at 40 ppm dosage)
should inhibit silica formation quantitatively, reaching
500 ppm soluble silica. The results show that ~350
ppm remains soluble when the above combination of
inhibitors is present.

This observation demonstrates the interaction of
PEI and PCH in solution, presumably due to an elec-
trostatic attraction and/or hydrogen bonding between
the anionic phosphonate groups on the PCH backbone
and the protonated cationic amine groups on the PEI
[26]. The resulting “combined” dual polymeric inhibi-
tor formed by polyanion–polycation association does
not exhibit any enhanced inhibitory activity, compared
with that of its components, PEI and PCH.

Long-term silicic acid polymerization studies
further confirm these results. This should be con-
trasted to observations noted on increased inhibitory
activity of combinations of cationic PAMAMs and
polyanionic electrolytes, such as carboxylate-based
polymers [10–12]. Fig. 4 shows that addition of 20
ppm of PEI to solutions containing 20 ppm PCH has
virtually no beneficial effect on inhibitory activity of
20 ppm PCH. Further PCH dosage increase (up to 60
ppm), while maintaining 20 ppm PEI dosage has
actually a small but measurable detrimental effect.

3.3. Silica inhibition by a blend of PCH and anionic CMI

It is well established that anionic polymers do not
affect silicic acid polymerization. There is only one
report in the literature of the inhibitory activity of a
genuinely anionic polymer, phosphinopolycarboxylic
acid (PPCA, a polyacrylate-based polymer), causing
stabilization of 325 ppm soluble silicic acid, albeit at
very high dosage (1,000 ppm) [27]. CMI alone does not
affect silicic acid condensation at dosage levels up to
200 ppm (see third set of bars in Fig. 5).

We recently reported that CMI can enhance the
inhibitory activity of PCH at <8 h silicic condensation
times, when the two polymers act in combination in
solution (50 ppm PCH and >50 ppm CMI) [12]. In this
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Fig. 2. Effect of PCH levels on colloidal silica inhibition in
short-term (8 h) experiments.
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context, we investigated whether this beneficial syn-
ergy has a life time beyond 8 h. Thus, when PCH is
combined with CMI in “long-term” silicic acid con-
densation experiments, a substantial reduction in its
inhibitory activity is noted (see Fig. 5).

Addition of 50 ppm CMI to 150 ppm PCH causes a
100 ppm (from 342 to 241 ppm) reduction in silicic
acid stabilization after 24 h polymerization time. Fur-
ther CMI dosage increase to 100 ppm results in com-
plete “deactivation” of PCH’s inhibitory activity.
Additional CMI dosage increase exerts no further
effects, as silicic acid levels are identical to the “con-
trol” experiment. The observed detrimental effects on
PCH inhibitory activity are somewhat expected.

Similar observations have been noted on the effect of
polyanionic polymers (polyacrylate, poly(acrylamide-
co-acrylate), and CMI) on amine-terminated, cationic
polyaminoamide (PAMAM) dendrimers [28].

3.4. Silica inhibition by PEG inhibitors

The inhibitory activity of PEG inhibitors depends on
their MW. It increases almost linearly up to MW= 10,000
and then it levels-off. Representative 3D experiments
with PEG of MW= 20,000 are shown in Fig. 6.

PEG is an effective silica inhibitor even at the low
dosage of 20 ppm. There is a gradual increase of
inhibitory activity upon PEG concentration increase.
However, above 40 ppm no further enhancement is
observed. Similar observations can be noted for the
short-term (8 h) results (see Fig. 7). A 20 ppm dosage has
a minor effect, whereas increase to 40 ppm substantially
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improves inhibitory efficiency. Further dosage increase
offers additional stabilization, but the dosages 60, 80,
and 100 ppm are virtually indistinguishable.

4. Conclusions/Outlook

The purpose of this work is to identify and exploit
novel polymeric structures that are able not only to
direct silica morphogenesis, but also to maintain high
silicic acid concentrations for an extended period of
time before silica deposition occurs. This is directly
linked to silicon transport to and within the cell, dur-
ing which relatively high “Si” concentrations must be
maintained for a period of time. It should be noted
that there is also an intense interest in the water treat-
ment industry, where chemical technologies for effec-
tive silica scale growth in process waters are still an
unsolved problem.

The principle findings are summarized as follows:

(1) PCH can maintain soluble silicic acid lev-
els beyond the calculated level at >60 ppm
dosages.

(2) PEI maintains higher silicic acid levels com-
pared with PCH, at lower (10 ppm) levels.

(3) PCH/PEI combinations are effective inhibi-
tors of silicic acid condensation at rather
low levels (20 ppm each).

(4) CMI appears to have detrimental effects on
the inhibitory activity of PCH.

(5) PCH, with ammonium/phosphonate-con-
taining structural features also acts as a
silica aggregator forming SiO2–PCH com-
posites with subsequent loss of inhibitor
efficiency over time due to inhibitor entrap-
ment within the amorphous 3D silica
matrix. These composites could be envi-

sioned as colloidal silica particles “glued”
together with PCH.

(6) PEG polymers show good inhibition perfor-
mance. PEG 20000 keeps ~350 ppm silica
soluble after 8 h.

Dependence of inhibition ability on particular
structural features of the inhibitor molecule is of great
importance [29]. In addition, intimate blends of differ-
ent inhibitor molecules may offer advantages and
enhanced inhibitory activity based on structural and
functional synergies [30]. Structure/activity relation-
ships may help in the rational design of inhibitors
with precise structures and topologies that may show,
ideally, predictable inhibition performance [31,32].
Inhibition of silica growth most probably occurs at the
early stages of silicic acid polymerization. Unfortu-
nately, there is little information available at the
molecular level on the silicate oligomers formed. Such
data would be of great importance, because they
would greatly facilitate inhibitor design and improve-
ment [33,34].
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