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ABSTRACT

The present study describes the production of activated carbon (AC) from end of life tyres
(ELT), by pyrolysis and physical activation, suitable for pesticide adsorption. ELT pyrolysis
was conducted at 800˚C in a fixed bed reactor. For the production of AC, the pyrolytic char
was activated under a mixture of steam and CO2 for 2.5 h in a bench scale reactor at 970˚C.
The produced AC was characterized by ultimate analysis and N2 BET surface area. The sur-
face area of the AC was found to increase up to 432 m2 g−1 at a burn-off level of 62.5 wt.%,
while SEM analysis confirmed the presence of mesopores and macropores. The produced
AC was used for Bromopropylate adsorption from aqueous solutions. Adsorption kinetics
and equilibrium isotherms were investigated. The maximum removal reached almost 100%
in 60 min. Experimental data of BP adsorption fitted best to the pseudo-second-order kinetic
model and Langmuir isotherm. The produced AC from used tyres proved effective for
water purification from pesticides.

Keywords: Tyres; Activated carbon; Bromopropylate; Adsorption; Kinetics; Pesticide removal;
Water treatment

1. Introduction

As technology progresses, various methodologies
of end of life tyres (ELT) management became more
efficient. They are categorized into (i) product valori-
zation, (ii) material valorization, and (iii) energy valo-
rization methods [1–3]. Over the last 15 years, the
percentage of both, material and energy recovery of
ELT, increased from 31 to 78% of ELT in total, whilst
landfilling as an option exhibited a rapid decrease
resulting to 4% [1,4,5].

Regarding product valorization, retreading through
tyre reconditioning aims to extend the useful life of a
worn tyre by the addition of new material. Material
valorization through rubber recovery of ELT is a com-
mon practice. The resulted products are consumed in
civil engineering applications after either ambient or
cryogenic grinding [6–8]. More specifically, they can be
used as additives in road construction applications, or
as key components in erosion and sound barriers.
However, by implementing this type of valorization,
concerns for toxic substances included in the final prod-
uct are strong since polycyclic aromatic hydrocarbons
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(PAHs), vulcanization additives, antioxidants, and
plasticizers were detected with the majority of them, at
high or extremely high levels [9].

As far as energy valorization is concerned, ELT,
due to their high calorific content, can provide suffi-
cient amount of energy when combusted, compared to
more conservative and non-renewable solid fuels
(lignite coal/anthracite) [10]. Co-combustion with fos-
sil fuels in existing industrial furnaces (cement kilns)
as well as combustion in dedicated incinerators are
the main routes for energy valorization. However,
again, the strong concern about their combustion
emissions limits the applicability of this route.

Pyrolysis is an alternative thermal valorization
route for ELT, relying on the implication of their
depolymerization. From ELT depolymerization,
besides gas and liquid products, a solid product (char)
is derived as well. Char contains the non-converted
carbon and can be used either as adsorbent Activated
Carbon (AC) and/or as additive in composites mate-
rial production [11–13]. Based on published studies
and market reviews, the majority of AC originates
from coal or biomass although, recently, several stud-
ies have reported the production of AC from waste ty-
res as well [14–29]. In this domain, researchers’
interest is strong due to the potential use of AC as
adsorbents for various pollutants. Based on experi-
mental findings, AC can become a commercial adsor-
bent for gas or wastewater stream purification
processes, able to remove PAH or noxious compounds
and dyes or even pesticides [30–35].

Regarding the latter, several methods were devel-
oped to purify aqueous streams, depending on the
amount of contamination [36]. Dyes, organics and
toxic contaminants (lead, mercury, and nickel) repre-
sent some of the undesired substances responsible for
quality degradation of surface and subsurface waters
[37,38]. For highly contaminated waters, the primary
water treatment technologies established include
screening, filtration, centrifugation, sedimentation,
coagulation, gravity and flotation methods. Among
them, the cost for filtration may differentiate strongly
from the others. Through the secondary water treat-
ment methods, soluble and insoluble pollutants are
removed via biological routes, aerobic or anaerobic,
by the use of microbes. Finally, tertiary wastewater
treatment results to the elimination of contaminants.
This can be achieved with the implementation of sev-
eral techniques, including distillation, crystallization,
evaporation, solvent extraction, advanced oxidation
processes (Fenton and Photocatalytic oxidation at the
surface of a semiconductor catalyst such as
titanium dioxide), coagulation, precipitation and
electrolysis [36,39–41]. The adaptation of one of the

aforementioned technologies requires an additional
cost that is bound to increase the overall cost of the
process, thus excluding it as a sustainable choice.
Thus, adsorption process, as a method for contami-
nants removal combining efficiency, simplicity and
applicability even in large-scale operations, attracted
the interest of the scientific community last years,
although the manufacturing of adsorptive materials
has to face in most cases, an increased production
cost.

Commercially available AC is still considered
expensive because of the non-renewable and relatively
expensive precursor materials. This has led a growing
research interest regarding the production of AC from
renewable and cheaper precursors, including agricul-
tural residues, lignocellulosic biomass, algae, solid
wastes, industrial wastes and ELT [14,15,25–28,42–52].
More specifically, algae were efficiently used [53,54]
for hexavalent chromium or Ni(II) ions removal,
whereas biomass waste materials, including wheat
husk and de-oiled soya, also proved to be efficient as
adsorbents [55–61]. Other waste materials, including
hen feathers, successfully removed a hazardous dye,
after treatment [62]. Besides biomass, industrial
wastes, such as treated bottom ash, carbon slurry,
blast furnace slag, dust and sludge, proved efficient as
adsorptive materials for dyes or even toxic substances
(Fluoride) removal [55–59,61,63–65]. ELT were also
used as adsorbent for a hazardous dye [66].

Another environmental problem originates from
pesticides. In general, they are used to control pests
and diseases while increasing crop productivity. How-
ever, through their misuse, the contamination of
underground waters as well as of aquifer systems, are
bound to occur. As a result, pesticides were impli-
cated on causing severe problems to public health and
food chain [67]. Issues on environmental protection
have raised over the years globally [30,68–78], thus
requesting effective solutions. This study focuses on
the production of AC for environmental remediation
processes, and more specifically for pesticide removal.
AC production from ELT is proposed to result from a
hybrid pyrolysis and activation complex, where the
produced pyrolytic gas and oil can be valorized
towards electricity production, thus lessening the
energy needs of the plant [11].

2. Experimental procedure

2.1. Material production via pyrolysis process

Pyrolysis of ELT relies on their thermal decomposi-
tion in the absence of air to prevent oxidation. It was
studied thoroughly during the last decade and seems
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to be an interesting approach towards the production
of liquid hydrocarbons [11]. However, the potential of
upgrading the solid pyrolysis product into a high
added value material is of great importance [12,13,24].
By the implementation of pyrolysis, product, energy
and material valorization can be achieved (Fig. 1). In
order to maximize the viability of an ELT depolymer-
ization complex, the key objective is to upgrade the
solid product’s characteristics, by activation.

ELT samples were received from an Engineering
Company of Ireland, Erneside Engineering steel-free.
Their particle size ranges between 15 and 20 mm.
Pyrolysis of ELT was conducted at 800˚C for 45 min
in a fixed bed reactor, under nitrogen flow. The exper-
imental apparatus is described elsewhere [13,79]. The
produced ELT-based char was collected at the end of
the batch process.

2.2. Solid material upgrading via activation

Numerous laboratory-scale experimental results
show that used tyre-char activation produces AC with
medium adsorption capacity (400–1,200 m2 g−1 N2

BET surface area). Based on literature findings, the
most suitable operating conditions for the preparation
of AC from used tyres’ char include: physical activa-
tion under a mixture of steam and CO2, operating
temperature between 800 and 900˚C and residence
time between 1.5 and 3 h.

For the production of AC, ELT pyrolysis char was
activated under a mixture of steam and CO2 at 970˚C
for 2.5 h in the previously mentioned fixed bed reac-
tor; nitrogen was substituted by the mixture of oxidiz-
ing agents. The activation of the ELT pyrolysis char
was completed at a burn-off level of 62.5 wt.%.

2.3. Product characterization

Ultimate analysis of the produced AC was per-
formed on a Thermofinnigan CHNS EA 1112 instru-
ment of CE Instruments, resulting to the determination
of C, H N, S and O (by subtraction) content. Porous
characteristics of the AC were determined by N2 (77 K)
adsorption isotherm by an automated adsorption/
desorption apparatus (Micromeritics, ASAP). Surface
area was measured by Brunauer–Emmet–Teller equa-
tion (BET) method with the N2 adsorption isotherm
over a relative pressure (P/P0) in the range of 0.05–
0.15.

2.4. Adsorbate

The pesticide studied was Bromopropylate (BP).
BP, although banned in several EU countries, can still
be detected due to its illegal use [80]. Bromopropylate
(isopropyl-4–4´-dibromobenzilate) is a bridged diphe-
nyl acaricide (miticide) effective against all stages of
mites, such as eriophyidae (eriphyid mites), tenuipal-
pidae (false spider mites) and tetranychidae (spider
mites) [80,81]. It kills mites in all postembryonal stages
[82]. The properties and uses are in many ways simi-
lar to those of chlorobezilate and chloropropylate. Its
toxicity for humans is very high. The half-lives on
plant surfaces for BP were found in literature to range
from 4.5 d up to 8.8 d [83]. The applied solution of BP
was of purity 99.2%, whereas its solubility in water
was determined to 0.1 mg L−1.

By the years, several methods were developed pro-
viding a range of processes for pesticides removal,
such as photocatalytic degradation, combined photo-
Fenton and biological oxidation, advanced oxidation
processes, aerobic degradation, nanofiltration

Fig. 1. Valorization of ELT by pyrolysis. (a) product valorization and (b) energy and material valorization.
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membranes, ozonation and adsorption [30]. Adsorp-
tion on AC is nowadays a common technology that
deals with purification of water contaminated by pes-
ticides, dyes and phenols [34,67,84–90].

2.5. Kinetic studies

BP concentration in the prepared solutions was
determined by a gas chromatographer (GC). The GC
used for the analyses was a Shimadzu 14B, mounted
with an ECD detector (63Ni electron capture) operat-
ing at 300˚C; the column used was an ADB-1 (J&W
Scientific, Folsom, CA, USA). For the needs of analysis
bromophos-ethyl (purity 99.3%) was used as internal
standard (IS) in the gas chromatograph. The applied
temperature profile is described elsewhere [91]. Both
compounds were supplied by the company Sigma
Aldrich, Fluka (Germany).

The IS was added to the sample, and the response
from the analyte peak is compared to that of IS.
Through this process, instrument responses originated
from the target compounds of the sample are com-
pared to the responses of reference standards added
to the sample. As a result, possible minor variations in
the injection volume are corrected, thus improving the
obtained data. The IS selection requires certain prereq-
uisites, including similarities in analytical behaviour
between the compound of interest and the selected IS,
while assuring that the IS should not be expected to
be found in the samples. BP appeared after 13.1 min,
while IS (Bromophos-Ethyl) appeared about 2 min ear-
lier (11.4 min).

The experimental set-up included the preparation
of centrifuge tubes filled with 40 mL of aqueous
solutions (0.5 ppm Bromopropylate) and 0.2 g of
ELT-based AC, which were agitated for 165 min. Fol-
lowing, the samples were centrifuged at 4,200 rpm for
10 min and 5 mL of the supernatant solution were
recovered with a pipette and centrifuged again in new
centrifuge tubes for 10 min. The preparation is com-
pleted after a liquid–liquid extraction and a humidity
elimination process (with the addition of a small
amount of anhydrous Na2SO4). Finally, 50 μL of IS
was added in each solution (1 ppm bromophos-ethyl)
and then chromatographic analysis was performed.
The percentage of BP sorbed by ELT-based AC was
calculated using the following equation:

Removal ð%Þ ¼ ðC0 � CeÞ=C0 � 100 (1)

where C0 and Ce (mg mL−1) are the initial and the
equilibrium concentration; V (mL) is the volume of
the solution; and m (mg) is the amount of AC. The

adsorbed amount of the pesticide, Qe, was calculated
using the following equation:

Qe ¼ ðC0 � CeÞ � V=m (2)

The kinetic study was performed for the produced AC
in order to estimate the time required for adsorption
to reach equilibrium. The experimental results were
simulated by applying Lagergren’s pseudo-first-order
and pseudo-second-order kinetic models.

2.6. Adsorption studies

After the equilibrium time was determined, batch
adsorption studies were carried out. Forty millilitres
of BP solution and 0.2 g of AC and were filled in cen-
trifuge tubes. The tubes were capped and shaken in a
horizontal shaker at room temperature (20˚C) for time
equivalent to that of equilibrium. The experiments to
determine BP maximum removal were repeated twice.
For the adsorption study, two isotherms were applied:
Langmuir and Freundlich.

3. Results and discussion

3.1. AC characterization

The produced ELT-based AC was subjected to N2

BET surface area determination and ultimate analysis;
the obtained results were compared to others from
international literature and are presented in Table 1
[12,19,20,92–95]. Results from ultimate analyses of
ELT-based AC indicated high amount of carbon, low
oxygen content and a high C/H ratio; these represent
factors that favour the creation of pores. Additionally,
ELT chars as precursors exhibit high amount of ash
and low initial porosity, representing factors that neg-
atively affect pore creation. The surface area was
found to increase up to 432 m2 g−1 at a burn-off level
of 62.5 wt.%. Through SEM analysis, the appearance
of mesopores and macropores in the produced ELT-
based AC was confirmed (Fig. 2). Their creation possi-
bly stems from micropore widening, since steam was
the primary activating agent [96]. Therefore, the pro-
duced AC is expected to be of medium capacity, suit-
able for liquid-phase applications.

3.2. Kinetic study of the BP removal

Initially, during the adsorption experiments with
BP, the equilibrium time was determined. BP Removal
based on experimental findings (Fig. 3) was calculated
using Eq. (1). In 60 min, almost 100 wt.% of BP was
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removed. Through Lagergren’s pseudo-first-order and
pseudo-second-order models (Eqs. (3) and (4), respec-
tively), the adsorption data were tested in order to
investigate the kinetics of adsorption [97,98].

Lagergren’s pseudo-first-order kinetic model can
be applied to explain sorption kinetics based on the
following equation:

log ðQe �QÞ ¼ log Qe � K1t=2:303 (3)

while the pseudo-second-order kinetic model in its
integrated and linearized form is:

t=q ¼ 1=K2Q
2
e þ 1=Qet (4)

where Qe (mg g−1) is the amount of pesticide
adsorbed on the surface of the AC at equilibrium; Q
(mg g−1) is the amount of pesticide adsorbed at time t

Table 1
Ultimate analysis and N2 BET surface area determination of tyre-based AC

AC precursor
Activation
conditions

Activation
medium

Ash C H N S O BET References
(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (m2 g−1)

Ground tyre
granules

900˚C, 2 h Physical 10.89 78.76 1.06 0.29 1.96 7.04 562 [92]

Demineralized
tyres (HCl 1 M/
char ratio = 5)

950˚C, 6 h Steam 27.90 67.40 0.3 0.10 0.30 32 962 [94]

Demineralized
tyres (HCl 3 M/
char ratio = 30)

900˚C,6 h Steam 10.60 90.30 0.50 0.60 0.80 8.90 788

Shredded tyre
rubber

950˚C, 16 h CO2 77.40 10.93 0.99 0.04 9.81 0.83 59 [99]

Demineralized
shredded tyre
rubber H2SO4

(1 M)

950˚C, 16 h CO2 19.42 78.05 1.21 0.20 2.48 0.84 1,118

Scrap tyres 800˚C, 1 h KOH 4.2 93.2 0.5 0.3 0.4 5.6 574 [95]
800˚C, 1 h CO2 9.8 87.3 0.5 0.3 2.1 9.8 55

Scrap tyres 850˚C, 3 h Steam/
nitrogen
(3/1)

– 77.29 1.1 0.06 0.57 – 500 [20]

Tyre rubber
powder

925˚C, 9.3 h Steam 22.5 1,022 [19]
950˚C, 5.3 h CO2 15.5 632

ELT 550˚C, 0.5 h – – 82.3 0.7 0.4 3.3 0 13.2 [93]
ELT 970˚C, 2.5 h Steam/

CO2

20.08 71 0.12 0.58 1.14 7.08 432 [This
study]

Fig. 2. SEM images of ELT-based AC.
Fig. 3. BP Removal (%) vs. time.
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(min); and K1 (min−1) and K2 (g mg−1 min−1) are the
constants of pseudo-first- and pseudo-second-order,
respectively.

Both kinetic models were described by their linear
curves [log(Qe−Qt) via t], for the pseudo-first-order,
and [t/Qt via t] for the pseudo-second-order. K1 and
K2 constants were estimated from the slope of the
lines. The calculated kinetic parameters are reported
in Table 2. Experimental data of BP adsorption fitted
better to the pseudo-second-order kinetic model
(Fig. 4); this is possibly attributed to chemisorption
and more specifically to the formation of strong chem-
ical bonds between AC and BP, assuming fast pore
and film diffusion [98].

3.3. Adsorption isotherm models

For the needs of the adsorption study, linearized
forms of Langmuir and Freundlich isotherms were
applied (Eqs. (5) and (6), respectively).

1=qe ¼ ð1=Kaqm � 1=CeÞ þ 1=qm (5)

log qe ¼ log Kf þ 1=n� log Ce (6)

where qe (μg g−1) is the adsorbed amount of solute; qm
(μg g−1) is the maximum amount of solute adsorbed;
Ce (μg mL−1) is the concentration at equilibrium; and
Ka (mL μg−1) is the Langmuir constant; they can be
determined from the linearized form represented by
Eq. (5). In parallel, Kf (μg1−1/n g−1 mL1/n) and n
(dimensionless) represent Freundlich constants, related
to sorption capacity and sorption intensity of the
adsorbent, respectively. They can be determined from

Table 2
Kinetic parameters for the adsorption of BP onto
ELT-based AC

Pseudo-first-order model
Kinetic constant Κ1

(min−1)
Qe estimated
(mg g−1)

Qe calculated
(mg g−1)

R2

0.0034 0.1097 0.0896 0.9743

Pseudo-second-order model
Kinetic constant Κ2

(g mg−1 min−1)
Qe estimated
(mg g−1)

Qe calculated
(mg g−1)

R2

10.6 0.0891 0.0896 0.9973

Fig. 4. Lagergren’s pseudo-second-order adsorption kinetic
study.

Table 3
Isotherm results

Langmuir Freundlich

Ka (mL μg−1) 5.81 Kf (μg
1−1/

n g−1 mL1/n)
1.62

qm (μg g−1) 60.7 × 10−2 n 1.05
R2 0.9961 R2 0.8316
Fer 4.4 × 10−3 Fer 1.06 × 10−2

Fig. 5. Isotherms of (a) Langmuir and (b) Freundlich.
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the intercept and slope of log Ce (x-axis) against log qe
(y-axis) plot, respectively.

Additionally, an error function was calculated for
each case, using the following equation:

Fer ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

I ½ðqical � qiexpÞ=qiexp�2
p

s
(7)

where qical is the amount of substance calculated
(mg gr−1 AC); qiexp is the amount of substance esti-
mated experimentally (mg gr−1 AC); and p refers to
the number of experiments.

Langmuir and Freundlich equation constants and
isotherms are reported in Table 3 and depicted in
Fig. 5, respectively. Langmuir isotherm fitted better
the experimental results (higher regression coefficient)
for the specific application. Comparing to the results
of a previous study, the ELT-based AC marks the
highest adsorptive capacity above commercial AC and
residual biomass-based AC [80]. This is possibly
attributed to the more mesoporous structure of the
ELT-based AC.

4. Conclusions

ELT pyrolysis, followed by physical activation of
the produced char resulted to the production of AC.

The produced AC was tested for BP adsorption
from aqueous solution and the equilibrium constants
were calculated. The maximum removal reached
almost 100% in 60 min.

The kinetic study revealed that the pseudo-second-
order kinetic model describes better the removal pro-
cess of BP onto the AC. Also, the adsorption obeyed
the Langmuir type of isotherm.

The prepared AC proved efficient as for BP
removal from aqueous solutions, due to the increased
mesoporosity of the sample compared to others pre-
pared from conventional or renewable precursors,
showing also a possible chemisorption mechanism.
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List of symbols

ELT — end of lfe tyres
AC — activated carbon
BP — Bromopropylate
PAH — polycyclic aromatic hydrocarbon

C0 and Ce

(mg mL−1)
— initial and the equilibrium

concentration
V (mL) — volume of the solution
m (g) — amount of AC
Qe (mg g−1) — amount of pesticide adsorbed on the

surface of the AC at equilibrium
Q (mg g−1) — amount of pesticide adsorbed at time

t (min)
K1 and K2 — constants of pseudo-first- and pseudo-

second-order, respectively
qe (μg g−1) — adsorbed amount
qm (μg g−1) — maximum adsorptive capacity of AC
Ce (μg mL−1) — concentration at equilibrium;
Ka and Kf — constant of Langmuir and Freundlich,

respectively
n — exponential constant that expresses

the curvature of the isotherm
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