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ABSTRACT

An intensive study has been made on the removal efficiency of As3+ from aqueous solution
by zinc oxide nanoparticle entrenched on activated silica (ZnO-NPs-AS) using aqueous leaf
extract of Azadirachta indica. ZnO-NPs-AS is characterized using SEM-EDX, FT-IR and XRD.
The effect of various parameters such as initial concentration of As3+, adsorbent dosage,
contact time, pH and agitation is studied systematically. The maximum adsorption of As3+

is found to be 98.31% at pH 5, equilibrium time of 50 min using adsorbent of 3 g/L and ini-
tial concentration of 0.06 mg/L at agitation speed of 250 rpm. Adsorption parameters for
the Langmuir, Freundlich, Tempkin and BET isotherms were determined. The equilibrium
data were best described by Langmuir isotherm model and fits quite well with the experi-
mental data with good correlation coefficient of 0.974. The results of intraparticle diffusion
model suggested that intraparticle diffusion was not the rate-controlling process. From the
values, it is accomplished that the maximum adsorption corresponds to a saturated mono-
layer of As3+ molecules on the adsorbent surface with constant energy. The data were ana-
lysed using kinetics models akin to pseudo-first and second order. All the findings
presented in this study suggested following pseudo-second-order equation for the adsorp-
tion of As3+ on to Zno-NPs-AS. The data collected from laboratory-scale experimental set
up are used to train a feed forward back propagation learning algorithm having 5-20-1
three-layered architecture. The model uses tangent sigmoid transfer function at input to hid-
den layer whereas a linear purelin function is used at output layer. The data are divided
into training (70%), testing (15%), and validation (15%) sets. The network is found to be
working satisfactorily as absolute mean square percentage error of 0.0014 is obtained during
training phase. Comparison between the model results and experimental data gives a high
degree of correlation (R2 = 0.986) indicating that the matlab nntool 2010a neural network
model is able to predict the sorption efficiency with reasonable accuracy.

Keywords: Azadirachta indica; Artificial neural network; Adsorption; Modeling; ZnO-NPs-AS

*Corresponding author.

1944-3994/1944-3986 � 2014 Balaban Desalination Publications. All rights reserved.

Desalination and Water Treatment 56 (2015) 1839–1854

Novemberwww.deswater.com

doi: 10.1080/19443994.2014.956345

mailto:sangithprakash@yahoo.co.in
mailto:sarala_dr@yahoo.com
http://dx.doi.org/10.1080/19443994.2014.956345


1. Introduction

The heavy metal arsenic is one of the most impor-
tant pollutants which is mobilized by natural and
anthropogenic processes like biological activity, geo-
chemical reactions, volcanic eruption, mining activities
and burning of fossil fuel. These activities contribute
to contamination of water resources. Arsenic exists
both in inorganic as well as organic forms in the water
environment. Inorganic arsenic can occur in several
forms e.g. metalloid arsenic As(0), As(III) (arsenites
AsO2�

3 ), and As(V) (arsenates, AsO3�
4 ) but arsenic

exists in two oxidation states in natural waters +3 and
+5. Trivalent arsenic includes As(OH)3, As(OH)�4 ,
AsO2(OH)2−, and AsO3�

3 . It has been reported that the
arsenic poisoning causes melanosis, oedema, keratosis,
dark spots on the chest, enlargement of liver, kidney
and spleen, cancers in skin, lung, urinary bladder and
kidney [1–5]. Therefore, World Health Organization
(WHO) has recommended the standard concentration
of arsenic in drinking water as 10 mg/L. But it was
observed that the typical arsenic concentration in
arsenic-contaminated water used for human consump-
tion is about 100–300 g/L [6,7]. Many methods have
been proposed for removal of excessive As3+ from
wastewater such as adsorption, coagulation, ion
exchange, precipitation, electrolysis and reverse osmo-
sis [8–14]. Most of these methods suffer from some
disadvantages such as high capital and operational
cost, limited tolerance to pH change, incomplete metal
removal and high cost of reagent and energy require-
ments. Adsorption technique is quite trendy due its
simplicity and high efficiency, as well as the ease of
use of a wide range of adsorbents [15]. Adsorption
has been treated as a potential technology for removal
of toxic heavy metals from industrial waters using
microbial biomass [16–19]. The main advantages of
this technique are the reusability of biomaterial, low
operating cost, improved selectivity for specific metals
of interest, removal of heavy metals from effluent irre-
spective of toxicity, short operation time and no pro-
duction of secondary compounds which might be
toxic [20,21]. Preceding studies with established tech-
nical approaches are reported for the amputation of
arsenic using Zirconium(IV) monophosphonic acid
resin, Polyamide composite nanofiltration membranes
and Fe(II)-loaded and Fe(III)-loaded apricot stone-
based ACs, used as a biomaterial for the removal of
As(V) and As(III), As(V) – at a pH of 3.0–7.0, 3–10
using column and membrane studies [22–24] and
other sources of adsorption have been represented in
Table 1.

The evolution of green chemistry in the production
of nanoparticles has wrapped up an immense

consideration because traces of chemicals left
unreacted in the chemical synthesis process can be pre-
carious. Owing to copious interest a competent proto-
col for the production of zinc oxide nanoparticle
entrenched on activated silica (ZnO-NPs-AS) without
calcinations was developed by green synthesis method
using aqueous leaf extracts of Azadirachta indica. The
aqueous leaf extract acts as a solvent with manifold
roles as promoter, stabilizer and template for the syn-
thesis of nanoparticle [25]. The qualitative examination
of the aqueous extracts of the leaf sample of A. indica
showed the presence of phytochemical constituents
such as Alkaloid, Carbohydrate, Glycoside, Steroid,
Flavonoid, Terpenoid, Tannins, and Steroid. The plant
phytochemicals like terpenoids, flavonoids, alkaloids
present in the aqueous leaf extract with antioxidant
property were accountable for the preparation of zinc
oxide nanoflowers [26,27]. Green synthesis and the bio-
genic green fabrication of Azadirachta are better due to
its morphology, particle size and crystallinity. In this
context, aqueous plant leaf extract of A. indica has been
used to synthesize and found to be the best stabilizer
for synthesizing ZnO NPs without the involvement of
synthetic chemicals. And the study was further initi-
ated and reported that ZnO-NPs-AS can be used as an
inexpensive and effective adsorbent for the removal of
arsenic ions from aqueous solution. This approach
offers environmentally beneficial alternatives to more
hazardous chemicals and processes and promotes pol-
lution prevention by the production of nanoparticle in
their natural environs. Over the years, many adsorp-
tion isotherm systems and kinetics have been modelled
using equations include Langmuir, Freundlich,
Intraparticle diffusion, pseudo-first-order and pseudo-
second-order isotherm and kinetic models [28,29].
Although this classic adsorption isotherm, kinetic mod-
els are capable of representing certain equilibrium
data-sets by themselves, they also display a consider-
able lack of fit when modelling non-traditional sys-
tems. The variable nature of these adsorption
isotherms presents a challenge to the development of
an equation that can be used to model the behaviour
of all adsorption systems. Feed Forward Neural Net-
works (FFNNs) have been successfully used in many
applications related to predict the pollutant removal
efficiency based on a large data bank of pollutants,
adsorption data for isopropanol–water system, adsorp-
tion from physical characteristics of activated carbons,
volatile organic compound molecular properties and to
model the equilibrium data of hydrogen onto activated
carbons [30–32]. There is a vital requirement for devel-
opment of innovative but low-cost processes by which
heavy metals can be removed. The foremost advantage
of an adsorption system of silica-embedded zinc oxide
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nanoparticle is less investment in terms of both initial
cost and simple designed easy operation and has no
effect of toxic substance compared to conventional
chemical treatment process. Increasing awareness
towards green chemistry and biological processes has
led to the efficacy and feasibility of an eco-friendly
approach for the synthesis of ZnO nanoparticle
entrenched on activated silica as proficient adsorbent
for removal of As (III) using artificial neural network
(ANN). The scope of this paper is, therefore, to
examine a single ANN structure can be used as a
suitable comprehensive adsorption model to represent
adsorption data where only the parameters of the
fixed-structure model will change such that one will
not have to search for the most appropriate structure

of the model (Langmuir, Freundlich, Intraparticle
diffusion, pseudo-first-order …) as it is currently being
done in practice. It is basically a FFNN. It has a multi-
layer structure consisting of one input and output
layer and at least one hidden layer in between them.
The number of nodes in input and output layers is
decided by the number of independent and dependent
parameters defining the process whereas the selection
of number of hidden layers is dependent on the com-
plexity of the process. The nodes in successive layers
are interconnected with each other through connection-
ist constants called as weights. The data are transferred
in the form of array of matrix from input layer to out-
put layer through hidden layers. The output signal is
compared to the target value to generate error signal.

Table 1
Various hybrid materials/composites and their arsenic removal capacities obtained

Sl.
no. Different hybrid materials

Adsorption
capacity/density/
percentage

Ions
removed

Methods
used Isotherm supported References

1 Fe(III)/La(III)-chitosan 109mg/g As(III)
and As
(V)

Adsorption – [33]

2 Hybrid (polymeric/inorganic),
fibrous sorbent, (FIBAN-As)

75.67mg/g, 81.66
mg/g

As(III)
and As
(V)

Adsorption Langmuir [34]

3 Fe(II) loaded and Fe(III) loaded
apricot, stone-based ACs

2.023mg/g, 3.009
mg/g

As(III)
and As
(V)

Adsorption Freundlich and
Dubinin–Radush-
kevich

[35]

4 GFH (granular ferric hydroxide) 6 8mg/g As(III) Adsorption Freundlich [36]
5 Zinc oxide nanoparticle

entrenched on activated slica
98.31% As(III) Adsorption/

kinetics
Langmuir and
pseudo second
order

Current
material

Table 2
Experimental details of ZnO-NPs-AS for adsorption of As3+

Effect of the
System Concentration (N)

Adsorption
dosage (g)

Contact time
(min) pH Agitation (rpm)

Concentration
(N)

0.005, 0.0075, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08

0.06 50 5 250

Adsorption
dosage (g)

0.06 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5

50 5 250

Contact time
(min)

0.06 3 10, 20, 30, 40,
50, 60, 70, 80

5 250

pH 0.06 3 50 1, 2, 3, 4,
5, 6, 7

250

Agitation
(rpm)

0.06 3 50 5 50, 100, 150, 200,
250, 300, 350, 400

Note: Constant terms are represented in bold.
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Training of the network is to be carried out to
minimize the error by adjusting the weights using
appropriated algorithm [37,38].

2. Materials and methods

2.1. Preparation of ZnO-NPs-AS

Zinc acetate dihydrate (99% purity) and sodium
hydroxide (pellet 99%) were used as the preparatory
material and supplied by Sigma-Aldrich chemicals,
India. ZnO-NPs-AS structure was primed by green
synthesis method. Aqueous leaf extract of A. indica
was stirred for 30 min to that 1 g of zinc acetate dihy-
drate was added under vigorous stirring. After 1hr
stirring, 10 g of activated silica was introduced into
the above solution followed by the addition of aque-
ous NaOH resulted in a white aqueous solution at pH
12. This was then sited in a magnetic stirrer for 2hr.
The activated silica supported ZnO nanoparticle was
then filtered and washed with double distilled water.
The synthesized ZnO-NPs-AS was maintained at 60˚C
for 12 h. A mortar was used to homogeneously
ground the ZnO-NPs entrenched on activated silica.
The proposed sorbent was stored in air at room tem-
perature. The X-ray powder diffraction pattern of the
as- synthesized sample was recorded on an X-ray dif-
fractometer (XRD, PW 3040/60 Philips X’Pert, Hol-
land) using Cu (Kα) radiation (λ = 1.5416 Å) operating
at 40 kv and 30 mA with 2θ ranging from 10 to 90˚.
The external morphology of the sample was character-
ized by scanning electron microscope (SEM) (LEO
1530FEGSEM).

2.2. Experimental details

The experiments were carried out as shown in
Table 2. The effect of five parameters such as As3+

metal Concentration, Adsorbent dosage, Contact time,
pH and Agitation speed was studied. To study the
effect of certain parameter that has been changed pro-
gressively keeping the other four constant. The quan-
tity of As3+ adsorbed by ZnO-NPs-AS was calculated
using the following formulae.

%Removal ¼ ðC0 � CeÞ � 100=C0 (1)

qe ¼ ðC0 � CeÞ � V=W (2)

where C0 and Ce are initial and equilibrium concentra-
tion of As3+, respectively, qe is the amount of arsenic
adsorbed, V is the volume of the solution and W is
the weight of the adsorbent used.

2.3. Adsorption isotherm

Equilibrium data commonly known as adsorption
isotherm describe how the adsorbate interacts with
adsorbent and give a comprehensive understanding of
the nature of interaction. It is basically important to
optimize the design of adsorption system. The param-
eter obtain from different models provide important
information on the surface properties of the adsorbent
and its affinity of adsorbent. Several conventional iso-
therm equations fitted to such as Langmiur, Freund-
lich, Tempkin, and BET.

2.4. Freundlich isotherm

The Freundlich linear expression is an empirical
equation based on multilayer sorption to a heteroge-
neous surface and is expressed by the following Eq. (3).

log qe ¼ logKF þ 1=n logCe (3)

where qe and Ce are the amount of adsorbed adsorbate
per unit weight of adsorbent and unadsorbed adsor-
bate concentration in solution at equilibrium, respec-
tively. KF and 1/n are Freundlich constant
characteristics of the system, which are determined
from the Eq. (4).

log qe vs. logCe (4)

2.5. Langmuir adsorption

Langmuir monolayer adsorption isotherm is very
useful for predicting adsorption capacities and also
interpreting into mass transfer relationship. The iso-
therm can be written as follows:

Ce=qe ¼ ð1=KLÞ þ ðaL=KLÞCe (5)

The constant KL (L/g) is the Langmuir equilibrium
constant, and the aL/KL gives the theoretical mono-
layer saturation capacity. These Langmuir parameters
were obtained from the linear correlations between
the values of Ce/qe and Ce. Generally, the Langmuir
equation applies to the cases of adsorption on com-
pletely homogeneous surfaces.

2.6. Temkin isotherm

This isotherm describes the behaviour of adsorp-
tion systems on heterogeneous surfaces and it has
generally been applied in the following form:
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qe ¼ B lnAþ B lnCe (6)

A plot of qe vs. ln Ce enables to determine the con-
stants A and B.

2.7. BET method

Specific surface area, pore volume and pore size of
the sample were determined by means of N2 adsorp-
tion–desorption at −195.629˚C applying the BET
method.

2.8. Kinetic studies

The adsorption kinetics is important as it can predict
the rate at which an As3+ is removed and provide valu-
able insights into the mechanism of sorption reactions.
To study the rate constant for the adsorption of As3+ on
ZnO-NPs-AS, the following kinetic models were tested
to fit experimental data obtained. As3+ of initial concen-
tration of 0.005–0.08 was treated at different contact
durations of 10–80 min at pH 1–7 and adsorbent dosage
of 0.5–4.5 g at an agitation of 50–400 rpm.

2.9. Pseudo-first-order equation

The pseudo-first-order equation is given as fol-
lows:

lnðqe � qtÞ ¼ ln qe � k1t (7)

where qt and qe are the amounts of As3+ adsorbed at
time t and equilibrium, respectively, and k1 is the
pseudo-first-order rate constant for the adsorption
process. The linear graph of ln(qe− qt) vs. t shows the
applicability of first-order kinetic.

2.10. Pseudo-second-order equation:

This chemisorption kinetic rate equation is
expressed as follows:

t=qt ¼ ð1=k2q2e Þ þ ð1=qeÞt (8)

where k2 is the equilibrium rate constant of pseudo-
second-order equation. The linearity of t/qt vs. t sug-
gests the best fitted with pseudo-second-order kinetic.

2.11. Intraparticle equation

Kinetic data can also be analysed by an intraparti-
cle diffusion kinetic model formulated as follows:

qt ¼ kpt
1=2 þ C (9)

where kp is the intraparticle diffusion rate constant
and C is the intercept of the plot of qt vs. t

1/2. If this
linear plot passes through the origin then intraparticle
diffusion is the rate-controlling step.

2.12. Input parameters

Common isotherms are used in this investigation
to generate different series of adsorption data that will
serve as learning data-sets to fit ANNs. The four types
of isotherms are Langmuir, Freundlich, Temkin, and
BET. Langmuir isotherm applies to localized adsorp-
tion of monolayer surface coverage assuming that each
adsorbed molecule occupies one adsorption site. Fre-
undlich isotherm is a semi-empirical equation which
is widely used to represent adsorption equilibrium
data for low to intermediate range of concentration.
Temkin isotherm describes the behaviour of adsorp-
tion systems on heterogeneous surfaces. Specific sur-
face area, pore volume and pore size of the sample
were determined by means of N2 adsorption–desorp-
tion at −195.629˚C using BET analysis. The physisorp-
tion and chemisorptions kinetic rate equation is
determined using pseudo-first and second-order rate
equation. Parameters such as concentration, dosage,
contact time, pH and agitation have been evaluated by
means of portable instruments and analysed in the
laboratory. The maximum adsorption of As3+ is found
to be 98.31% at pH 5, equilibrium time of 50 min
using adsorbent of 3 g/L and initial concentration of
0.06 mg/L at agitation speed of 250 rpm. It is desired
to test a three-layer neural network structure to repre-
sent the data of all simulated isotherm and kinetic
data. In line with the studies carried out, multilayer
perceptron with back propagation (BP) algorithm has
been adopted in designing different structures of the
neural network. In the multilayer neural network,
depending on the pattern of relation between the
materials, input is put in first layer (Xi) and the out-
put in the last layer (y) by means of neurons weights
(W), bias (b) and the activity algorithm (f(x)) in the
middle layer(s). The network design has been
grounded on a combination of information on the
parameters effective on the adsorption. In each struc-
ture, the input information after processing is put
through to the next layer(s) through the output of the
first layer neurons and finally provided that it is
acceptable to the network output. This process goes
on as long as a suitable result comes out. In this study,
several training algorithms and functions embedded
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in the neural networks toolbox of nntool matlab soft-
ware 2010a were adapted. In this research, the data
have been divided into two groups randomly and
based on the experiences on the part of other
researches and trial and error has been taken to all
stages training data, accounting for 70%training and
testing data making up 30% of the total data. The sig-
moid simulating tangent and linear purelin algorithms
were applied in operating the neural network. More-
over, for each simulating algorithm, training rules
such a Levenberg Marquate is subjugated. It is worth
mentioning that the input, middle and output neuron
simulating algorithms were considered identical. With
regard to this, studies also implied that the simulating
algorithms being the same, more satisfactory results
come out, as opposed to the simulating algorithms
corresponding to different layers [39–41]. The total
parameters examined that the timing series run to 95
of which 67 were set aside for network training and
28 parameters have been used for the final testing and
validation analysis. The adequacy of the ANN is eval-
uated by considering the coefficient of determination
(R2) and also the values of root mean square error
(RMSE). The acceptance criterion rests on the quantita-
tive error passing into the calculations and observa-
tions including maximum R2 and minimum RMSE
[42,43].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0 ðactual� pridictedÞ2
n

s
(10)

R2 ¼ 1�
Pn

i¼0 ðactual� pridictedÞ2Pn
i¼0 ðactual� averageÞ2 (11)

2.13. Optimization of the ANN structure

Neural networks have been the subject of consider-
able research interest for the past 20 years. ANNs
attempt to mimic how a biological system functions
and how they can be utilized for their novel architec-
ture to solve highly complex undefined and non-linear
mathematical problems. ANNs can simply be viewed
as general non-linear models which have the ability to
encapsulate the underlying relationship that exists
between a series of inputs and outputs of a system.
They possess a high degree of flexibility and plasticity
that allows them to easily capture the non-linear
behaviour of a process using input–output data.
FFNNs are undoubtedly the most popular neural net-
work structure used in engineering applications. It has

been shown that a three-layer FFNN can represent
any function provided that sufficient number of neu-
rons is present. A FFNN normally consists of three
layers: an input layer, a hidden layer and an output
layer. The FFNNs have been used in this investigation
are presented in Fig. 7. The input layer receives the
process inputs and fans out this information to all
functional neurons of the hidden layer. Each neuron
of the hidden layer essentially performs two tasks: (1)
a weighted summation of all process inputs and (2) a
non-linear transformation via a neuron transfer func-
tion of the weighted summation to produce the output
of each neuron of the hidden layer which then serves
as inputs to the neurons of the output layer. The out-
put layer performs the same task as the neurons of
the second layer to produce the final output of the
FFNN. The typical transfer functions that are used in
the hidden and output layers are tansig and purelin.
The output to the FFNN is usually scaled between 0
and 1 or −1 to 1. The concentration of AS 3+ ion in
final solution is obtained by using the ANN model
developed. The experimental values of equilibrium
concentration (mg/ml), amount of adsorbate adsorbed
per unit amount of adsorbent (mg/gm), agitation
speed pH and % adsorption are calculated for the var-
ious dosage of adsorbent.

3. Results and discussion

3.1. FT-IR characterization of ZnO-NPs-AS

FT-IR measurements were agreed out to identify
the biomolecules for capping and proficient stabiliza-
tion of the metal nanoparticles synthesized by
Azadirachta leaf extract (Fig. 1). The FTIR spectrum of
zinc oxide nanoparticles absorbs at 408–550 cm−1 [44].

Fig. 1. FT-IR spectrum of green synthesis of ZnO NPs
using A. indica.
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The O–H stretch appears in the spectrum as a very
broad band extending from 3,400 cm −1. This very
broad O–H strech band is seen along with a C=O
peak, it almost certainly indicates the compound is an
aliphatic carboxylic acid. Two peaks attributed to C–F
stretching at 1,105 cm−1 constitute mono and poly
fluorinated compounds. Medium absorption in the
region 1,581–1,415 cm−1 implies the presence of aro-
matic ring. The absorption peak at 1,015 cm−1 corre-
sponds to C–O stretching of saturated primary
alcohol. The prominent doublet absorption at
2,921 cm−1 indicates C–H stretching vibration of an
aromatic aldehyde .The presence of this doublet allows

aldehydes to be distinguished from other carbonyl-
containing compounds. These bands are indicative of
terpenoid group of compounds present in aqueous
neem extract. Some of the major chemical constituents
present in neem leaves have been identified through
detailed studies using NMR, FTIR as quercetin rham-
noside (0.45%), a flavonoid quertcetin (0.257%), and
nimbin (0.19%). A few other constituents are also pres-
ent nimbocinone (250 ppm), nimbandiol (130 ppm)
[45]. Therefore, the synthesized nanoparticles were
surrounded by metabolites such as terpenoids having
functional group of alcohols, ketones, aldehyde and
carboxylic acids are confirmed [46].

Fig. 2. Distinctive XRD characterization of ZnO-NPs-AS.
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A distinctive XRD pattern (Fig. 2) shows the ZnO-
NPs-AS prepared by the green synthesis method at
60˚C for 12 h for aqueous leaf extract of A. indica. It
can be seen that all of these peaks are well matched
with that of Zincite phase (JCPDS CARD NO: 36-1451)
equivalent characteristic peak predominantly at about
12˚, 20˚ for silica and 32˚, 34˚, 36˚ for ZnO NPs are
indicative of nanocrystalline nature of ZnO-NPs-AS in
combination. The EDX spectrum (Fig. 3) shows the
peak only for the presence of zinc, oxygen and silicon
elements in the as-prepared ZnO-NPs-AS before
adsorption of As3+. The SEM image (Fig. 3) reveals
flower-like morphology without agglomeration and
particle size distribution of ZnO-NPs-AS is found to
have the size ranging 100 nm (Fig. 4).

The EDX spectrum (Fig. 5) confirms the peak for
the presence of zinc, oxygen, silicon and arsenic

elements after adsorption of As3+. In this work, several
training algorithms—such as Levenberg–Marquardt
BP, resilient BP, gradient descent, gradient descent
with momentum BP, gradient descent with adaptive
LR BP and gradient descent with momentum and
adaptive LRBP—were tested to discover the optimum
learning algorithm. Furthermore, several network
types containing more than one hidden layer and
more neurons in the input/hidden/output layers were
also tested with the learning algorithms. Fig. 4 shows
a feed forward back propagation (FFBP) algorithm
with five dependant variables of three-layer architec-
ture; a single hidden layer with a tangent sigmoid
transfer function (tansig) at input and a linear transfer
function (purelin) at output layer are used and run on
nftool MATLAB 11a.The distribution of output of
training data was presented in (Figs. 6 and 7) using

Fig. 3. Unique EDX and SEM characterization of ZnO-NPs-AS.

Fig. 4. Particle size distribution of ZnO-NPs-AS.
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correlation coefficient (Fig. 8) and confusion matrix
(Fig. 9) similarly, the minimum error was portrayed in
(Fig. 10) by best validation performance and error his-
togram with the contribution of five inputs from
(Figs. 11 and 12).

The experimental designs (Table 3) were used for
calculating adsorption capacity in percent (removal)
by changing initial concentration (mg/L), pH level,
adsorbent dosage (g/L), contact time (min) and agita-
tion (rpm) were repeated 7–12 times to increase the
reliability. The feed forward three-layered multilayer
neural networks used consist of hidden layer, input
layer and output.

According to the basic statistical observations and
the optimum network type consideration, FFBP was
found to be the best one among them (Table 4).

Twenty neurons are used in the hidden layer. In
the first layer or the hidden layer, the tan sigmoid
transfer function as shown was used. This transfer
function gives output values between −1 and +1 or 0
and 1. The tan sigmoid function takes the form, a = 2/
(1 + e−2n) − 1. In the output layer, purelin transfer
function was used. This is a linear transfer function.
The transfer function tan sigmoid used in the hidden
layer takes up only values between −1 and 1 and
gives outputs between −1 and 1 or 1 and 0. Hence,
the values that are fed into the network have been
scaled between −1 and +1. The algorithm used for
normalization is given by:

Fig. 5. Typical EDX characterization of ZnO-NPs-AS after adsorption of AS (III).

Fig. 6. Predicted ANN Architecture for five various param-
eters.
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Pi ¼ ðpi � pminÞ=ðpmax � pminÞ � 1

where pmin and pmax are the minimum and maximum
of the input and target values, respectively. Fig. 5 pre-
dicts the sorption efficiency with reasonable accuracy
1. For the present study, a total of 95 points have been
used to train the neural network, of which 67 points
are chosen for training and 14 points are chosen for
validation and 14 points for testing. Total iteration
number was set as 1,000 at 22 epochs for all learning
algorithms and the performance goal is set at 10−5. A
Feed Forward BP was used for modelling the experi-
mental design for predicting the removal capacity of
As3+. The experimental design used in this research
work was based on one factor experiment at a time.
The data and their related statistics are given in
Table 5.

The network is tested with different number of
neurons to find the optimal number of neurons at the
hidden layer by observing the mean squared error
(MSE). Twenty neurons are selected in the hidden
layer when mean squared error starts decreasing.
Learning and momentum parameters are set at 0.30
and 0.20, respectively, during the training phase. Dur-
ing training phase, the output vector is computed by a
forward pass in which the input is propagated for-
ward through the network to compute the output
value of each unit. The output vector is then com-
pared with the desired vector which resulted into
error signal for each output unit. In order to minimize
the error, appropriate adjustments were made for each
of the weights of the network. After several such itera-
tions, the network was trained to give the desired out-
put for a given five input vector. Then, network is
trained till minimum root mean square error is
observed (Table 5) A root mean square error of 0.0014
is observed at epoch number 22 (Fig. 10). Training
was stopped at this point and weights have been fro-
zen for network to undergo testing phase. A high
degree of correlation between actual and predicted
sorption efficiency of 100% observed is shown in
Fig. 8 with high coefficient of determination
(R2 = 0.986) is obtained. When the network is well
trained, testing of the network with testing data-set is
carried out. A high degree of correlation (100%)
between output and input sorption efficiency (mg/g)
is observed as shown in Fig. 9. The average absolute
relative percentage is observed in Fig. 13.

The mathematical isotherm and kinetic models
approximating (Figs. 14–19) Langmuir, Freundlich,
Temkin, pore volume, pseudo-first order, pseudo-sec-
ond order of the present study have been compared to
ANN. The Table 4 predicts the equilibrium adsorption
behaviour of ZnO nanoparticle entrenched on activated
silica with a good degree of accuracy with ANN of max-
imum R2 (0.986) and minimum MSE (0.0014) in contrast
with other mathematical isotherm and kinetics. The
development of the proposed ANN model is an effort

Fig. 7. LMFFBP networks for 5-20-1 type of ANN architecture.

Fig. 8. Correlation of predicted and actual As3+ sorption
percentage.
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Fig. 9. Confusion matrix output for input to training testing and validation.

Fig. 10. The mean absolute relative percentage error for training data.
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Fig. 11. Zero error histogram for training.

Fig. 12. Component planes and U matrix visualization of five input layer.
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Table 3
Experimental design for removal of As3+ using ZnO-NPs-AS

Input variable No. of runs Range Average removal %

Concentration 7 0.0075–0.10 74.61
Adsorbent dosage 10 0.5–5.5 85.81
Contact time 12 10–120 86.81
Initial pH 7 2–8 72.14
Agitation 10 50–500 75.49

Table 4
Empirical and mathematical correlations in the prediction of adsorption

S. No. Models R2 MSE

1 Artificial neural network (training) 0.986 0.0014
2 Langmuir 0.974 0.0025
3 Freundlich 0.897 0.021
4 Temkin 0.943 0.006
5 Pseudo first order 0.132 72.95
6 Pseudo second order 0.906 0.001
7 Intra particle diffusion 0.806 0.053
8 Testing 0.984 0.0019
9 Validation 0.976 0.0021

Fig. 13. Figure average distribution of As3+ removal % for training data.
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Fig. 14. Langmiur adsorption isotherm for As3+ using
ZnO-NPs-AS.

Fig. 15. Freundlich adsorption isotherm for removal of
As3+ using Zno-NPs-AS.

Fig. 16. Tempkin adsorption isotherm for As3+ using ZnO-
NPs-AS.

Fig. 17. Pore volume plot.

Fig. 18. Pseudo second order kinetic for adsorption of As3+

using ZnO-NPs-AS.

Fig. 19. Pseudo first order kinetic for adsorption of As3+

using ZnO-NPs-AS.
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towards the growing interest in applying ANN model-
ling technique to the area of adsorption of As3+ from
aqueous solutions. Obeying pseudo-second-order kinet-
ics (Fig. 12) i.e. the rate of the reaction depends upon
the third and fifth parameter among the five parameters
which was an authentication for experimental proof.
The studies conclude that ANN approach is quite effi-
cient in modelling complex adsorption phenomenon.

4. Conclusion

� Introduction of this knowledge-based system is
efficient and this green approach confirmed the
prediction of percentage adsorption efficiency
for the removal of As (III) ions.

� The present piece of work demonstrates the suc-
cessful removal of As (III) ions from the aqueous
solutions using A. indica (ZnO-NPs-As-Os) with
maximum removal efficiency (98.31%).

� Adsorption equilibrium data were best described
by Langmuir isotherm and BET model and fit
quite well with the experimental data accom-
plished that the maximum adsorption corre-
sponds to a saturated monolayer of As3+

molecules on the adsorbent surface with con-
stant energy.

� The data were analysed using kinetics models
akin to pseudo-first and second order and the
findings presented in this study suggested fol-
lowing pseudo-second-order equation for the
adsorption of As 3+ on to Zno-NPs-AS.

� The three-layered (5-20-1) ANN modelling tech-
nique was applied to optimize this experimental
process.

� The Levenberg–Marquardt algorithm was found
best of BP algorithms with a minimum MSE for
training is 0.0014, respectively. The maximum
removal As (III) ions of 100% is obtained at con-
centration of 0.006 mg/L, absorbent dosage to
3 g, contact time 50 min and agitation speed of
250 rpm at pH5.

� The correlation coefficient (R = 0.98626) confirms
the degree of linear dependence of two random
variables when compared to the classic model.

� The present outcome recommends that ZnO-
NPs-AS-Os synthesized in an ingenious green

method may be used as an economical and effec-
tual adsorbent for the confiscation of As (III)
ions from aqueous solutions.

� The power of the proposed neural isotherm
models lies in the universality of its application.
The ability of a single unifying model capable of
representing data for all recognized types of
adsorption isotherm models is an achievement
that classic adsorption isotherm models cannot
attain individually.
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