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ABSTRACT

The textile industry generates huge volumes of dye-contaminated wastewater. Discharging
these effluents into the environment causes many diseases that can be detrimental to human
health. Therefore, adsorption of these types of dyes such as methylene blue onto mineral
matrices offers an efficient method for pollution remediation. The present investigation is
undertaken to test the use of Tunisian clay in raw and sodium form to remove methylene
blue from aqueous solution. The experimental data were analysed using the Langmuir,
Freundlich, Temkin and Dubinin–Radushkevich isotherms. The equilibrium data fit well to
the Langmuir model, and the monolayer adsorption capacity for methylene blue dye is
312.5 and 208.33 mg/g, respectively with sodium clay (MS002-1) and raw clay (MS001-2).

Keywords: Adsorption; Clay; Dye; Adsorption isotherm

1. Introduction

Recently, there are more than 10,000 synthetic dyes
with different chemical structures and form (cationic,
anionic and non ionic) that are commercially available
[1–7]. These kinds of dyes are used by many industries
such as textile, cosmetics, paint, papermaking and cera-
mic use in order to colour their products [8–10]. It is
estimated that about 10–20% of the dyes were lost in
industrial effluents during manufacturing or processing

operations. However, the discharge of untreated and/
or partially treated useful solutions containing large
amounts of residuals dyes into municipal wastewater
plants and/or environment may cause the formation of
toxic carcinogenic breakdown products [11–13]. This
dye-contaminated wastewater has the potential danger
on human life as well as on environmental ecosystems
[14,15]. In the last decades, the removal of synthetic
organic dyestuff from wastewater becomes an environ-
mental challenge [11,16]. Methylene blue is commonly
one of cationic dyes, which has wide applications
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including colouring paper, dyeing cottons, wools, silk,
leather and coating of paper stock. Although it is not
strongly hazardous, methylene blue can cause perma-
nent injury to human and animal eyes [17]. And, its
removal from waste effluents is rather difficult because
of its synthetic origins and stable chemical structures.
Many technologies are employed to remove dye from
aquatic environments, including anaerobic/aerobic
treatment [18,19], coagulation/flocculation [20], oxida-
tion/ozonation [10,21–23], membrane separation [24]
and sorption [25–28]. The adsorption onto mineral clay
has been found to be the effective technique in waste-
water treatment methodology because of its wide capa-
bility of adsorption of different types of adsorbate,
inexpensive and rapid/assisted design method.

In this study, we report the use of raw clay
obtained from Oued Tfal, Gafsa, (south of Tunisia)
and its sodium form as adsorbents for the removal of
methylene blue from an aqueous solution.

2. Experimental

2.1. Materials and measurements

2.1.1. Methylene blue

Methylene blue (IUPAC name is 3,7-bis(dimethyl-
amino)-phenothiazin-5-ium chloride) was chosen as a
thiazine cationic dye, its molecular formula is
C16H18N3SCl-3H2O, and its molecular weight is
373.9 g/mol, and the different resonance structures
are given in Fig. 1.

2.1.2. Clay mineral

The raw clay (MS001-2) taken from Oued Tfal, Gaf-
sa (South Tunisia) was used in this study. Its chemical
composition was found to be: 51.3% SiO2, 2.68% MgO,
10.26% Al2O3, 0.34% K2O, 9.98% CaO, 3.57% F2O3,
1.32% Na2O and 21.28% loss of ignition [29].

The sodium clay (MS002-1) was obtained from the
raw clay as has been described previously [30]. The

raw clay was suspended in bi-distilled water in order
to collect the granulometric fraction size lower than
2 μm. Then, the obtained fraction was treated by
0.05 M HCl solution in order to destroy carbonates in
the clay particles. Then, the solid phase was dispersed
in 1 M of NaCl solution for 12 h. The supernatant
chloride solution was removed and replaced by a
fresh NaCl solution (1 M). This process was repeated
four times. The sample was put into tubing dialysis
membrane and placed in bi-distilled water to remove
the chloride ions. Then, the water was changed daily
until the absence of chloride (AgNO3 test). After dialy-
sis, the sample was dried at 70˚C and finally hand
ground in an agate mortar to obtain particle size lower
than 80 μm.

The raw and sodium clay powder was stored in a
plastic bottle to be used later in the experiments.

2.1.3. Adsorbents characterisation

Several methods were used in this study to charac-
terise the MS001-2 and MS002-1 clays.

X-ray diffraction (XRD) patterns of the samples
were recorded between 5˚ and 80˚ 2θ ranging at a
scanning speed of 2˚min, using X-ray a Philips goni-
ometer, PW1730/10 instrument with Cu Ka radiation
(40 kV, 30 mA, λ = 0.15406 nm).

The specific surface area and pore size distribution
of the clay samples were made by nitrogen adsorp-
tion–desorption experiments at 77 K using a Microm-
eritics ASAP 2020C instrument. Before the
measurement, clay samples were out gassed under a
reduced atmosphere for 8 h at 110˚C. The specific sur-
face area was determined according to the standard
Brunauer–Emmett–Teller method [31], while the aver-
age pore diameter was determined directly from the
isotherm by applying the Barrett–Joyner–Halenda
(BJH) method.

2.2. Equilibrium adsorption experiments

The adsorption experiments were performed by
batch experiments of 40 mg of sorbents (MS001-2 or
MS002-1) with 10 mL methylene blue solution of
known concentration and initial solution pH. The mix-
ture was shaken at room temperature (25˚C) for speci-
fied time. Then, the suspensions were separated from
the adsorbent by centrifugation and analysed using an
UV–Vis spectrophotometer (BECKMAN DU 800) set
at a wavelength of 664 nm.

The experiments were carried out by varying con-
tact time and concentration of initial dye solution.
Adsorption mechanisms were studied according to

Fig. 1. Different resonance structures of methylene blue.
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predefined procedure with methylene blue concentra-
tion ranging from 30 to 150 mg/L.

The equilibrium concentration of methylene blue
and the adsorbed amount of dye, qe (mg/g), were,
respectively, calculated according to following
equation,

Ce ¼ ð5:3053� AÞ � 0:2876 (1)

qe ¼ ðCi � CeÞ � V

W
(2)

where A is the dye absorbance at 664 nm, qe is the
amount of dye adsorbed (mg/g). Ci and Ce are the ini-
tial and equilibrium concentrations of dye (mg/L),
respectively. V is the volume of the solution (L), and
W is the sorbent weight (g).

3. Results and discussions

3.1. XRD analysis

The X-ray diffractograms of samples shown in
Fig. 2 gives the mineralogical composition of different
phases.

XRD analysis of MS001-2 shows a main phase with
a d001 at low theta value (1.47 nm), characteristic of a
smectite type clay, and also illite (0.98 nm), kaolinite
(0.71 nm), calcite (0.303 nm) and quartz (0.340 nm).
After purification, the reflections corresponding to
calcite and quartz were completely disappeared.

3.2. Nitrogen adsorption/desorption isotherm at 77 K

The textural properties of samples are obtained
from the standard BET method and the BJH equa-
tion, respectively. The nitrogen adsorption/desorption
isotherm at 77 K of MS001-2 and MS002-1 samples

are shown in Fig. 3. According to the IUPAC classifi-
cation, it is noted that the raw and sodium clay iso-
therm are of type II. A large uptake of nitrogen is
observed close to the saturation pressure, exhibiting
multilayer adsorption and implying the presence of
mesopores [32]. Furthermore, the pores’ size distribu-
tion (using the BJH method) (Fig. 4) shows that
the diameters pores of each samples vary between
30 and 50 Å with a maximum distribution towards
38 Å, indicating the uniform mesoporous structures
of these samples. The specific surface increases after
purification process from 110 m2/g for the raw
clay (MS002-1) to reach 144 m2/g for sodium clay
(MS001-2).

3.3. Adsorption kinetics

The kinetics of adsorption is one of the most
important characteristics in defining the efficiency of
the adsorption process.

The pseudo-first-order (Eq. (3)) and pseudo-
second-order (Eq. (4)) were applied to investigate the
experimental data and the adsorption processes [33].
The goodness of fit of the equations to the data was
evaluated based on the constant (R2).

lnðqe � qtÞ ¼ ln qe � k1t (3)

t

qt
¼ 1

k2q2e
þ t

qe
(4)

where qe and qt (mg/g) are the adsorption capacity at
equilibrium and at time t, respectively, K1 (1/min)
and K2 (g/(mg min)) are the rate constant of pseudo-
first-order and pseudo-second-order adsorption,
respectively.
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Fig. 2. XRD patterns of MS001-2 and MS002-1 samples.
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Fig. 3. Nitrogen adsorption/desorption isotherm at 77 K.
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Adsorption of MB dye by raw and sodium clay
was investigated at different initial concentrations (40,
60 and 100 mg/L). Results showed a fast adsorption
of MB during the first 10 min (Fig. 5). This result was
ascribed to the large amount of adsorption sites avail-
able on adsorbents at the beginning of adsorption.
Then, adsorption progresses slowly to become less
efficient after 20 min due to the gradual saturation of
adsorption sites on clays surface. The evolution of the
adsorbed amount of MB onto the two types of adsor-
bents shows that equilibrium time was independent of
the initial concentration, and the adsorbed MB at equi-
librium was increased with increasing of initial con-
centration. This is due to the fact that the diffusion of
MB molecules in solution to the surface of the adsor-
bent is accelerated by increasing the concentration of
dye.

Kinetic constants and correlation coefficient of
both pseudo-first-order and pseudo-second-order
models of MB adsorption onto minerals materials
were summarised in Table 1.

The correlation coefficient values (R2) obtained for
pseudo-first-order model are between 0.79 and 0.98.
Furthermore, the calculated values qe.cal are not in
agreement with the experimental values showing that
the adsorption kinetics did not follow the pseudo-
first-order model. The extremely high correlation coef-
ficients (R2) and the agreements of calculated values
qe.cal of MB retention with the experimental data give
a better description of the adsorption data by the
pseudo-second-order model.

3.4. Adsorption isotherm

In order to study the theoretical aspects of MB
adsorption onto raw and sodium clay, four models
Langmuir, Freundlich, Temkin and Dubinin–
Radushkevich (D–R) were used to fit the experimental
data [34,35].

The Freundlich model was expressed by the
nonlinear equation and the linear form as shown in
following equations,

qe ¼ KF � C1=n
e (5)

log qe ¼ log KF þ 1=nð Þ log Ce (6)

where qe is the equilibrium amount of solute adsorbed
per unit mass of adsorbent (mg/g), Ce is the equilib-
rium concentration of solute in bulk solution (mg/L),
KF is the Freundlich constant related to the adsorption
capacity of adsorbent ((mg/g) (mg/L)1/n), and 1/n is
the indication of the tendency of the adsorbate to be
adsorbed.

The nonlinear and linear expressions of the
Langmuir isotherm are respectively represented by
the following equations.
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qe ¼ qmax � KL � Ce

1þ KL � Ce
(7)

Ce

qe
¼ Ce

qmax
þ 1

qmax � KL
(8)

where qmax is the maximal adsorption capacity
(mg/g), and KL is the constant related to free adsorp-
tion energy (L/mg) that is the reciprocal of the con-
centration at which half saturation of the adsorbent is
reached.

Heat of adsorption and the adsorbent–adsorbate
interaction on adsorption isotherms were studied by
Temkin model. The nonlinear and the linear Temkin iso-
therm equation are given by the following equation [36].

qe ¼ RT

bT
ln ðATCeÞ (9)

qe ¼ RT

bT
ln AT þ RT

bT

� �
ln Ce (10)

qe ¼ B ln AT þ B lnCe (11)

where AT is Temkin isotherm equilibrium binding
constant (L/g), bT is the Temkin isotherm constant, R
is the universal gaz constant (8.314 J/mol K), T is the
temperature (K), B = RT/bT is the constant related to
heat of sorption (J/mol).

The Temkin isotherm equation assumes that the
heat of adsorption of all the molecules in the layer
decreases linearly with coverage due to adsorbent–
adsorbate interaction, and that the adsorption is
characterised by a uniform distribution of binding
energies, up to some maximum binding energy.

The (D–R) model is useful to determine the
adsorption type and it can be expressed as [37]:

qe ¼ qs expð�kn2Þ (12)

ln qe ¼ ln ðqsÞ � ðkn2Þ (13)

where k (mol2/kJ2) is the constant related to the
adsorption energy, qs is the theoretical isotherm
saturation capacity (mg/g), and ξ is the D–R isotherm
constant calculated by using following equation:

n ¼ RT ln 1þ 1

Ce

� �
(14)

where R is the gas constant (kJ/kmol), and T is the
temperature (K).T
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The adsorption energy E (kJ/mol) is the free
energy change when one mole of the ion is transferred
to the surface of the solid from infinity in the solution.
It can be defined by:

E ¼ 1ffiffiffiffiffi
2k

p (15)

The results of the isotherm modelling studies and
the regression coefficients, R2, were used to evaluate
the adsorption parameters and these parameters are
given in Table 2. According to Table 2, the correla-
tion coefficients values of the linear plot of Langmuir
model are very high compared to those of Freund-
lich, Temkin and D–R model which were found less
than 0.98. Experimental data of the adsorption of MB
onto raw and sodium clay obey very well to the
Langmuir model. The adsorption capacity of MB cal-
culated from the Langmuir, Freundlich and D–R iso-
therm models onto sodium clay (MS002-1) is
superior to the adsorption capacity onto the raw clay
(MS001-2) (Table 2).

The essential characteristics of Langmuir adsorp-
tion isotherm can be expressed in terms of a dimen-
sionless equilibrium constant [38], RL, which can be
defined by Eq. (16).

RL ¼ 1

1þ KL � Ci
(16)

The RL contributes to predict whether the adsorption
process is favourable or unfavourable. The calculated
values of RL for raw (0.009 < RL < 0.06) and sodium
clay (0.008 < RL < 0.03) were all between 0 and 1, it
can be concluded that the adsorption of MB occurred
favourable with the two types of adsorbents.

The experimental data of MB adsorption onto raw
and sodium clay are in harmony with the Langmuir

model as shown in Figs. 6 and 7. The maximum
adsorption capacity of MB onto raw and sodium clay
consists of a monolayer adsorption and the adsorbents
sites are energetically identical.

Table 2
Constants of Langmuir, Freundlich, Temkin and D–R isotherms and the regression coefficients for adsorption of BM onto
minerals matrices

Langmuir Temkin

Parameters qmax (mg/g) KL (L/mg) R2 B (J/mol) AT (L/g) bT R2

MS001-2 208.33 0.71 0.99 29.85 24.67 82.99 0.90
MS002-1 312.5 0.82 0.99 54.17 14.36 45.73 0.90

Freundlich D–R

Parameters KF (mg/g) (L/mg)(1/n) 1/n R2 qs (mg/g) K (mol2/kJ2) E (kJ/mol) R2

MS001-2 86.45 0.24 0.80 191.36 0.20 1.56 0.95
MS002-1 134.36 0.29 0.81 261.83 0.17 1.68 0.92
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Fig. 6. Adsorption isotherm of MB onto MS001-2: (a)
experimental, (b) Langmuir fit, (c) Freundlich fit, (d)
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The free energy of E was calculated according to
Eq. (15) and was illustrated in Table 2. The E values
are 1.56 for raw clay (MS001-2) and 1.68 kJ/mol for
sodium clay (MS002-1). They are orders of a physical
process, in which the sorption energy lies within
1–8 kJ/mol [39–41].

4. Conclusion

In this study, the ability of local clay to bind MB
was investigated using kinetic study, the pseudo-
second-order kinetic model was found to be well
suited for the entire adsorption process of MB on clay
(MS001-2 and MS002-1). Equilibrium data fit perfectly
with Langmuir isotherm model compared to Freund-
lich, Temkin and D–R isotherm models. The Langmuir
model coefficients implied that the adsorption of MB
onto minerals matrices is favourable. The overall
results show that locally clay obtained from Oued
Tfal-Gafsa could be used as an efficient low-cost
adsorbent for dyes adsorption from aqueous solutions.
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