

## 56 (2015) 204–215 September



# Novel Cr(III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(III) in aqueous solution

Huai Li<sup>a,\*</sup>, Jianzheng Li<sup>b,\*</sup>, Long Cheng<sup>a,c</sup>

<sup>a</sup>Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, P.R. China, Tel./Fax: +86 431 85542215; emails: envhit@gmail.com (H. Li), chenglong13@mails.ucas.ac.cn (L. Cheng)

<sup>b</sup>State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P.R. China, Tel./Fax: +86 0451 86283761; email: ljz6677@163.com

<sup>c</sup>University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Received 18 August 2014; Accepted 21 February 2015

#### ABSTRACT

Novel magnetic graphene oxide-based Cr(III) ion-imprinted materials were prepared through surface ionic imprinting technology. The resulting composites were verified by X-ray diffraction, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, and thermogravimetric analysis techniques. Batch adsorption studies were performed to evaluate adsorption kinetics, isotherms, selectivity, and reusability. The intra-particular diffusion model was best described by adsorption kinetics, whereas adsorption equilibrium data were better described by Langmuir equation. Langmuir dimensionless separation factor calculation results indicated highly favorable adsorption with increased adsorption efficiency at higher Cr(III) ion concentrations. The relative selectivity coefficients of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP for Cr(III)/Na(I), Cr (III)/Mg(II), and Cr(III)/Ca(II) were 2.68, 2.10, and 2.83 times greater than those of  $Fe_3O_4/$ SiO<sub>2</sub>-GO-NIP, respectively. In addition, reusability without obvious deterioration in performance was demonstrated by the resulting composites in at least five repeated cycles. The experimental results showed that Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP had high affinity and excellent selectivity for Cr(III) ion, as well as reusability and faster magnetic separation under an external magnetic field.

Keywords: Ion imprinting technique; Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO; Cr(III) removal; Selectivity; Adsorption

## 1. Introduction

Heavy metal pollution has become more serious with the rapid increase in global industrial activities. The increase in the presence of heavy metals in the aquatic environment represents a threat to human health, living resources, and ecological systems [1]. One of the major toxic metal ions endangering human life is chromium. Cr(III) compounds are widely used in modern industries, such as leather making, metal finishing, and petroleum refining, which inevitably results in large quantities of Cr(III) ions contaminating industrial effluents. Therefore, a technology for effective Cr(III) removal from water and wastewater is urgently needed.

<sup>\*</sup>Corresponding authors.

<sup>1944-3994/1944-3986 © 2015</sup> Balaban Desalination Publications. All rights reserved.

Molecular imprinting is a powerful technique for preparing polymeric materials with artificial receptorlike binding sites for various substances [2,3]. Molecular-imprinted polymers (MIPs) have been utilized as materials for molecular recognition in numerous scientific and technical fields, such as solid-phase extracchromatography tion. separation, membrane separations, sensors, drug releases, and catalysts [4–7]. Metal ion imprinting technology is a method developed from molecular imprinting, mainly to make selective binding sites in synthetic polymers using a metal ion template. As the template is removed, the remaining polymer becomes more selective [8,9]. Thus, metal ion imprinting technology is an effective and powerful method for the removal of metal ions. Su et al. prepared a Ni(II) ion-imprinted adsorbent to treat heavy metal wastewater based on CS and mycelium [10]. Chen et al. introduced Cr(III) ionicimprinted polyvinyl alcohol/sodium alginate (PVA/ SA) porous composite membranes for selective adsorption of Cr(III) ions [11]. An et al. prepared Cr(III) ionic-imprinting polyamine on silica gel surface for Cr(III) removal [12]. However, these materials cannot be separated rapidly and effectively after wastewater treatment.

Magnetic nanoparticles (MNPs) are ideal candidates for biological and environmental applications because they have unique magnetic properties that enable them to be handled in a magnetic field, and therefore, allow the separation of the target from the samples [13]. Combination of the magnetically susceptible characteristics of MNPs and the unique characteristics of MIPs are expected to provide selectivity for the target molecule and the ability for one-step separation. Jing et al. [14] synthesized magnetic molecularly imprinted nanoparticles for recognition of lysozymes. Kan et al. [15] reported the synthesis of core-shell micro-nanostructured magnetic MIPs for protein recognition. Ren et al. [16] described a magnetic Cu(II) ion-imprinted composite adsorbent for selective removal of copper. Based on previous studies, the present work aims to develop further the route to prepare functional materials.

Graphene oxide (GO) is a strongly oxygenated, highly hydrophilic layered material containing functional groups, such as -COOH, -C=O, and -OH, on its surface. GO has the potential to act as an inorganic support material in synthesizing surface-imprinting polymer due to its unique intensity, special structure, and stable chemical properties. Magnetic graphene oxide-based composites that take advantage of the superior properties of graphene and certain functional materials provide a new way to develop ion-imprinted materials. However, they have not been extensively explored to date. In this study, we report firstly ion-imprinted polymer (IIP)-functionalized magnetic graphene oxide hybrid material (Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP) by surface molecular printing technique, as well as its sensing property. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO was used to synthesize novel Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO was used to synthesize novel Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP by metal ion imprinting technology, characterized through AEM, TEM, XRD, TGA, FTIR, and Raman spectroscopy. Investigations for the removal of Cr(III) ions through adsorption kinetics, isotherms, selective adsorption in multi-ion solution, and reuse were carried out to understand the mechanism of Cr(III) ion adsorption onto Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP.

#### 2. Material and methods

#### 2.1. Materials and instruments

Chemical-grade polyethyleneimine (PEI,  $M_w = 7 \times 10^4$ ) was purchased from Qianglong Chemical Limited Company, Wuhan, China. Epichlorohydrin (ECH) was received from Beijing Chemical Plant. All other necessary chemicals were of analytical grade and purchased from the Chemical Reagent Company of Harbin. All dilutions were made with distilled water.

The samples were characterized by TEM (JEOL 2011, 200 kV), AFM (Digital Instrument Nanoscope IIIa, in tapping mode), Raman spectrometry (Jobin Yvon HR 800, with laser excitation at 457.9 nm), and FTIR (Avatar 360, with a resolution of  $2 \text{ cm}^{-1}$ ). The method for preparing species before AFM test is that the Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP nanoparticles were dispersed on mica until dry in the air using alcohol as solvent. TGA was performed by heating the samples in nitrogen or air flow at a rate of 100 mL/ min using a Perkin-Elmer Diamond TG/DTA thermal analyzer with a heating rate of 10°C/min. XRD patterns of all samples were obtained on a Bruker D8-Advance X-ray diffractometer with Cu Ka radiation (k = 1.5418 Å) at an accelerating voltage and current of 40 kV and 40 mA, respectively. The concentration of chromium ions was analyzed using Perkin-Elmer 3110 atomic absorption spectrometry, a Thermo Scientific ICAP 6000 Series ICP system.

### 2.2. Preparation of ion-imprinted materials

The preparation process for the ion-imprinted materials was as follows. First,  $Fe_3O_4/SiO_2$ -GO nanocomposites were prepared using a previously reported method [17].  $Fe_3O_4/SiO_2$ -GO-PEI were prepared according to reported procedure [18], but with some modifications. The typical preparation process was as follows:  $Fe_3O_4/SiO_2$ -GO nanoparticles were

dispersed in deionized water (50 mL) by ultrasonication, and then cationic reagent PEI (1% PEI aqueous solution) was added to the solution, and then vigorous stirring for 12 h. Afterward, excess PEI was washed out. Then, 200 mg Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI was mixed with a certain amount of Cr(III) solution with a concentration of 100 mg/L. The pH of the medium was adjusted to 6 using NaAc-HAc buffer solution, and the mixture was shaken in a constant-temperature shaker for a certain period of time until the PEI grafted on Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO was fully swollen and the chelation adsorption reached equilibrium. After filtration, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI particles that adsorbed the saturated Cr(III) was washed repeatedly with water until Cr(III) could not be detected in the filtrate, after which they were dried in a vacuum oven. Then, 200 mg Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI-adsorbed Cr(III) and 10 mL of ECH were added into absolute ethanol. The reaction was allowed to continue for 30 min at room temperature (25°C) with continuous stirring. Afterward, 10 mL of sodium hydroxide (0.01 M) was added. The reaction continued for 90 min at room temperature with continuous stirring. Finally, particles were fully washed with 0.1 M hydrochloric acid solution to remove the template ion, and the novel Cr(III) ion-imprinted materials were obtained. To put it briefly, a route of synthesis for the ion-imprinted materials was as follows. Firstly Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO nanocomposites were prepared, secondly Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI were synthesized, thirdly Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO-PEI particles adsorbed Cr(III) and ECH were added to crosslinking, and then, the template ion was washed. The non-imprinted materials (Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP) were prepared similarly, except for the Cr(III) imprinting and removal process.

## 2.3. Adsorption studies

To investigate the adsorption dynamics of Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO-IIP (i.e. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP), 10 mg imprinted polymer was dispersed in 10 mL aqueous solution of Cr(III) with concentration ( $C_0$ ) of 1 mg/L. The mixture was shaken continuously at 25°C. The specimens were sampled at different time intervals as follows: 5, 10, 15, 25, 35, and 50 min. The adsorption efficiency and capacity were calculated based on the difference of Cr(III) concentrations before and after adsorption. To investigate the adsorption equilibrium of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP (i.e. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP), 4 mg imprinted polymer was equilibrated with varied initial concentrations (0.25, 0.5, 1, 2, and 4 mg/L) of Cr(III) in each tube. After 1 h, the saturated polymer was separated by a strong magnet. The clear solutions were then collected and subjected to ICP analysis to determine the final chromium concentrations.

Adsorption values were calculated from the change in solution concentration using the following equation [19]:

$$q = \frac{(C_0 - C_e)V}{W} \tag{1}$$

where q (mg/g) is the adsorption capacity;  $C_0$  (mg/L) and  $C_e$  (mg/L) are the initial and equilibrated metal ion concentrations, respectively, V (L) is the volume of added solution; and W (g) is the mass of the adsorbent (dry).

$$E = \frac{C_0 - C_e}{C_0} \times 100\%$$
 (2)

where E (%) is the removal efficiency.

To estimate the selectivity of  $Fe_3O_4/SiO_2$ -GO-IIP for Cr(III), 4 mg  $Fe_3O_4/SiO_2$ -GO-IIP and  $Fe_3O_4/SiO_2$ -GO-NIP were dispersed in 4 mL aqueous solutions containing 1 mg/L Cr(III), Na(I), Mg(II), and Ca(II) respectively. The mixture was shaken at 25 °C for 1 h. After adsorption equilibrium, the concentrations of Cr (III), Na(I), Mg(II), and Ca(II) were determined by ICP analysis. Distribution and selectivity coefficients of Na (I), Mg(II), and Ca(II) with respect to Cr(III) were calculated according to the following equation [20]:

$$K_{\rm d} = \left(\frac{C_0 - C_{\rm e}}{C_{\rm e}}\right) \frac{V}{W} \tag{3}$$

where  $K_d$  is the distribution coefficient (L/g).

$$K = \frac{K_{\rm d}(\rm Cr(III))}{K_{\rm d}(M)} \tag{4}$$

where *K* is the selectivity coefficient and *M* represents Na(I), Mg(II), or Ca(II) ions. A comparison of the *K* values of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP with these metal ions allows an estimation of the imprinting effect on selectivity. A relative selectivity coefficient (*K*') is an indicator that expresses metal adsorption affinity of recognition sites to the imprinted Cr(III) ions, which can be defined by Eq. (5) as follows:

$$K' = \frac{K_{\text{imprinted}}}{K_{\text{non-imprinted}}}$$
(5)

where  $K_{\text{imprinted}}$  and  $K_{\text{non-imprinted}}$  are the selectivity coefficients of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP, respectively.

#### 2.4. Desorption and reuse

Desorption of Cr(III) ions from  $Fe_3O_4/SiO_2$ -GO-IIP was studied using 0.1 M HCl as a desorbing agent after exhaustion by sole Cr(III), Cr(III)/Na(I), Cr(III)/Na(I)/Mg(I), Cr(III)/Na(I)/Ca(II), and Cr(III)/Na(I)/Mg(II)/Ca(II) mixed solution with each metal concentration of 1 mg/L, respectively. The 4 mg metal-loaded  $Fe_3O_4/SiO_2$ -GO-IIP samples were placed in 4 mL of 0.1 M HCl shaken for 1 h at 25°C. The Cr(III) ion concentrations in the solution were analyzed at desorption equilibrium.

After each adsorption–desorption cycle,  $Fe_3O_4/SiO_2$ -GO-IIP was regenerated using 0.1 M HCl aqueous solutions numerous times until traces of Cr(III) could not be detected in the filtrate. Subsequently, the adsorbents were washed thoroughly with distilled water to achieve neutrality, and then dried in a vacuum oven at 50 °C for adsorption in the succeeding cycle.

## 3. Results and discussion

### 3.1. Characterization of Cr(III) ion-imprinted materials

The XRD patterns of GO, magnetite,  $Fe_3O_4/SiO_2$ -GO, and  $Fe_3O_4/SiO_2$ -GO-IIP, which displayed several relatively strong reflection peaks in the  $2\theta$  region of 5°–80° were compared in Fig. 1. The as-prepared  $Fe_3O_4/SiO_2$ -GO hybrid composite presented diffraction peaks of  $Fe_3O_4$  when combined with GO. The

600 450

600 450 peak positions were unchanged upon coating of polymerization, indicating that the crystalline structures of the magnetite and GO were essentially maintained.

Raman spectroscopy is a useful tool for identifying carbon materials. Fig. 2 shows the Raman spectra of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI, and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP. In the three samples, two prominent peaks were clearly visible, namely G peak and D peak, which corresponded to the Brillouin zone-centered LO-phonon around 1,575 cm<sup>-1</sup> and to the double-resonance excitation of phonons close to the K point in the Brillouin zone around  $1,360 \text{ cm}^{-1}$  [21], respectively. The intensity ratio  $(I_{\rm D}/I_{\rm G})$  was characterized by the extent of disorder present within the material [22,23]. For our samples, the  $I_D/I_G$  ratios of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI, and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP were 0.673, 0.757, and 0.980, respectively, which reflected the increase in disorder. Compared with the G-bands of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP, the G-band of  $Fe_3O_4/SiO_2$ -GO-IIP clearly occurred at 1,571 cm<sup>-1</sup>, which was downshifted by  $5 \text{ cm}^{-1}$  compared with that of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO. The Raman shifts of the G band for Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP provided evidence for the charge transfer of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO and IIP, which suggested a strong interaction between the two.

The FTIR spectra of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI, and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP were measured and shown in Fig. 3. The characteristic of Si–O–Si peak (1,091 cm<sup>-1</sup>, 468 cm<sup>-1</sup>), Fe–O (576 cm<sup>-1</sup>), and aromatic C=C (1,621 cm<sup>-1</sup>) was the direct evidence needed to

(**d**)

(c)

90

300 Intensity (a.u.) 150 0 600 (440)450 31 **(b)** 300 533) 150 0 2500 002) 2000 1500 (a) 6 1000 500 0 0 10 20 30 40 50 60 70 80 2 Theta (degree)

Fig. 1. XRD patterns of (a) GO, (b)  $Fe_3O_4$ , (c)  $Fe_3O_4/SiO_2$ -GO, and (d)  $Fe_3O_4/SiO_2$ -GO-IIP.



Fig. 2. Raman spectra of (a)  $Fe_3O_4/SiO_2$ -GO, (b)  $Fe_3O_4/SiO_2$ -GO-PEI, and (c)  $Fe_3O_4/SiO_2$ -GO-IIP.

consolidate the formation of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO. Absorption peaks at 1,300 and 774 cm<sup>-1</sup>, which were vibration absorptions of the N-H bond, and at 1,467 and 1,570 cm<sup>-1</sup> (C–N stretch of amide) appeared, indicating that PEI was bound to the surfaces of Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO. The absorption peak at  $1,066 \text{ cm}^{-1}$  was strengthened distinctly after ion imprinting, which was the characteristic absorption of the C-N bond of tertiary amine groups. By contrast, the absorption peak at 1,300 and 774 cm<sup>-1</sup>, which were vibration absorptions of N-H bond, disappeared. The disappearance of these peaks revealed that the H atoms of the primary and secondary amine groups in PEI chains had been substituted completely by methylene of ECH (via ring opening reaction and dehydrochlorination reaction). This finding suggests that all of the primary and secondary amine groups in the PEI chains had changed into tertiary groups. Simultaneously, the vibration absorption of C–OH bond groups appeared at 1,504, 1,375, and 695 cm<sup>-1</sup>, indicating further that the ring-opening reaction of ECH had occurred. These findings showed that the crosslinking between macromolecules of PEI were produced by the effect of the cross-linker ECH. In addition, a layer of IIP that formed on the surfaces of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO was obtained.

The TGA curves of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO and Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO-IIP are given in Fig. 4. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO was thermally stable, and the mass loss started above 150°C. Weight loss again increased rapidly beyond 200°C during the removal of the functional groups (-OH and -COOH) from Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO [24]. For Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP, the rate of weight loss increased below 100°C owing to the thermal decomposition of the ECH. The high rate of weight loss in temperatures ranging from 100 to 200°C may be due to the dehydration in the layer of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP exhibited a rapid weight loss rate of 299°C, which originated from the imprinted polymer on the surface of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO. Moreover, the weight loss of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP obtained from the TGA analysis was 71.27 wt.%, which was much more than that of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO (26.86 wt.%). The results fully demonstrated the existence of imprinted polymer.

The morphological structures of  $Fe_3O_4/SiO_2$ -GO and  $Fe_3O_4/SiO_2$ -GO-IIP were examined by TEM. Based on the TEM image (Fig. 5(a)),  $Fe_3O_4/SiO_2$ -GO resembled wrinkled paper, was very thin, and contained numerous wrinkles. These wrinkles may be



Fig. 3. FT-IR spectra of (a) Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO, (b) Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-PEI, and (c) Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP.



Fig. 4. TG and DTG curves of (a)  $Fe_3O_4/SiO_2$ -GO and (b)  $Fe_3O_4/SiO_2$ -GO-IIP with a heating rate of  $10^{\circ}C/min$  in nitrogen atmosphere.

important for preventing aggregation of GO and in maintaining a high surface area [25]. As seen in Fig. 5(b), Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO was almost covered by the IIP films, which indicated that the imprinted sites were generated in the Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP hybrid. The surfaces of the IIP films were probed using AFM. The height of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO as measured from the crosssection analysis was 2 nm or so (Fig. 5(c)). According to AFM imaging of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP (Fig. 5(d)), the average thickness of the polymer grafted on the Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO surface was about 3 nm. Fig. 6 shows the efficient magnetic separation process within seconds, which was very favorable for the magnetic separation of target pollutants from liquid environments in the aspect of practical engineering.

#### 3.2. Adsorption kinetics and isotherms

An equilibrium binding analysis was carried out to investigate the binding performance of  $Fe_3O_4/SiO_2$ -GO-IIP. Fig. 7 shows the dynamic binding curves of  $Fe_3O_4/SiO_2$ -GO-IIP and  $Fe_3O_4/SiO_2$ -GO-NIP.  $Fe_3O_4/SiO_2$ -GO-IIP clearly reached its binding equilibriums at about 25 min, indicating a fast binding process. Compared with  $Fe_3O_4/SiO_2$ -GO-NIP, a much higher adsorption capacity was achieved on  $Fe_3O_4/SiO_2$ -GO-IIP. The curve of  $Fe_3O_4/SiO_2$ -GO-IIP indicated that molecular imprinting resulted in the formation of specific recognition sites on the surface of  $Fe_3O_4/SiO_2$ -GO-IIP, which benefited Cr(III) in binding with the recognition sites and imparted small mass-transfer resistance.

The prediction of adsorption rate provides important information for selecting optimum operating conditions for full-scale batch process. To investigate the mechanism of adsorption kinetics, pseudofirst-order [26], pseudo-second-order [27], Elovich [28], and intraparticle diffusion [29] kinetic models were tested to interpret data obtained from batch experiments. Their linear forms are as follows:

$$\log(Q_{\rm e} - Q_t) = \log Q_{\rm e} - \frac{k_1}{2.303}t$$
(6)

$$\frac{t}{Q_t} = \frac{1}{k_{\rm ad}Q_{\rm e}^2} + \frac{t}{Q_{\rm e}} \tag{7}$$

$$Q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln(t)$$
(8)

$$Q_t = k_{\rm dif} t^{0.5} + C \tag{9}$$

where  $Q_t$  is the solid-phase loading of Cr(III) in the adsorbent at time t,  $Q_e$  is the adsorption capacity at equilibrium,  $k_1$  is the rate constant of pseudo-first-order adsorption, and  $k_{ad}$  is the pseudo-second-order adsorption rate constant.  $\alpha$  and  $\beta$  represent the initial adsorption rate and desorption constant in the Elovich model,  $k_{dif}$  indicates the intraparticle diffusion rate



Fig. 5. TEM images of (a)  $Fe_3O_4/SiO_2$ -GO and (b)  $Fe_3O_4/SiO_2$ -GO-IIP. Tapping-mode AFM images of (c)  $Fe_3O_4/SiO_2$ -GO and (d)  $Fe_3O_4/SiO_2$ -GO-IIP dispersion dip-coated on mica.



Fig. 6. Photographs of the separation and dispersion processes of  $Fe_3O_4/SiO_2$ -GO-IIP: (a) without external magnetic field and (b) with external magnetic field.



Fig. 7. Adsorption kinetic curves of (a)  $Fe_3O_4/SiO_2$ -GO-IIP and (b)  $Fe_3O_4/SiO_2$ -GO-NIP for Cr(III).

constant, and *C* provides information about the thickness of the boundary layer.

As seen in Fig. 8, the correlation coefficients ( $R^2$ ) given by the four kinetic models were 0.951, 0.9673, 0.9516, and 0.9918, respectively. The intraparticle diffusion kinetic model provided good correlation for the adsorption of Cr(III) ions on Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP. Moreover, the plots did not go through the origin, which indicated that the adsorption mechanism of

Cr(III) ions on Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP was a multistep, limited adsorption process. The adsorption kinetic constants and linear regression equations are summarized in Table 1.

Adsorption isotherm can be utilized to obtain information about the interaction between adsorbent and adsorbate molecules; it can also be used to predict the relative performance of different types of adsorbents. To understand and clarify the adsorption process, Langmuir adsorption isotherm and Freundlich adsorption isotherm models were used in this study.

The Langmuir and Freundlich isotherms are represented by

$$\frac{1}{q_{\rm e}} = \frac{1}{q_{\rm max}} + \frac{1}{q_{\rm max}K_1C_{\rm e}} \tag{10}$$

$$\log q_{\rm e} = \log K_{\rm F} + \frac{1}{n} \log C_{\rm e} \tag{11}$$

where  $q_{\text{max}}$  and  $K_1$  are the Langmuir parameters.  $q_{\text{max}}$  represents the maximum adsorption capacity and  $K_1$  is the Langmuir constant that represents the affinity between the solute and the adsorbent. n and  $K_F$  are the Freundlich parameters for values that range from 1 < n < 10, indicating that adsorption is favorable.



Fig. 8. The linear plot of (a)  $\log(Q_e - Q_t)$  vs. t, (b)  $t/Q_t$  vs. t, (c)  $Q_t$  vs. ln t, and (d)  $Q_t$  vs.  $t^{0.5}$ .

| Models                  | Parameters                                            |                                       | $R^2$  |
|-------------------------|-------------------------------------------------------|---------------------------------------|--------|
| Pseudo-first order      | $k_1 (\min^{-1})$<br>0.054                            | $Q_e (mg/g)$<br>0.13                  | 0.9510 |
| Pseudo-second order     | k <sub>ad</sub> (g/mg/min)<br>0.34                    | $Q_{\rm e} \ ({ m mg}/{ m g}) \ 0.18$ | 0.9673 |
| Elovich                 | α (mg/g/min)<br>13.2                                  | β (g/mg)<br>11.1                      | 0.9516 |
| Intraparticle diffusion | $k_{\rm dif} \ ({ m mg}/{ m g}/{ m min}^{0.5})$ 0.019 | C (mg/g)<br>0.011                     | 0.9918 |

Table 1 Parameters obtained from different kinetic models

The results of the adsorption isotherms are listed in Fig. 9 and Table 2. As illustrated in Fig. 9, the equilibrium adsorption capacity of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP increased rapidly and reached complete equilibrium by increasing the original concentration. The adsorption capacity of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP was about three times higher than that of Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO-NIP. The adsorption data could be described well by the Langmuir model ( $R^2 = 0.9929$ ) rather than the Freundlich model ( $R^2 = 0.9891$ ), which implied homogenous distribution of imprinting sites on the Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP surface (Fig. 10).  $q_{max}$  value,



Fig. 9. Cr(III) ion adsorption isotherms for  $Fe_3O_4/SiO_2$ -GO-IIP and  $Fe_3O_4/SiO_2$ -GO-NIP.

Table 2 Parameters obtained from different isotherm models

| Models     | Parameters                                      |                                   | $R^2$  |
|------------|-------------------------------------------------|-----------------------------------|--------|
| Langmuir   | <i>q</i> <sub>max</sub> (mg/g) 0.25             | <i>K</i> <sub>1</sub> (L/mg) 0.42 | 0.9929 |
| Freundlich | $K_{\rm F}  ({ m mg/g}  ({ m mg/L})^n)$<br>0.07 | n<br>1.43                         | 0.9891 |

defined as the maximum capacity of adsorbent calculated from the Langmuir plots is 0.25 mg/g, which agreed closely with the calculation from Lagergren pseudo-second-order equation. The Freundlich parameters for *n* were higher than 1, indicating that Cr(III) was favorable for adsorption on adsorbents.

All the binding sites on the adsorbents were also assumed to be free sites that were prepared to accept



Fig. 10. Freundlich (a) and Langmuir (b) plot for the adsorption of Cr(III) on  $Fe_3O_4/SiO_2\mbox{-}GO\mbox{-}IIP.$ 

| Tab | ole 3 |   |  |  |
|-----|-------|---|--|--|
| -   |       | ~ |  |  |

 $R_{\rm L}$  values in Langmuir isotherm of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP

| $C_0 (mg/L)$ | $R_{ m L}$ |
|--------------|------------|
| 0.25         | 0.904977   |
| 0.5          | 0.826446   |
| 1            | 0.704225   |
| 2            | 0.543478   |
| 4            | 0.373134   |

the adsorbents from the solution. The affinity between Cr(III) ion and Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP can be predicted using Langmuir dimensionless separation factor  $R_{\rm L}$  given by the relation [30]

$$R_{\rm L} = \frac{1}{1 + K_1 C_0} \tag{12}$$

where  $C_0$  is the initial Cr(III) concentration (mg/L).  $R_L$  indicates the shape of the isotherm, and the values  $R_L < 1$  and  $R_L > 1$  represent favorable adsorption and unfavorable adsorption, respectively. The values of  $R_L$ , are shown in Table 3. In this study,  $R_L$  values were all within 0 and 1, indicating a highly favorable adsorption with increasing adsorption efficiency at higher Cr (III) concentrations.

#### 3.3. Adsorption selectivity

To evaluate the binding selectivity of  $Fe_3O_4/SiO_2$ -GO-IIP toward Cr(III), Na(I), Mg(II), and Ca(II) were selected as potential interferents due to their existence in wastewater containing chromium.

As seen in Fig. 11, the removal efficiencies for Cr (III), Na(I), Mg(II), and Ca(II) by  $Fe_3O_4/SiO_2$ -GO-IIP were 8.25, 3.46, 5.11, and 3.61%, respectively. These values show that  $Fe_3O_4/SiO_2$ -GO-IIP had the highest molecular recognition selectivity to Cr(III). The adsorption selectivity for  $Fe_3O_4/SiO_2$ -GO-NIP was low and its effects on the removal efficiency of Cr(III), Na (I), Mg(II), and Ca(II) were similar (3.14, 3.36, 3.92, and 3.68% respectively). The results indicated that  $Fe_3O_4/SiO_2$ -GO-NIP had no selectivity.



Fig. 11. The cross-reactivity of the  $Fe_3O_4/SiO_2$ -GO-IIP and  $Fe_3O_4/SiO_2$ -GO-NIP for adsorption of Cr(III) and interferents in aqueous medium.

The relative selectivity coefficient K' is an indicator that expresses an adsorption affinity of recognition sites to the imprinted Cr(III) ions. Table 4 summarizes the data of the distribution coefficients  $K_d$ , selectivity coefficients K, and relative selectivity coefficients K' of Na(I), Mg(II), and Ca(II) with respect to Cr(III).

The following information can be found in Table 1. (1) The selectivity coefficients of  $Fe_3O_4/SiO_2$ -GO-NIP for Cr(III) with respect to Na(I), Mg(II), and Ca(II) were lower, namely 0.933, 0.795, and 0.849, respectively; (2) The selectivity coefficients of  $Fe_3O_4/SiO_2$ -GO-IIP for Cr(III) with respect to Na(I), Mg(II), and Ca(II) were higher, namely 2.51, 1.67, and 2.40, respectively; and (3) The relative selectivity coefficients of  $Fe_3O_4/SiO_2$ -GO-IIP for Cr(III)/Na(I), Cr(III)/Mg(II), and Cr(III)/Ca(II) were 2.68, 2.10, and 2.83 times greater than  $Fe_3O_4/SiO_2$ -GO-NIP, respectively (Table 4).

The imprinted materials showed selectivity for the target molecule (i.e. Cr(III) ions) due to molecular geometry. This finding indicates that Cr(III) ions can be determined even in the presence of Na(I), Mg(II), and Ca(II) interferences because the cavities imprinted by Cr(III) were not matched to Na(I), Mg(II), and Ca (II) in size, shape, and spatial arrangement of combining sites. The ionic radii of Na(I) (102 pm), Mg(II) (72 pm), and Ca(II) (100 pm) were larger than those of Cr(III)(61.5 pm), so the entrance of Na(I), Mg(II), and Ca(II) into the cavity imprinted by Cr(III) was difficult. This phenomenon resulted in high recognition ability and high selectivity of  $Fe_3O_4/SiO_2$ -GO-IIP for Cr(III).

#### 3.4. Desorption and reuse

Adsorbent regeneration is a potential key factor in improving wastewater process economics. Regenerations after exhaustion by sole Cr(III), Cr(III)/Na(I), Cr (III)/Na(I)/Mg(II), Cr(III)/Na(I)/Ca(II), and Cr(III)/Na (I)/Mg(II)/Ca(II) mixed solution were studied (Fig. 12). The desorption ratios of Cr(III) after the

| Table 4                 |             |    |                         |     |                                  |
|-------------------------|-------------|----|-------------------------|-----|----------------------------------|
| Adsorption              | selectivity | of | $Fe_3O_4/SiO_2$ -GO-IIP | and | Fe <sub>3</sub> O <sub>4</sub> / |
| SiO <sub>2</sub> -GO-NI | Р           |    |                         |     |                                  |

|                                      | Fe <sub>3</sub> O <sub>4</sub> /SiO <sub>2</sub> -GO-<br>NIP |                              | Fe <sub>3</sub> O <sub>4</sub> /SiO <sub>2</sub> -GO-<br>IIP |                           |                           |  |
|--------------------------------------|--------------------------------------------------------------|------------------------------|--------------------------------------------------------------|---------------------------|---------------------------|--|
| Metal ions                           | $K_{\rm d}$ (L/g)                                            | K                            | $K_{\rm d}$ (L/g)                                            | K                         | K                         |  |
| Cr(III)<br>Na(I)<br>Mg(II)<br>Ca(II) | 0.032<br>0.035<br>0.041<br>0.038                             | -<br>0.933<br>0.795<br>0.849 | 0.09<br>0.036<br>0.054<br>0.037                              | -<br>2.51<br>1.67<br>2.40 | -<br>2.68<br>2.10<br>2.83 |  |



Fig. 12. Desorption of Cr(III) ions from  $Fe_3O_4/SiO_2$ -GO-IIP by 0.1 M HCl.

desorption process reached equilibrium were about 37.29, 36.27, 29.68, 35.37, and 28.05%, respectively, indicating that the desorption ratio was not generally affected in a competing metal ion solution.

To test the stability and reusability of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP, five binding/removal (regeneration) cycles were conducted using the same adsorbent in a batch experiment. No obvious decrease in the binding capacity was observed in pure Cr(III) solution (Fig. 13), which suggests good retention of the activity of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP. The adsorption capacities of Cr (III) ions exhibited approximately 8% loss in Cr(III)/ Na(I)/Mg(II)/Ca(II) mixed solution, which indicated that the adsorption capacity changed slightly when competing metal ions existed. This study also presented that the regeneration loss may be as much as 10%, even with well-operated systems [31]. In conclusion, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP can be used many times without decreasing its adsorption capacities significantly.



Fig. 13. Stability and potential regeneration of  $Fe_3O_4/SiO_2$ -GO-IIP for removal of Cr(III).

## 4. Conclusions

Novel magnetic graphene oxide-based Cr(III) ionimprinted materials were prepared by surface ionic imprinting technology, which can be efficiently used for adsorption of Cr(III) ions from aqueous solution. AEM, TEM, XRD, TGA, FTIR, and Raman spectroscopy were used to demonstrate the successful synthesis of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP. The kinetic adsorption data agree with the intra-particle diffusion kinetic model. The kinetic experiment results indicated that the controlling step rate was mainly an intraparticle diffusion, although it was not the only rate-limiting step for Cr (III) ion adsorption. The equilibrium data fitted with the Langmuir adsorption isotherm equation. Langmuir dimensionless separation factor calculation results indicated that at higher Cr(III) ion concentrations, highly favorable adsorption with increased adsorption efficiency occurred. Competitive adsorption studies for Cr (III)/Na(I)/Mg(II)/Ca(II) mixed system showed that Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP was highly selective to Cr(III) ions due to the imprinted cavity in the adsorbent. The relative selectivity coefficients of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP for Cr (III)/Na(I), Cr(III)/Mg(II), and Cr(III)/Ca(II) were 2.68, 2.10, and 2.83 times greater than those of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-NIP, respectively. The desorption ratio of Fe<sub>3</sub>O<sub>4</sub>/ SiO<sub>2</sub>-GO-IIP was slightly affected by a competing metal ion solution. Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP can be used five times without significantly decreasing its adsorption capacities. Therefore, Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub>-GO-IIP can be considered a potential adsorbent in removing Cr(III) ions from aqueous solution due to its high affinity, selectivity, reusability, and easy separation.

#### Acknowledgments

This work was financially supported by Jilin Provincial Research Foundation for Basic Research, China (No. 20150520151JH), National Natural Science Foundation of China (No. 41401548) and Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. ES201510).

### References

- [1] J. Romero-González, J.C. Walton, J.R. Peralta-Videa, E. Rodríguez, J. Romero, J.L. Gardea-Torresdey, Modeling the adsorption of Cr(III) from aqueous solution onto *Agave lechuguilla* biomass: Study of the advective and dispersive transport, J. Hazard. Mater. 161 (2009) 360–365.
- [2] C. Baggiani, G. Giraudi, C. Giovannoli, C. Tozzi, L. Anfossi, Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a

polymerisable template, Anal. Chim. Acta 504 (2004) 43–52.

- [3] T. Shiomi, M. Matsui, F. Mizukami, K. Sakaguchi, A method for the molecular imprinting of hemoglobin on silica surfaces using silanes, Biomaterials 26 (2005) 5564–5571.
- [4] C. Alvarez-Lorenzo, A. Concheiro, Molecularly imprinted polymers for drug delivery, J. Chromatogr. B 804 (2004) 231–245.
- [5] K. Araki, T. Maruyama, N. Kamiya, M. Goto, Metal ion-selective membrane prepared by surface molecular imprinting, J. Chromatogr. B 818 (2005) 141–145.
- [6] O. Brüggemann, Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering, Biomol. Eng. 18 (2001) 1–7.
- [7] O. Brüggemann, A. Visnjevski, R. Burch, P. Patel, Selective extraction of antioxidants with molecularly imprinted polymers, Anal. Chim. Acta 504 (2004) 81–88.
- [8] R. Say, M. Erdem, A. Ersoz, H. Turk, A. Denizli, Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers, Appl. Catal., A 286 (2005) 221–225.
- [9] T.P. Rao, R. Kala, S. Daniel, Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics, Anal. Chim. Acta 578 (2006) 105–116.
- [10] S. Haijia, Z. Ying, L. Jia, T. Tianwei, Biosorption of Ni<sup>2+</sup> by the surface molecular imprinting adsorbent, Process Biochem. 41 (2006) 1422–1426.
- [11] J.H. Chen, G.P. Li, Q.L. Liu, J.C. Ni, W.B. Wu, J.M. Lin, Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions, Chem. Eng. J. 165 (2010) 465–473.
- [12] F. An, B. Gao, Adsorption characteristics of Cr(III) ionic imprinting polyamine on silica gel surface, Desalination 249 (2009) 1390–1396.
- [13] A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46 (2007) 1222– 1244.
- [14] T. Jing, H. Du, Q. Dai, H. Xia, J. Niu, Q. Hao, S. Mei, Y. Zhou, Magnetic molecularly imprinted nanoparticles for recognition of lysozyme, Biosens. Bioelectron. 26 (2010) 301–306.
- [15] X. Kan, Q. Zhao, D. Shao, Z. Geng, Z. Wang, J.-J. Zhu, Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers, J. Phys. Chem. B 114 (2010) 3999–4004.
- [16] Y. Ren, M. Zhang, D. Zhao, Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper, Desalination 228 (2008) 135–149.

- [17] H. Li, Z. Chi, J.Z. Li, Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(III) removal, Desalin. Water Treat. 52 (2014) 1937–1946.
- [18] Y. Zhang, B.A. Chen, L.M. Zhang, J. Huang, F.H. Chen, Z.P. Yang, J.L. Yao, Z.J. Zhang, Controlled assembly of Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles on graphene oxide, Nanoscale 3 (2011) 1446–1450.
- [19] Y. Prasanna Kumar, P. King, V.S.R.K. Prasad, Adsorption of zinc from aqueous solution using marine green algae—*Ulva fasciata* sp, Chem. Eng. J. 129 (2007) 161–166.
- [20] A. Ersöz, R. Say, A. Denizli, Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns, Anal. Chim. Acta 502 (2004) 91–97.
- [21] C. Thomsen, S. Reich, Double resonant Raman scattering in graphite, Phys. Rev. Lett. 85 (2000) 5214–5217.
- [22] W.S. Choi, S.H. Choi, B. Hong, D.G. Lim, K.J. Yang, J.H. Lee, Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by MPECVD, Mater. Sci. Eng. C 26 (2006) 1211–1214..
- [23] K.N. Kudin, B. Ozbas, H.C. Schniepp, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36–41.
- [24] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463–470.
- [25] H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B 110 (2006) 8535–8539.
- [26] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar 24 (1898) 1–39.
- [27] Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Forster, Study of the sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol. 18 (2000) 639–650.
- [28] R.S. Juang, M.L. Chen, Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Indus. Eng. Chem. Res. 36 (1997) 813–820.
- [29] S.K. Srivastava, R. Tyagi, N. Pant, Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants, Water Res. 23 (1989) 1161–1165.
- [30] B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater. 160 (2008) 576–581.
- [31] S. Meenakshi, N. Viswanathan, Identification of selective ion-exchange resin for fluoride sorption, J. Colloid Interface Sci. 308 (2007) 438–450.