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ABSTRACT

In the existing research, firstly, Cd adsorption properties and kinetics were studied on valo-
nia tannin resin (VTR) from aqueous solutions at optimized process parameters such as
temperature, pH of solution, initial ion concentration, and contact time. Then, a four-layer
fast artificial neural network was constructed and tested to model the equilibrium data of
Cd metal ions onto VTR. The properties of the VTR and the experimental conditions were
used as inputs to predict the corresponding cadmium uptake at equilibrium conditions. The
constructed ANN was also found to be precise in modeling the cadmium adsorption iso-
therms and kinetics for all inputs during the training process. ANN models were setup with
varying numbers of hidden layers and different neuron numbers at each hidden layer as
input parameters, mean squared error values were calculated for the train, test, and
overtraining caution system status and the proper model according to these values was
determined. The obtained simulation results showed that the applied technique of ANN
has better adjusted the equilibrium data of the Cd adsorption when compared with the
conventional isotherm models.

Keywords: Fast artificial neural networks; Removal; Modeling; Valonia tannin resin; Cd(II)
ions

1. Introduction

Removing the heavy metal ions, such as mercury,
lead, cadmium, nickel, chromium, copper, zinc, etc.,
from wastewater is necessary due to their toxic effects
on all the living beings. To remove heavy metals effec-
tively from wastewater, scientists developed various
physicochemical processes, e.g. chemical precipitation,
adsorption, ion exchange, solvent extraction, electroly-

sis, and membrane techniques (microfiltration, reverse
osmosis, and nanofiltration etc.) [1,2]. Currently, the
most widely used and effective method for the
removal of precious [3,4] and heavy metal ions [5–7]
is biosorption. Biosorption has been defined as the
property of certain biomolecules (or types of biomass)
to bind and concentrate the selected ions or other mol-
ecules from aqueous solutions [8].

Many studies have been proposed in the literature
about the use of the modified tannin resins, in relation
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with heavy metal biosorption from wastewater [9–11].
Tannins have multiple adjacent phenolic hydroxyls
and exhibit specific affinity to many precious and
heavy metal ions. Tannins are high molecular weight
polyphenols that can be found in different parts of
plants and trees such as seeds, fruits, roots, and barks.

Artificial neural network (ANN) methods have
been applied to many different areas. ANNs have
become widely used in various chemical, industrial,
computer vision, finance, engineering, health, biologi-
cal, and environmental research areas, where the
available information is experimental [12–16]. ANNs
are nets of basis functions; they can provide good
empirical models of complex nonlinear processes use-
ful for a wide variety of purposes [17]. ANNs have a
number of advantages over the conventional computa-
tional systems. The most important advantages are:
the capacity of synthesizing complex and transparent
mappings, rapidity, robustness, fault tolerance, adapt-
ability, and small memory requirement [18]. Although
artificial intelligence applications were not popular in
old times, remarkable studies came out in the past
decade. The studies about environmental and chemi-
cal engineering within the last few years are shown in
Table 1.

The performance values, methods used, and results
in Table 1 show that the studies on artificial intelli-
gence in recent years has given successful results. In
addition, the speed and ability of learning, robustness,
predictive abilities, nonlinear characteristics of ANN
methods can be combined with the analysis power of
statistical methods to prepare models that are more
efficient in the solution of problem space. Recently,
ANN has been used as a powerful modeling tool in
various water and environment studies such as biolog-
ical decolorization of contaminated water [19], mem-
brane filtration for textile dye wastewater treatment
[20], nutrient estimation in a sequencing batch reactor
for wastewater treatment [21], the estimation of heavy
metal sorption in German soils [13], the prediction of
dissolved oxygen and biochemical oxygen demand of
the surface water [22], the modeling of the river water
quality [23], activated sludge process [24], comparison
of ANN approach with 2D and 3D hydrodynamic
models for simulating estuary water stage [25], etc.
Many researchers used ANN for exhibiting the perfor-
mance of metal adsorption systems successfully
[26–28].

The main aim of the present work is to construct
an ANN (ANN) model of Cd2+ adsorption onto valo-
nia tannin resin (VTR) and demonstrate its application
to isotherm and kinetic data as how it can improve
the interpretation of the results.

2. Experimental studies and results

The adsorption experiments were carried out
under batch mode at different experimental condi-
tions. The effects of contact time, initial pH, tempera-
ture, and initial concentration of cadmium were
investigated by varying any of the process parameters
and keeping the other parameters constant.

2.1. Batch studies

Batch experiments were performed in a pH range
of 2.0–7.0 to determine the effect of initial pH on
adsorption. The effect of initial concentration in the
solution for six different concentrations of Cd (10, 25,
50, 75, 100, and 150mg/L) on the adsorption was
studied. The effects of various operating temperatures
ranging from 293 to 363 K were also investigated in
batch studies. When the adsorption was completed,
the suspension was filtered and the concentration of
Cd2+ ion in filtrate was analyzed by atomic absorption
spectrophotometer (Shimadzu, AA-6200 type). The
adsorption capacity of VTR as milligram per gram of
resin (mg/g resin) was calculated by the following
equation;

qt ¼ C0 � Ctð Þ � V=W (1)

where C0 is the initial concentration of Cd ions (mg/L),
Ct is the metal ion concentrations after adsorption time t
(mg/L), V is the volume of metal ion solution (mL) and
W is the weight of resin (g). On the basis of batch test
results, optimum operating conditions were determined
to be an initial pH of 4, an adsorbent dosage of 1.0 g,
and a temperature of 363 ± 2 K.

Experimental results showed that a contact time of
30min was generally sufficient to achieve equilibrium.
The effect of experimental parameters such as initial
pH, initial Cd(II) concentration, temperature, and
contact time were studied and compared with perfor-
mance of ANN model.

2.2. Isotherm and kinetics

The sorption kinetics of Cd ions onto VTR was
studied in batch experiments. The kinetic data were
tested using pseudo-first-order, pseudo-second-order,
Elovich, and intraparticle diffusion model. The kinetic
data were fitted with pseudo-second-order kinetic
model. The Langmuir, Freundlich, Temkin, and
Dubinin–Radushkevich models were used to describe
the equilibrium isotherms. Isotherm studies were
carried out with initial concentrations of Cd(II)
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ranging from 10 to 150mg/L. The adsorption process
was conducted at 296 ± 2 K with 350 rpm constant stir-
ring for 180min. The maximum adsorption capacity of
Cd2+ was obtained 63.291mg g−1 at 296 ± 2 K. Table 2
summarizes Cd adsorption isotherms measured at
optimum pH (using 38–53 μm particle size, 296 ± 2 K).
From Table 2, it was observed that the best fitting
linear expressions were the Langmuir and Tempkin
isotherms.

In order to investigate the kinetics of Cd adsorp-
tion, the kinetic data shown in Table 3 were analyzed
by the intraparticle diffusion, pseudo-first-order,
pseudo-second-order, and Elovich kinetic model equa-
tions. The second-order equation appeared to be the
better-fitting model than other equations because it
has the higher R2 (0.998). The equilibrium adsorption
capacity calculated by pseudo-second-order model
and that determined by actual measurement are very
closed to each other (Fig. 7).

3. Construction studies of ANN

Generally, the analysis of the performance of vari-
ous processes is based on deterministic mathematical
models and the successful development of a theoreti-
cal model relies on the availability of good process
information [29].

In this study, 456 experiments were conducted to
study the Cd adsorption on the tannin resin, and the
obtained data were used for ANN prediction model.
In addition, an attempt has been made to apply an
ANN to predict the biosorption of Cd ions with modi-
fied tannin resin under different operating conditions,
such as initial concentration of Cd(II) ions, initial pH,
operating temperature, and contact time.

ANN technique was used in comparing the results
with those from multiple regression analysis and the
experimental studies. Six different input parameters
were used in order to determine the adsorption per-
centage and 456 different experiments were made
using these input parameters; adsorption amount was
determined for each experiment. All of the parameters
to be used for ANN approach were composed of
numeric values. The operating range and data statistic
of the input variables are shown Table 4.

First, correlation analysis was applied to the data
for which data statistics information has been given in
Table 4 and the relationship between these parameters
has been given in Table 5. It has been observed in this
correlation analysis that input parameters, such as ini-
tial concentration of Cd(II) ions, initial pH, operating
temperature, and contact time have no correlation
with each other and with the output parameters. High
correlation is observed between initial concentrationT
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and the amount of adsorption. Initial concentration is
absorbed substantially; therefore, correlation is
expected to be high.

The multiple regressions analysis was made for the
whole experiment data-set by using different combina-
tions between input parameters. The input parameters
used in the ANN model were determined with this
analysis. The real values and analysis results values
were analyzed statistically and these values were
counted in order of determination of coefficient (R2),
Std. error, Sig. F, mean squared error (MSE), root

mean square error (RMSE), mean absolute error
(MAE), median absolute error (MEDAE), and average
absolute relative error (AARE). According to these val-
ues, input combination, whose R2 value was approxi-
mately 1 and tolerance was low, was defined and
showed in Table 6. This input combination is used like
the ANN model’s input parameter.

where p1 is the initial pH, p2 is the temperature,
p3 is the agitation rate, p4 the is particle size, p5 is the
Cd initial concentration, and p6 is the contact time.
Normalization is a very critical issue in ANN.

Table 3
Kinetic parameters for the sorption of Cd2+ on VTR

Pb+2 C0

(mg/L)
qe
(mg/g)

Intraparticle diffusion
model

Pseudo-first-
order kinetic
model

Pseudo-second-
order kinetic model Elovich equation

kint
(mg/g.min1/2) R2

k1
(1 min−1) R2

k2
(g/mg.min) R2

α
(mg/g.min)

β
(gmin−1) R2

10 9.692 0.3014 0.891 0.0308 0.957 0.0253 0.9980 9.149E+02 1.2583 0.962
25 23.862 0.5713 0.556 0.0297 0.574 0.0454 0.9999 1.684E+04 0.5676 0.821
50 41.934 0.5043 0.909 0.0134 0.923 0.0178 0.9997 2.370E+11 0.7504 0.985
75 49.803 0.8772 0.808 0.0164 0.850 0.0120 0.9994 1.221E+07 0.4143 0.949
100 55.160 1.1457 0.955 0.0302 0.914 0.0049 0.9980 6.450E+06 0.3709 0.821
150 62.179 0.2182 0.883 0.0151 0.907 0.0387 1.0000 7.204E+43 1.7224 0.971

Table 4
Data statistics of input variables

Variable Mean
Std.
error Median

Std.
deviation

Sample
variance Kurtosis Skewness Range Min. Max. Count

Initial pH 4.11 0.04 4 0.81 0.66 5.62 1.39 5 2 7 455
Temperature 25.63 0.76 20 16.26 264.31 7.93 3.00 70 20 90 455
Agitation rate 358.09 4.56 350 97.37 9481.58 13.29 2.83 670 130 800 455
Particle size 45.81 1.11 38 23.75 564.11 11.20 3.42 112 38 150 455
Cd initial

concentration
32.42 1.67 10 35.57 1265.07 3.10 1.85 140 10 150 455

Contact time 66.88 2.59 50 55.26 3054.18 −0.85 0.65 179 1 180 455
Adsorption rate 22.07 0.85 9.62 18.12 328.44 −1.10 0.71 60.19 1.99 62.18 455

Table 5
Correlation analysis

Initial pH Temperature
Agitation
rate

Particle
size

Cd initial
concentration

Contact
time

Adsorption
rate

Initial pH 1.0000
Temperature −0.0451 1.0000
Agitation rate −0.0108 −0.0288 1.0000
Particle size −0.0428 −0.1141 −0.0274 1.0000
Cd initial concentration −0.0821 0.1715 −0.0525 −0.2077 1.0000
Contact time 0.0081 0.0215 0.0052 0.0273 −0.0671 1.0000
Adsorption rate −0.0394 0.4323 −0.0571 −0.2415 0.9077 −0.0091 1.0000
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Table 6
The results of regression analysis to determine the input parameters of ANN

R2 Std. error Sig. F MSE RMSE MAE MEDAE AARE

p1 0.001 18.13 0.40 327.21 18.09 16.56 13.17 162.53
p1 + p2 0.19 16.37 0.00 266.35 16.32 13.78 9.99 133.64
p1 + p2 + p3 0.19 16.37 0.00 265.69 16.30 13.74 10.25 133.63
p1 + p2 + p3 + p4 0.23 16.00 0.00 253.08 15.91 13.28 11.22 135.54
p1 + p2 + p3 + p4 + p5 0.91 5.60 0.00 30.92 5.56 4.11 2.59 38.95
p1 + p2 + p3 + p4 + p5 + p6 0.91 5.55 0.00 30.32 5.51 4.05 2.53 38.73
p1 + p2 + p3 + p4 + p6 0.23 16.01 0.00 253.03 15.91 13.27 11.16 135.45
p1 + p2 + p3 + p5 0.90 5.62 0.00 31.19 5.58 4.11 2.59 37.88
p1 + p2 + p3 + p5 + p6 0.91 5.57 0.00 30.60 5.53 4.06 2.37 37.76
p1 + p2 + p3 + p6 0.19 16.39 0.00 265.58 16.30 13.73 10.38 133.54
p1 + p2 + p4 0.23 16.01 0.00 253.93 15.94 13.33 11.14 135.54
p1 + p2 + p4 + p5 + p6 0.91 5.54 0.00 30.32 5.51 4.05 2.52 38.69
p1 + p2 + p5 0.90 5.61 0.00 31.19 5.59 4.11 2.58 37.86
p1 + p2 + p6 0.19 16.39 0.00 266.24 16.32 13.78 10.16 133.55
p1 + p3 0.004 18.12 0.33 326.13 18.06 16.49 13.83 162.40
p1 + p3 + p4 0.06 17.58 0.00 306.44 17.51 15.76 14.74 163.05
p1 + p3 + p4 + p5 0.83 7.55 0.00 56.34 7.51 5.92 3.98 53.77
p1 + p3 + p4 + p5 + p6 0.83 7.49 0.00 55.43 7.45 5.85 4.02 53.40
p1 + p3 + p4 + p6 0.06 17.60 0.00 306.44 17.51 15.76 14.78 163.04
p1 + p3 + p5 0.83 7.60 0.00 57.24 7.57 5.96 3.76 52.26
p1 + p3 + p6 0.00 18.14 0.53 326.11 18.06 16.49 13.87 162.37
p1 + p4 0.06 17.60 0.00 307.80 17.54 15.84 14.16 163.17
p1 + p4 + p5 0.83 7.54 0.00 56.38 7.51 5.93 3.97 53.71
p1 + p4 + p5 + p6 0.83 7.49 0.00 55.47 7.45 5.86 3.99 53.34
p1 + p4 + p6 0.06 17.62 0.00 307.80 17.54 15.84 14.18 163.16
p1 + p5 0.83 7.59 0.00 57.27 7.57 5.97 3.74 52.23
p1 + p5 + p6 0.83 7.54 0.00 56.39 7.51 5.90 3.84 51.92
p1 + p6 0.00 18.15 0.69 327.19 18.09 16.56 13.32 162.50
p2 0.19 16.36 0.00 266.48 16.32 13.81 10.03 131.96
p2 + p3 0.19 16.36 0.00 265.82 16.30 13.77 10.32 131.90
p2 + p3 + p4 0.23 15.99 0.00 253.37 15.92 13.33 11.35 133.00
p2 + p3 + p4 + p5 0.90 5.64 0.00 31.50 5.61 4.08 1.64 42.90
p2 + p3 + p4 + p6 0.23 16.00 0.00 253.32 15.92 13.32 11.43 132.92
p2 + p3 + p5 0.90 5.67 0.00 31.83 5.64 4.07 1.62 41.96
p2 + p3 + p6 0.19 16.37 0.00 31.83 5.64 4.07 1.62 41.96
p2 + p4 0.22 16.00 0.00 254.21 15.94 13.38 11.16 133.05
p2 + p4 + p5 0.90 5.64 0.00 31.51 5.61 4.08 1.63 42.88
p2 + p4 + p6 0.22 16.01 0.00 254.16 15.94 13.38 11.21 132.97
p2 + p5 0.90 5.66 0.00 31.83 5.64 4.07 1.58 41.94
p2 + p5 + p6 0.90 5.61 0.00 31.24 5.59 4.02 2.03 41.75
p2 + p6 0.19 16.37 0.00 266.37 16.32 13.81 10.20 131.89
p3 0.00 18.11 0.22 326.65 18.07 16.57 13.75 159.15
p3 + p4 0.06 17.59 0.00 307.28 17.53 15.86 14.77 158.91
p3 + p4 + p5 0.83 7.56 0.00 56.67 7.53 5.89 3.15 56.71
p3 + p4 + p5 + p6 0.83 7.51 0.00 55.76 7.47 5.82 3.66 56.32
p3 + p4 + p6 0.06 17.61 0.00 307.28 17.53 15.86 14.77 158.90
p3 + p5 0.82 7.62 0.00 57.65 7.59 5.93 3.02 55.46
p3 + p5 + p6 0.83 7.57 0.00 56.76 7.53 5.86 3.52 55.14
p3 + p6 0.00 18.13 0.47 326.63 18.07 16.56 13.81 159.12
p4 0.06 17.61 0.00 308.61 17.57 15.93 14.18 159.09
p4 + p5 0.83 7.56 0.00 56.72 7.53 5.90 3.10 56.67
p4 + p5 + p6 0.83 7.50 0.00 55.81 7.47 5.82 3.72 56.28

(Continued)
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Normalization has a major role in the training and
testing of neural networks [30]. Therefore, experimen-
tal data-sets are scaled between 0.1 and 0.9 using the
normalization equation below in order to reduce
dimensional effects of the input parameters in differ-
ent ranges of values with keeping the relationship
between dependent and independent variables.

Xn ¼ 0:1þ 0:8� ðX � XminÞ= Xmax � Xminð Þ (2)

where Xn is the normalized value of the correspond-
ing X, Xmin is the minimum values of X, and Xmax is
the maximum values of X.

The data, which are obtained from experimental
works about absorption in the lab, are normalized and
then divided into two sections. One section has 20%
and this section is test data, and the second section
has 80%, which will be training data. These input
parameters are used in different combinations such as
1 hidden layer, 2 hidden layers, 3 hidden layers and
every hidden layer has neurons, whose numbers are
different from each other. The ANN models are estab-
lished with these various combinations. With the
result of educated ANN models, training MSE values,
and testing MSE values are obtained into three catego-
ries. Overtraining caution system (OCS), which is into

Table 6 (Continued)

R2 Std. error Sig. F MSE RMSE MAE MEDAE AARE

p4 + p6 0.06 17.63 0.00 308.61 17.57 15.93 14.21 159.08
p5 0.82 7.61 0.00 57.68 7.59 5.93 3.02 55.43
p5 + p6 0.83 7.56 0.00 56.79 7.54 5.87 3.58 55.12
p6 0.00 18.14 0.85 327.70 18.10 16.63 13.28 159.30

Note: Selected italic values (p1+p2+p3+p4+p5+p6) represent the best combination of input values for ANN.

Table 7
The number of layers and neurons for ANN model

Layer and neuron number

Minimum training MSE Minimum testing MSE Minimum OCS MSE

Training MSE Testing MSE Training MSE Testing MSE Training MSE Testing MSE

5 2.03E−05 3.24E−05 2.03E−05 3.24E−05 2.03E−05 3.24E−05
10 9.99E−06 1.69E−05 1.02E−05 1.55E−05 1.02E−05 1.55E−05
15 1.11E−05 1.92E−05 1.15E−05 1.75E−05 1.14E−05 1.75E−05
20 1.10E−05 2.01E−05 1.15E−05 1.62E−05 1.15E−05 1.62E−05
25 2.16E−05 3.55E−05 2.22E−05 3.47E−05 2.22E−05 3.47E−05
5–5 3.59E−05 5.55E−05 3.72E−05 5.45E−05 3.62E−05 5.50E−05
10–5 8.09E−06 1.44E−05 8.45E−06 1.41E−05 8.11E−06 1.43E−05
15–5 8.13E−06 1.46E−05 8.61E−06 1.33E−05 8.61E−06 1.33E−05
20–5 5.68E−06 9.79E−06 6.51E−06 8.00E−06 6.51E−06 8.00E−06
25–5 3.28E−06 8.18E−06 4.32E−06 6.27E−06 3.36E−06 6.51E−06
10–10 1.60E−05 2.61E−05 1.93E−05 2.56E−05 1.61E−05 2.57E−05
15–15 7.88E−06 1.48E−05 7.88E−06 1.48E−05 7.88E−06 1.48E−05
20–20 8.64E−06 1.31E−05 8.64E−06 1.31E−05 8.64E−06 1.31E−05
25–25 1.54E−05 3.14E−05 1.58E−05 3.02E−05 1.58E−05 3.02E−05
5–5–5 6.81E−06 1.24E−05 7.12E−06 1.20E−05 7.12E−06 1.20E−05
10–5–5 5.22E−06 1.25E−05 5.22E−06 1.25E−05 5.22E−06 1.25E−05
10–10–5 5.16E−06 8.75E−06 5.30E−06 8.46E−06 5.30E−06 8.46E−06
10–10–10 4.85E−06 1.17E−05 4.97E−06 8.47E−06 4.97E−06 8.47E−06
15–10–10 5.19E−06 7.17E−06 5.72E−06 7.08E−06 5.19E−06 7.17E−06
15–15–10 4.40E−06 1.48E−05 4.70E−06 9.07E−06 4.70E−06 9.07E−06
15–15–15 4.68E−06 9.92E−06 5.27E−06 8.77E−06 4.73E−06 9.01E−06
20–15–15 6.63E−06 1.57E−05 6.63E−06 1.57E−05 6.63E−06 1.57E−05
20–20–15 4.42E−06 1.29E−05 4.81E−06 1.16E−05 4.81E−06 1.16E−05
20–20–20 5.16E−06 9.15E−06 5.51E−06 7.62E−06 5.51E−06 7.62E−06
25–20–20 7.67E−06 1.38E−05 8.25E−06 9.16E−06 8.25E−06 9.16E−06
25–25–20 5.54E−06 1.26E−05 7.94E−06 7.86E−06 7.94E−06 7.86E−06

Note: Selected italic values(25-5) represent the best combination of the number of neurons and layers for the ANN model.
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three different categories is a system that prevents
over memorization of ANN. Here, OCS-MSE values
are optimum error values and here ANN does not
over memorize. In light of these values, convenient
numbers of layers and neurons are defined to ANN
model and analysis results, which are made before the
definition of ANN model, are shown in Table 7.

The model with the lowest error values is deter-
mined by testing the ANN models which have differ-
ent layers and different neuron counts. The details of
the ANN model determined are shown in Table 8.

As shown in Fig. 1, the model consists 4 layers: an
input layer, two hidden layers, and an output layer.
FANN_ELLIOT and FANN_SIGMOID_SYMMETRIC
functions are used in the hidden layers and the output
layer, respectively.

In the determined ANN model, fast artificial neural
network (FANN)’s FANN_TRAIN_RPROP function
[31] is used as a training function, FANN_ELLIOT

function is used in the hidden layer and FANN_
SIGMOID_SYMETRIC function is used in the output
layer. There are 456 experimental data-sets that are
obtained for adsorption studies. Three hundred and
sixty-six of these are used for training and 90 are used
for testing. This function is a highly developed version
of the batch training method and does not use the
speed of learning due to its characteristics. This
method was firstly developed by Riedmiller and Braun
in 1993. IRPROP, which is used in the FANN, is a
variant of Resilient Backpropagation (RPROP), which
is developed by Igel and Hüsken [32–35].

For training and testing of the proposed ANN
model, FANNTool 1.4 which is software of the FANN
was used. The proposed FANNTool software is free
open-source software. This software was preferred
because it produces fast results; it is also simple, and
easy to use.

Table 8
Details of the trained neural network used to predict the
Cd ion adsorption

Type Value/comment

Layer 1 (input) 6 neurons
Layer 2 (hidden) 25 neurons
Layer 3 (hidden) 5 neurons
Layer 4 (output) 1 neuron
Number of data used

for training
366

Number of data used
for testing

90

Function in training FANN_TRAIN_RPROP
Function in hidden layer FANN_ELLIOT
Function in output layer FANN_SIGMOID_SYMMETRIC

Fig. 1. Topology of the ANN.

Fig. 2. Ratio of experimental results to the ANN results.
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4. ANN modeling and results

A model based on an ANN was constructed to
model Cd2+ concentration removed from aqueous
solution as a function of empirical parameters, and we
investigated the possibility of training ANN models
correlating the Cd adsorption input variables (inde-
pendent) with their output variable (dependent vari-
able). The model with the lowest error was
determined by testing ANN models with different
numbers of layers and neurons. Accordingly, it was
found that the two hidden-layered ANN models with
25 neurons in layer 1 and 5 neurons in layer 2 have
the lowest MSE values. Therefore, the model given in
Table 8 was used for the ANN.

The value of R2, which was calculated using the
ANN test data plotted in the graph corresponding to
the data used for testing, was 0.999. Additionally, the
graph showing the ratio of the experimental data and
the ANN test data are given in Fig. 2. In conclusion, it
is observed that the experimental results and the
ANN test data obtained from the ANN model are
similar.

The results obtained from the experimental studies
and the ANN test results were compared for the
different PH values of 2, 3, 4, 5, 6, and 7; the tempera-
tures of 293, 303, 323, 343, and 363 K and the initial con-
centrations of 15, 25, 50, 75, 100mg/L, NS 150mg/L
and ARE given in Figs. 3–5, respectively. What is more,

Fig. 3. Agreement between ANN outputs and experimental data as a function of initial pH (VTR dosage = 1.0 g, initial Cd
ions concentration = 10mg/L, and temperature = 293 K).

Fig. 4. Agreement between ANN outputs and experimental data as a function of temperature (VTR dosage = 1.0 g, initial
Cd ions concentration = 10mg/L, and pH = 4).

92 U. Yurtsever et al. / Desalination and Water Treatment 56 (2015) 83–96



these experimental results were mathematically calcu-
lated according to the Langmuir isotherm and pseudo-
second-order kinetics. All the obtained results are
shown in Figs. 6 and 7, comparatively. According to
these results, ANN results were found to be consistent
with the experimental and mathematical results.

In conclusion, the prediction equation of the ANN
model created using normalized values of data
obtained from our laboratorial experiments on adsorp-
tion is calculated as follows.

Y ¼ �3:64þ 0:94p1þ 0:31p2� 0:0008p3� 0:023p4
þ 0:44p5þ 0:01p6 (3)

where p1 is the initial pH, p2 is the temperature, p3 is
the agitation rate, p4 is the particle size, p5 is the Cd
initial concentration, and p6 is the contact time.

The consistency of experimental data and ANN
test data are shown in Fig. 8. These results show that
the ANN adsorption data and experimental data are
consistent.

5. Conclusions

On the basis of batch experimental results, optimal
operating conditions were determined to be an initial
pH of 4, an adsorbent dosage of 1.0 g, an initial Cd(II)
concentration of 10mg/L, and a temperature of 293 ±
2 K.

In this study, a four-layer ANN model consisting
of an input layer, two hidden layers, and an output
layer was used, and the appropriate input parameters
for this model were determined by regression analysis.

Fig. 5. Agreement between ANN outputs and experimental data as a function of initial Cd concentration (VTR dosage =
1.0 g and pH= 4, and temperature = 293 K).

Fig. 6. Agreement between ANN outputs, theoretical, and
experimental data for Langmuir isotherm data.

Fig. 7. Agreement between ANN outputs, theoretical, and
experimental data for second-order kinetic results.
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This ANN model demonstrated a precise and effective
prediction with a correlation coefficient and MSE of
about 0.9997 and 6.51E-6, respectively for the removal
of Cd(II) ions. The RPROP was selected because of a
fast and accurate train function. The optimum count
of hidden layers for RPROP training function was
decided to be 2, and the counts of neurons in these
two layers were decided to be 25 and 2, respectively.
As a result, it has been observed that the experimental
results obtained from laboratory studies and the math-
ematical results calculated from isotherm and kinetic
equations completely match with the ANN results
found. In addition, consistency rate of the ANN and
the experimental results are observed to be close to 1.
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