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ABSTRACT

In this present work, artificial neural network was applied for the prediction of the breakage
percentage and the extraction efficiency for the removal of copper using emulsion liquid
membrane process. The effect of operational parameters such as emulsification time, ultra-
sonic power, stirring speed, sulfuric acid concentration, extractant concentration, surfactant
concentration, internal phase/organic phase volume ratio, emulsion/external phase volume
ratio, and copper concentration in the external phase were studied to optimize the condition
for maximum copper removal. The performance of the proposed model (radial basis func-
tion—RBF) for predicting copper removal efficiency was found to be very impressive. The
RBF model perfectly represents the experimental data.

Keywords: Emulsion liquid membrane; Copper extraction; Artificial neural network; Radial
basis function; Ultrasound

1. Introduction

Emulsion liquid membrane (ELM) extraction pro-
cess, proposed by Li [1] constitutes a promising tech-
nology with a considerable potential for various
applications, such as removal, recovery, and purifica-
tion of pollutants from wastewater [2–5]. ELM has
been used as an alternative to conventional liquid–
liquid extraction processes. It has shown some advan-
tages as they are rapid extraction process with a high
efficiency (due to the large surface area available for
mass transfer). Furthermore, it offers simultaneous

extraction and stripping in a single step [6,7]. ELM is
a three phase dispersion system, where a primary
emulsion dispersed in a continuous phase, which is
the phase to be treated. The liquid membrane sepa-
rates the external continuous phase from the encapsu-
lated phase. The solutes transported through the
membrane from external phase and concentrated in
the internal phase as droplets [7–9].

As any technique, ELM exhibits some drawbacks,
such as membrane rupture, swelling, and membrane
instability [10]. In order to overcome these problems
arising in ELM, the applicability of artificial neural
networks (ANN) was explored, a method inspired by
the human brain, to predict the stability of emulsified
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W/O and the extraction efficiency of copper. A great
advantage of ANN models is that it is not necessary
to know the mathematical relationship between the
input and output variables. Instead, it figures out
these relationships through successive trainings [11].
ANN has a vast range of applications in the fields of
agriculture, weather forecasting, finance and econom-
ics, medicine, robotics, material science, industrial
chemistry, and chemical engineering, etc. [11–13].

ANN is a mathematical model based on biological
neural networks. The basic element in ANN is the
neuron (node). Fig. 1 shows a single neuron of ANN.
Neurons are linked to each other by connections rec-
ognized as synapses, associated with each synapse
there is a weight factor. These synaptic weights, multi-
ply (amplify or attenuate) the input information
[14,15]. Each of these units is a simplified model of a
neuron and transforms its input into an output
response. The transformation involves two steps: first,
the activation of the neuron is computed as a
weighted sum of its inputs, and second, this activation
is transformed in response by using a transfer func-
tion. Generally, if each input is represented by xi and
each weight by wi, then each input is multiplied by its
corresponding weight factor and the neuron uses sum-
mation of these weighted inputs to approximate an
output signal via a transfer function. Any function
whose domain is a real number can be used as a
transfer function. The most popular types of transfer
functions are as follows: linear, step, threshold, and
logarithmic sigmoid and hyperbolic tangent sigmoid
functions.

A number of considerations must be taken into
account when designing ANN model. First, the appro-
priate structure of ANN model must be chosen. Sec-
ond, the activation function needs to be determined.
The number of layers and the number of units in each
layer must be chosen. Generally, desired models con-
sist of a number of layers. The most general model

assumes complete interconnections between all units.
These connections can be bidirectional or unidirec-
tional. ANN can create its own representation of the
information it receives during learning time [15].

There are many types of ANNs such as back prop-
agation neural network, a multilayer perceptron, and
radial basis function (RBF) neural networks. Among
them, RBF is a feed-forward and local adjustment net-
work. Therefore, its training rate is faster than other
neural networks. The training procedure is also simple
because there are fewer parameters that have to be
optimized: the width of the RBF and the number of
units in the hidden layer [16].

The aim of this work was to predict the emulsion
stability and the efficient extraction of copper by using
RBF model. The efficiency of copper extraction was
investigated at different conditions, such as emulsifica-
tion time, ultrasonic power, stirring speed, sulfuric
acid concentration, extractant concentration, surfactant
concentration, internal phase/organic phase volume
ratio, emulsion/external phase volume ratio, and
concentration of copper in external phase. The RBF
results were compared with those obtained through
experiments.

2. Experimental

2.1. Chemical

Bis (2-ethylhexyl) phosphoric acid (D2EHPA) used
was an analytical grade product (Aldrich). The non-
ionic surfactant Span80 (sorbitan monooleate, Aldrich)
was used as an emulsifier. Diluents hexane was
obtained from Fluka. Copper (II) solutions were pre-
pared by dissolving a requisite amount of copper sul-
fate (CuSO4·5H2O, Prolab) in distilled water.
Analytically pure sulfuric acid, obtained from Merck,
was employed in the preparation of the aqueous
internal phase.

Fig. 1. Basic neural unit.
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2.2. Apparatus and procedure

ELM was formed by mixing a requisite volume of
the organic phase containing the (D2EHPA) with Span
80 as a surfactant in n-hexane as a diluent. Internal
aqueous phase were prepared by dissolving the
required amount of the appropriate sulfuric acid solu-
tion (H2SO4), in deionized water. The emulsion was
formed by adding together the internal phase slowly
to the organic membrane phase upon intensive emul-
sification by means of ultrasonics probe with an oper-
ating frequency of 22 kHz (Microson 200XL).

A certain volume of the stable emulsion obtained
(20mL) was dispersed in the feed phase (100mL of
aqueous solution). The extraction runs were per-
formed in a glass vessel of 61mm diameter using a
mechanical agitator (Junke & Kunkel RW20) equipped
with a four paddle impeller of 20mm diameter. All
experiments were carried out in a water vessel at a
regulated temperature of 25 ± 1˚C. The concentration
of copper in the aqueous external phase was deter-
mined by atomic absorption spectrophotometer (AAS,
Shimadzu A. A-6601 F, Atomic Absorption Flame
Emission Spectrophotometer) at 325 nm. The copper
concentration in the internal phase was determined by
mass balance.

2.3. Artificial neural network for prediction of experimental
results

Neural network modeling is a nonlinear statistical
technique. It can be used to model a complex relation-
ship between the inputs and the outputs or to find
patterns in data-sets. RBF network, the model pro-
posed in this work, is the feed-forward neural net-
work type, which is composed of three layers with
entirely different roles. The input layer is made of
source nodes that connect the network to its environ-
ment. The second layer is the hidden layer which
applies a nonlinear transformation from the input
space to the hidden space, which is of high dimen-
sionality. The output layer is linear, supplying the
response of the network to the activation patterns
applied to the input layer [17]. Fig. 2 shows the gen-
eral architecture of the RBF network.

In RBF networks, the determination of the number
of neurons in the hidden layer is very important
because of the general capability and the complexity
of the network. If the number of the neurons in the
hidden layer is insufficient, the RBF network cannot
learn the data adequately; on the other hand, if the
neuron number is too high, poor generalization or
over learning may occur [18]. The outputs of the input
layer are determined by calculating the distance

between the network inputs and the hidden layer cen-
ters. The second layer is the linear hidden layer and
the outputs of this layer are the weighted form of the
input layer output. Each neuron of the hidden layer
has a parameter vector called center. Therefore, a gen-
eral expression of the network can be given as:

yj ¼
XI

i¼1

wij/ jjX � cijjð Þ þ bj (1)

where ij: number of neurons in the hidden layer and
the output layer, wij: weight of ith neuron and jth out-
put, ϕ: RBF, x: Input data vector, Ci: center vector of
ith neuron, βj: bias value of the output jth neuron, yj:
network output of the jth neuron.

Training is an optimization procedure in which the
network weights are adjusted in order to minimize the
selected error value. The training procedure of RBF
network determines the number of the hidden neu-
rons required for the simulation. In this study, the
root mean square error (RMSE) function was used to
estimate the performance of the neural network:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yio � yið Þ2
s

(2)

where yio is the target output value, yi is the neural
network output, and n is the total number of data pat-
terns used.

3. Results and discussion

3.1. Emulsion stability

The experimental data were used to train the neu-
ral network. In the present study, the parameters
which affect the emulsion stability were used as input
variables of ANN model. The percentage volume of
the internal phase leaked into the external phase as
the output parameter of ANN model was considered
as a measure of the emulsion breakage (Table 1).

The stability of emulsion (W/O) was investigated
by using the breakup (ε), defined by the following
equation:

e ¼ Vs

Vint
� 100 (3)

The emulsion breakage represents the percentage ratio
of the volume of the internal phase leaked into the
external phase by splitting (Vs) to the initial volume of
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the internal phase (Vint). The volume (Vs) is calculated
by the mass balance.

Vs ¼ Vext
10�pH0 � 10�pH

10�pH � Cint
Hþ

(4)

where Vext is the initial volume of the external phase,
Cint
Hþ is the initial concentration of H+ in the internal

phase, pH0 is the initial pH of the external phase, and
pH corresponds to the pH of the external phase in
contact with the emulsion at any time. The breakup
was estimated using RBF network and the results
were compared to those obtained experimentally.

3.1.1. Training results

The optimum network structure of ANN model
and its parameter variation were determined based
on an optimization of the spread constant for a given
low RMSE. In order to minimize the error, suitable
adjustments were made for each of the weights of
the network. Fig. 3 depicted the optimization of the
spread constant for the RBF network, the optimum
value of the spread constant was obtained by maxi-
mizing the observed data obtained from the evidence
model. It can be seen that the optimum value of the
spread constant was 0.5383 with a square mean root
error value of 4%.

Fig. 2. The general architecture of RBF network.

Table 1
Ranges of input variable models

Input variable Symbol Range

Stability of membrane Emulsification time (min) tem 1–10
Ultrasonic power (W) P 10–35
Stirring speed (rpm) SS 100–500
Sulfuric acid concentration (M) [H2SO4] 0.1–1.2
Extractant concentration (% (v/v)) [D2EHPA] 5–40
Surfactant concentration (% (v/v)) [Span80] 2–8
Volume ratio of internal phase to organic phase Vin/Vorg 0.5–2

Extraction of copper Volume ratio of emulsion to external phase Vem/Vext 0.05–2
Concentration of copper (ppm) [Cu+2] 50–200
Contact time (min) t 0.5–18
Extractant concentration (% (v/v)) [D2EHPA] 5–30
Stirring speed (rpm) SS 100–1,200
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Fig. 4 illustrates the experimental and the pre-
dicted emulsion breakage data. The predicted values
closely match the experimental data along the diago-
nal axis with a narrow scatter, which indicates a
successful prediction.

3.1.2. Application of emulsion stability model

To examine the effect of the emulsification time on
the emulsion stability, the time was varied in the
range of 1–10min. Fig. 5 shows a comparison between
the experimental and the predicted emulsion breakage
data. Results show that with increase in time of emul-
sification the breakage percentage decreases up to a
certain time but after 3min, the emulsion stability

gradually decreases resulting in increase in breakage
percentage. Initially as time elapsed more and more
small globules are formed in the system. This results
in an increase in the surface area available for mass
transfer and increase the emulsion stability. But at the
same time, spill of the internal phase might arise as a
result of the smaller size of the emulsion droplets.
Although the interface area available for mass transfer
increases with time, but leakage of the internal strip-
ping phase into the external aqueous phase resulted in
the rupture of membrane phase [3]. It can be seen in
Fig. 5 that the experimental data and predicted results
values obtained from the proposed RBF network were
compared and found that the ANN model shows a
good performance. An emulsification time of 3min
was selected for further studies in this work.
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Fig. 3. Optimization of the spread constant of RBF network (a) RMSE vs. spread, (b) Ln (Evidence) vs. spread.
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The examination of the experimental data and RBF
network outputs as a function of the ultrasonic power
is described in Fig. 6. The results showed that RBF
network modeling could successfully predict the
experimental data. Both the experimental data and
RBF network prediction demonstrate that the opti-
mum value was 20W. From Fig. 6, it has been
observed that with increase in the ultrasonic power,
the breakage percentage decreased up to a certain
limit. Initially, a sufficient emulsification occurs with
increase in the ultrasonic power. When the ultrasonic
power increases the shear force, which acts on the
large emulsion droplets, makes the droplets smaller
for which the effective interface area available for
mass transfer increases. However, increasing the ultra-
sonic power above a critical value (20W), the stability
of the emulsion reduced significantly with a corre-
sponding increase in the breakage percentage.

Fig. 7 depicted the influence of the stirring speed
on the emulsion stability. It has been observed that
the breakage percentage increases with increasing the
stirring speed. The stirring speed which provides ade-
quate membrane stability and minimum emulsion
swelling was 200 rpm. When stirring speed was less
than 200 rpm the breakage percentage was low. This
may be attributed to the fact that with decreasing the
stirring speed, the globules diameter increases and
hence the area for mass transfer decreases [3]. Fig. 7
shows a good agreement between the predicted
results and the corresponding experimental data.

Fig. 8 presents the effect of sulfuric acid concentra-
tion on the emulsion stability. As depicted in Fig. 8,
an increase in the sulfuric acid concentration from 0.1
to 0.4M resulted in a decrease in the breakage
percentage. There was no considerable decrease in the
breakage percentage when the concentration of sulfu-
ric acid gradually increased beyond 0.4M. “This may be due to the reaction between sulfuric acid and the

surfactant (Span80), which results in a partial loss of
the surfactant properties” [2]. According to results
shown in Fig. 8, the experimental data were well
represented by the RBF network model.

The effect of the extractant concentration on the
emulsion stability is shown in Fig. 9. The results indi-
cated that, the membrane stability decreased with
increasing the extractant concentration. An excessive
increase in the extractant concentration produces
some emulsion rupture, present interfacial characteris-
tics that induce failure of internal aqueous solution,
as a consequence of the emulsion breakdown. In addi-
tion, too high concentration of the extractant leads to
an increase in the viscosity of the liquid membrane,
which leads to the generation of larger droplets.
The best value of the extractant concentration was
found to be 20% (v/v) based on the emulsion stability.
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Fig. 9 shows that the results obtained from the pro-
posed RBF network model are in good agreement
with the experimental results.

In ELM, the added surfactant was applied as an
emulsifier in the liquid membrane phase, which not
only affects the stability of the liquid membrane but
also the swelling of the emulsion. Fig. 10 shows the
effect of the surfactant concentration on the emulsion
stability. The comparison of experimental results and
RBF network outputs shows that RBF network model
prediction was found in a good agreement with the
experimental results. For example, the surfactant
concentration corresponding to minimum breakage
percentage was 4% (v/v) obtained from the experi-
mental results against 4.3% (v/v) obtained from the
RBF network.

The effect of the organic phase to the internal
phase volume ratio on the emulsion stability was
studied (Fig. 11). The volume ratio was varied from
0.5 to 2. Fig. 11 shows that the emulsion stability
increases with increasing the volume ratio. This is due
to the fact that with increasing volume ratio the num-
ber of droplets and the interface surface area available
for mass transfer increases. Furthermore, Fig. 11
shows a good agreement between the RBF network
model and experimental results. The best value of the
organic phase to internal phase volume ratio was
taken as 1.

The effect of W/O emulsion to the external aque-
ous phase volume ratio on emulsion stability was stud-
ied. The experiment was done with a different volume
ratio of W/O emulsion with aqueous feed phase. The
emulsion stability with different W/O emulsion to the
external aqueous phase volume ratio is described in
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Fig. 12. The breakage percentage increased with
increasing the ratio of the emulsion to the external
aqueous solution from 0.05 to 1. In addition, the
experimental data were well fitted (R2 = 0.947) with the
model using RBF network (Fig. 12).

3.2. Removal of copper

3.2.1. Training results

Fig. 13 illustrates the optimization of the spread
constant. It can be seen that the optimum value of the
spread constant was obtained by maximizing
the observed data obtained from the evidence model.
The optimum value of the spread constant was 0.6606
with a square mean root error value of 4%.

Fig. 14 illustrates the experimental and predicted
breakage percentage data. ANN model predictions
were made at optimum spread constant. The pre-
dicted values of the breakage percentage were found
in match with experimental results.

3.2.2. Application of extraction efficiency model of
copper

The effect of the copper concentration on the
extraction was studied using different concentrations
of copper from 50 to 200 ppm. Fig. 15 shows the
experimental results along with the RBF network pre-
dicted from the extraction efficiency at different cop-
per concentration. The results show that, the
extraction efficiency decreased with increasing the
copper concentration. At low copper concentration,

high extraction efficiency was obtained (95%).
However, when the copper concentration increased to
200 ppm, the extraction efficiency reached only 74%.
These observations may be attributed to the rapid
saturation of the copper in the emulsion internal
phase. Furthermore, the experimental and the
predicted values were in a good agreement. For exam-
ple, R (50 ppm) = 0.996, R (100 ppm) = 0.995, R (150
ppm) = 0.997, and R (200 ppm) = 0.994.

The effect of stirring speed on the copper
extraction efficiency was studied over the range of
200–1,200 rpm. Fig. 16 indicates that the extraction
efficiency decreased with increasing stirring speed
reaching to an optimal level (200 rpm). Later, an
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increase in stirring speed decreased the extraction effi-
ciency. When the stirring speed increase, the size of
the emulsion globules decreased and consequently,
the interfacial area available for mass transfer
increased. On the other hand, increasing the stirring
speed above a critical value, the stability of emulsion
decreased considerably as a result of the emulsion
breakup, which is induced by leakage from the inter-
nal aqueous phase. In the view of the results above, it
can be said that the RBF network model provided a
good prediction for the experimental results.

The extractant concentration plays a vital role in
the overall behavior of the ELM extraction process.
Fig. 17 shows the effect of the extractant concentration
on the extraction efficiency. The extraction efficiency
increased with increase in the extractant concentration
(5% (v/v)–20% (v/v)). But after a critical value of the
extractant concentration (20% (v/v)) the extraction effi-
ciency decreased significantly. After a critical extract-
ant concentration the degree of emulsion stability
decreased due to increase in membrane viscosity. The
optimum value of the extractant concentration was
found to be 20% (v/v). Similar value for the optimum
concentration was predicted from RBF network model.
In addition, the experimental results and the predicted
values were in a good agreement.

4. Conclusion

The results indicated that the ANN can be used
successfully to predict the optimum operational
parameters which lead to a good stability of the
emulsion and a maximum copper removal. The opera-
tional conditions conducting to an excellent stability
W/O emulsion were: emulsification time: 3min; ultra-
sonic power: 20W; stirring speed: 200 rpm; sulfuric
acid concentration: 0.3 N; extractant concentration:
20% (w/w); concentration of surfactant: 4% (w/w);
volume ratio of internal phase to organic phase: 1; and
volume ratio of W/O emulsion to external phase: 0.2.
The result reveals that there is a good agreement
between RBF network model and the experimental
values. In addition, the RBF network can be applied
as a powerful tool to effectively predict the perfor-
mance of the ELM process.

Acknowledgments

This work was financially supported by the Minis-
try of Higher Education and Scientific Research of
Algeria (Project No. E01620130023).

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

E
xt

ra
ct

io
n 

ef
fi

ci
en

cy
 (

%
)

Time (min)

RBF-50ppm
Experimental-50ppm
RBF-100ppm
Experimental -100ppm
RBF-150ppm
Experimental-150ppm
RBF-200ppm
Experimental- 200ppm

Fig. 15. Effect of the copper concentration in the external
phase on the extraction efficiency.

200 300 400 500 600 700 800 900 1000 1100 1200
45

50

55

60

65

70

75

80

85

90

E
xt

ra
ct

io
n 

ef
fi

ci
en

cy
 (

%
)

Stirring speed (rpm)

R²=0.998

RBF
Experimental

Fig. 16. Effect of the stirring speed on the extraction
efficiency.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

E
xt

ra
ct

io
n 

ef
fi

ci
en

cy
 (

%
)

Extractant concentration (%)

R²=0.996

RBF
Experimental

Fig. 17. Effect of the extractant concentration on the
extraction efficiency.

N. Messikh et al. / Desalination and Water Treatment 56 (2015) 399–408 407



References

[1] N.N. Li, Separating hydrocarbons with liquid mem-
branes, US Patent 3 (1968) 410–794.

[2] R. Sabry, A. Hafez, M. Khedr, A. El-Hassanin,
Removal of lead by an emulsion liquid membrane,
Desalination 212 (2007) 165–175.

[3] M. Chiha, O. Hamdaoui, F. Ahmedchekkat, C. Pétrier,
Study on ultrasonically assisted emulsification and
recovery of copper(II) from wastewater using an
emulsion liquid membrane process, Ultrason. Sono-
chem. 17 (2010) 318–325.

[4] B. Sengupta, R. Sengupta, N. Subrahmanyam, Copper
extraction into emulsion liquid membranes using LIX
984N-C, Hydrometallurgy 81 (2006) 67–73.

[5] F. Valenzuela, C. Fonseca, C. Basualto, O. Correa,
C. Tapia, J. Sapag, Removal of copper ions from a
waste mine water by a liquid emulsion membrane
method, Miner. Eng. 18 (2005) 33–40.

[6] M. Ludres, F. Gameiro, P. Bento, M. Rosinda, C. Ismael,
M. Teressa, A. Reis, J.M.R. Carvalho, Extraction of cop-
per from ammoniacal medium by emulsion liquid mem-
brane using LIX 54, J. Membr. Sci. 293 (2007) 151–160.

[7] Y.T. Mohamed, A.H. Ibrahim, Extraction of copper
from waste solution using liquid emulsion membrane,
J. Environ. Prot. 3 (2012) 129–134.

[8] A. Kargani, T. Kaghazchi, M. Soleimani, Mathematical
modeling of emulsion liquid membrane pertraction of
gold (III) from aqueous solution, J. Membr. Sci. 279
(2005) 380–388.

[9] M. Chakraborty, C. Bhattacharya, S. Datta, Study of
the stability of W/O/W-type emulsion during the
extraction of nickel via emulsion liquid membrane,
Sep. Sci. Technol. 39 (2004) 2609–2625.

[10] Y. Park, A.H.P. Skelland, L.J. Forney, J.H. Kim,
Removal of phenol and substituted phenols by newly

developed emulsion liquid membrane process, Water
Res. 40 (2006) 1763–1772.

[11] P. Gandhidasan, M.A. Mohandes, Predictions of vapor
pressures of aqueous desiccants for cooling applica-
tions by using artificial neural networks, Appl. Therm.
Eng. 28 (2008) 126–135.

[12] N. Messikh, M.H. Samar, L. Messikh, Neural network
analysis of liquid–liquid extraction of phenol from
wastewater using TBP solvent, Desalination 208 (2007)
42–48.

[13] M. Chakraborty, C. Bhattacharya, S. Dutta, Studies on
the applicability of artificial neural network (ANN) in
emulsion liquid membranes, J. Membr. Sci. 220 (2003)
155–164.

[14] B. Karaağaç, M. İnal, V. Deniz, Artificial neural net-
work approach for predicting optimum cure time of
rubber compounds, Mater. Des. 30 (2009) 1685–1690.

[15] A. Schwartz, Prediction of rheometric properties of
compounds by using artificial neural networks, R.
Chem. Technol. 74 (2001) 16–23.

[16] C. Deshmukh, J. Senthilnath, M. Dixit, N. Malik,
A. Pandey, N. Vaidye, N. Omkar, N. Mudliar, Com-
parison of radial basis function neural network and
response surface methodology for predicting perfor-
mance of biofilter treating toluene, J. Soft. Eng. Appl.
5 (2012) 595–603.

[17] H. Liu, Y. Wen, F. Luan, Y. Gao, Application of
experimental design and radial basis function neural
network to the separation and determination of active
components in traditional Chinese medicines by capil-
lary electrophoresis, Anal. Chim. Acta 638 (2009)
88–93.

[18] Y. Liu, Q. Zheng, Z. Shi, J. Chen, Training radial basis
function networks with particle swarms, Lect. Note.
Comp. Sci. 3173 (2004) 317–322.

408 N. Messikh et al. / Desalination and Water Treatment 56 (2015) 399–408


	Abstract
	1. Introduction
	2. Experimental
	2.1. Chemical
	2.2. Apparatus and procedure
	2.3. Artificial neural network for prediction of experimental results

	3. Results and discussion
	3.1. Emulsion stability
	3.1.1. Training results
	3.1.2. Application of emulsion stability model

	3.2. Removal of copper
	3.2.1. Training results
	3.2.2. Application of extraction efficiency model of copper


	4. Conclusion
	Acknowledgments
	References



