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ABSTRACT

This work is dealing with the performance and modeling of an electrochemical water
treatment process. A bench-scale electrochemical reactor with working volume of 0.5 L was
applied to treat an azo dye, acid brown 14, as a typical pollutant in aqueous media. For the
dye initial concentration of 50mg/L, the experimental data showed the optimum conditions
of the process as: [NaCl] = 5 g/L, pH 6.4, and V = 4 V. Under the conditions, after 18min
and consuming of low energy amount of 0.24Wh/L, 92% of decolorization efficiency (DE)
was obtained. To model the process and simulate the obtained results, artificial neural
network (ANN) method was used. Five effective operational parameters, i.e. reaction time,
initial pH, applied voltage, supporting electrolyte, and the dye initial concentrations were
considered as the network inputs; meanwhile, both of the DE and energy consumption (EC)
criteria, were considered as the relevant network outputs. A four-layered feed-forward
ANN, consisting of “trainbfg” learning algorithm and “tansig” as the transfer function in
both hidden and output layers, was constructed. The neuron number structure of 5:4:6:2
and the iteration number of 600, showed best model-calibration ability. The K-fold cross-
validation method showed high correlation coefficients (R2) of 0.988 and 0.983 for the
simulation of the DE and EC criteria, respectively.
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1. Introduction

Dyestuff effluent is one of the industrial wastewa-
ters that are difficult to be treated because of the
intensive color, high organics content, variable pH,
and temperature as well as low biodegradability [1–5].
There are many processes to remove the dyes from
effluents, such as: adsorption by activated carbon [6],

coagulation and electrocoagulation [7,8], photo cata-
lytic degradation [9], fenton, electro fenton, photo fen-
ton, and ozonation [10–13]. In recent years, there has
been increasing interest on the use of electrochemical
methods for the wastewater treatment, since the main
consumed reagent is the electron and also there is no
need to add any chemicals into the media [3,14–18]. In
the electro-oxidation (EO) process, organic pollutants
are destroyed by either direct or indirect anodic
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oxidation. In the direct oxidation, pollutants are first
adsorbed on the anode surface and then destroyed by
anodic electron transfer reactions [19]. For the indirect
oxidation, strong oxidants such as hypochlorite and
chlorine are generated electrochemically and then
attack the pollutants in the media (Eqs. (1–5)) [12].
The other advantages of the EO process are the in situ
generation of the all active oxidants and their immedi-
ate consumption. In addition, the practical optimiza-
tion of the EO process is precisely performable, and
the process is conducted easily at its optimum condi-
tions via a controlling system.

Cl��Cl�ads þ e� (1)

Cl� þ Cl�ads�Cl2 þ e� (2)

Cl2 þH2O ! HOClþHþ þ Cl� (3)

HOCl ! Hþ þOCl� (4)

DyeþOCl� ! intermediate ! CO2 þ Cl� þH2O (5)

In so many cases, application of a control system to
assess the process performance automatically would
lead to quick identification and correction of the
source of any controlling problems. This proceeding is
possible if an appropriate model be existed to simulate
the process adequately well. In fact, a model can give
some information about the possibility of the process
outcomes based on the observed incomes. Also,
modeling of a process enables us to avoid repetitive
experimentation and time waste [20]. Some tech-
niques, such as statistical methods and artificial neural
networks (ANNs) can be applied to make convenient
models for different processes [21]. Generally, since
the EO process depends on several factors, modeling
of it is somewhat complicated. Therefore, simple linear
multivariate correlation cannot model the process
satisfactorily. During the last decade, ANNs have been
attracting great interest as predictive models in water
and wastewater treatment [22–24]. They are computer-
based systems, which have been designed to simulate
the learning process of the human brain neurons. They
have an ability to “learn” based on a set of experimen-
tal data (e.g. processing conditions and corresponding
responses) without any knowledge about the physical
and chemical laws that govern the process. This is one
of the main benefits of ANNs, compared with
empirical and statistical methods. In this regard, feed-
forward back propagation ANNs are the most often
used to map input–output relationships in different
cases [25].

The present research studies the practical perfor-
mance as well as modeling of an EO process, dealing
with decolorization of an azo dye, Acid Brown 14
(AB14), in aqueous media. The process operation was
optimized considering to the several important inde-
pendent factors, such as reaction time, initial pH,
applied voltage, supporting electrolyte amount, and
initial concentration of the pollutant. Also, decoloriza-
tion efficiency (DE) and energy consumption (EC) of
the process were selected as dependent factors. In
order to find the best model, several different three-
and four-layered feed-forward back-propagation net-
works were designed and optimized. Moreover, to
examine the reliability of the best model, K-fold cross
validation method was applied.

2. Experimental

2.1. Reagents

The azo dye, AB14, was supplied from Alvan
Sabet Company, with purity of 99% that its character-
istics have been presented in Table 1. Sodium hydrox-
ide and sulfuric acid, sodium chloride (supporting
electrolyte), potassium dichromate and ferrous ammo-
nium sulfate (applied to assess chemical oxygen
demand [COD]), and 1,10-phenanthroline and ferrous
sulfate (used to prepare ferroin indicator solution)
were all Merck products.

2.2. Electrochemical cell

The experiments were performed in a bench-scale
electrochemical cell with a working volume of 0.5 L.
The cell was equipped with one platinum plate
(2 cm × 2 cm) as the anode, placed in the middle of the
cell, and two stainless steel plates (SS-304) as the cath-
odes (2 cm × 8 cm), placed at the both sides of the cen-
tral anode. Here, the cathodes act as the auxiliary and
the anode acts as the working electrode. For the auxil-
iary electrode, it is often preferred to possess a surface
area much larger than that of the working electrode to
ensure that the half reaction occurring at the auxiliary
electrode is occurred fast enough so that it do not
limit the process at the working electrode.

DC power supply (ADAK, PS-405) was used to
apply voltage to the electrochemical cell. A schematic
view of the experimental setup has been shown in
Fig. 1.

2.3. Procedure and analysis

All experiments were performed at ambient tem-
perature and mixing of the cell was provided using a

H. Rezaei Vahidian et al. / Desalination and Water Treatment 56 (2015) 388–398 389



magnetic stirrer. Solutions with the certain amounts of
the dye and supporting electrolyte, after adjustment of
pH using concentrated solutions of H2SO4 or NaOH,
were transferred into the cell. After starting the elec-
trolysis process, samples (4mL) were taken at regular
time intervals. The residual dye concentration was
analyzed by a spectrophotometer (Perkin–Elmer, 55
OSE) via measurement of the solution absorbance at
maximum wavelength of 461 nm, based upon appro-
priate calibration curves. The DE was calculated as
follow:

DE ¼ ½AB14�0 � ½AB14�t
½AB14�0

(6)

where [AB14]0 and [AB14]t are the initial and residual
concentrations of the substrate, respectively.

COD was determined by the open reflux method
according to the standard method procedure. In this
method, the sample is refluxed in strongly acid solu-
tion with a known excess amount of potassium
dichromate (K2Cr2O7). In this condition, all organic
substances are oxidized to CO2; meantime, the Cr6+ is
reduced to Cr3+. After 2-h reflux at 150˚C, the remain-
ing of K2Cr2O7 is titrated with ferrous ammonium sul-
fate, in the presence of ferroin as an indicator. Hence,

the amount of consumed K2Cr2O7 is determined and
the oxidizable organics are calculated in terms of
oxygen equivalent [26].

EC criterion, (in Wh) was calculated during the
process according to Eq. (7):

EC ¼ VIt (7)

where V is the cell potential (in volt), I is the induced
current (in A), and t is the process time (in h).

2.4. ANN strategy

An ANN can be composed of several layers; the
first layer is named as the input layer and the last
layer is named as the output layer. Also, other layers
that are located between these two layers are called
hidden layers. In the present work, the process time,
initial pH, applied voltage, NaCl concentration, and
initial concentration of the dye were chosen as the
input variables of the network. Meanwhile, the DE
and EC were considered as the outputs of the net-
work. The applied ranges of the inputs and outputs
have been reported in Table 2. The structure of an
ANN is determined by the number of its layers,
number of neurons in each layer, and the nature of
learning algorithm and transfer functions. The most
important step in the development of an ANN model
is the determination and optimization of its structure.
In the work, the hidden neurons number and the

Table 1
The characteristics of AB 14

Molecular structure Molecular formula Mw (g mol−1)

C26H16N4Na2O8S2 C.I. no.: 20195 622.54

Fig. 1. Schematic diagram of the electrochemical cell; (1)
DC power supply, (2) magnetic stirrer, (3) anode, (4)
cathode, and (5) electrochemical cell.

Table 2
The ranges of input and output parameters

Input layer parameter Value Output parameter Value

Time (min) 0–30 DE 0–1
pH 2–10 EC 0–0.87
Voltage (volt) 2–6
[NaCl] (mg/L) 2–7
[AB14] (mg/L) 30–100
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number of network calibration iterations were selected
as the design parameters. Furthermore, application of
an appropriate algorithm and a transfer function is
necessary; otherwise, the model will not be reliable.
Here, the performance of “tansig” and “purelin” trans-
fer functions in the hidden and output layers were
examined. Also, three different back propagation
learning algorithms were used to train the networks.
Hence, six different networks were structured and
optimized, and their characteristics have been pre-
sented in Table 3. The MATLAB software (version
2009a) was utilized and all m-files were run by a
personal computer.

2.5. Data pretreatment

Training or learning is the process of determining
the weights of an ANN. The process minimizes the
error function by setting the connection weights and
biases, which enables ANN to generate outputs close
to the target values. If the ranges of input and output
data become normalized within 0–1, the ANN model
will perform accurately. It is noteworthy that the out-
puts were within the range of 0–1, hence no need to
normalize them. Therefore, only inputs were first nor-
malized according to the following equation:

xi ¼ Xi � Xmin

Xmax � Xmin
(8)

where Xi is the ith data, Xmin and Xmax are the lowest
and highest values in each case, respectively. Next,
the total experimental data-sets (170 data) were ran-
domized, and then 119 and 51 out of them were cho-
sen for the training and testing, respectively. To avoid
random initialization of the weights as well as random
correlation, each run of the network was repeated
three times. The mean square error (MSE) was used as
the error function, which indicates the appropriateness

of performance of the network based on the following
equation:

MSE ¼
Pi¼N

i¼1 ðyi;predic � yi;expÞ2
N

(9)

where N is the total number of the data, yi,predic is the
predicted value, and yi,exp is the ith experimental data.

3. Results and discussion

3.1. Optimization of three and four-layered ANNs

In the development of an ANN, a common prob-
lem is “overfitting”, which is caused by the numerous
free coefficients inside the network [27,28]. Extra train-
ing may lead to the overfitting of the network, i.e. the
train set of data is learned precisely by the network,
but thereby the network generalization is lost. There-
fore, it is vital to test the network performance for the
prediction of data, which have not been introduced to
the network before. Hence, the testing and training
processes were done simultaneously to assess the per-
formance of the model without any overfitting. A set
of the network coefficients, which obtain lowest MSE
related to the testing data-set, can be considered as
the most appropriate case [29]. It has been reported
that 8–11 hidden layer neurons are able to provide a
minimum value of the MSE [30]. Thereby, firstly, all
designed networks were calibrated and tested using
10 neurons to find the best iteration number and then,
using the best iteration, the numbers of hidden layer
neurons were optimized. Table 4 shows the testing
data-set MSEs related to the predicted values of the
DE and EC by three-layered ANNs, which contain 10
neurons in their hidden layer, as a function of differ-
ent iteration numbers. Also, at optimized iterations,
the effect of hidden neuron numbers was tested with
the related MSEs that have been presented in Table 5.
From the applied point of view as well as high

Table 3
The components of the used ANN models

Model no. Training algorithm

Transfer function

Hidden layer Output layer

1 Trainscg Tansig Purelin
2 Trainscg Tansig Tansig
3 Trainbfg Tansig Purelin
4 Trainbfg Tansig Tansig
5 Trainlm Tansig Purelin
6 Trainlm Tansig Tansig
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importance of the DE criterion, the best model was
chosen according to the lowest MSE obtained for the
prediction of the criterion. It is observed that the opti-
mums are varied from 80 to 600 and 9 to 11 for calibra-
tion iterations (Table 4) and hidden neuron numbers
(Table 5), respectively. Based on the tables, a network
with 10 hidden neurons and calibrated at 600th itera-
tion, using the BFGS quasi-Newton back propagation
(trainbfg) as the learning algorithm and tansig as the
transfer functions, shows the lowest MSE (1.546 × 10−3).
Therefore, this model was applied for further study on
the effect of hidden layers number on the ANN
performance.

In this regard, a four-layered ANN (i.e. application
of two hidden layers) was developed using the
characteristics of the best three-layered ANN. Firstly, 10

hidden neurons were utilized and all the possibilities of
their repartitions in the first and second hidden layers
were examined. According to the presented results in
Fig. 2, the lowest MSE of the testing data-set (1.5 × 10−3)
is related to the presence of four and six neurons in the
first and second hidden layers, respectively. This means,
the most suitable arrangement of the neuron number is
in order of 5:4:6:2, which is related to the input layer
(first and second) hidden layers, and output layer,
respectively. Next, the effect of calibration iteration of
the four-layered ANN was examined, and the results
have been depicted in Fig. 3. The network showed the
best performance (MSEs of 1.5 × 10−3 and 2.05 × 10−4

related to the predicted DE and EC) at the 600th iteration
number. This iteration number is similar to the case
found for the three-layered ANN and it can be

Table 4
The MSE (×103) values of testing data-sets related to the DE and EC for the three-layered ANNs containing 10 neurons in
their hidden layers, as a function of iteration number

Iteration number

Model no. 1 Model no. 2 Model no. 3 Model no. 4 Model no. 5 Model no. 6

EC DE EC DE EC DE EC DE EC DE EC DE

20 1.706 31.179 1.702 4.814 3.230 13.186 3.230 13.186 0.272 26.556 0.389 2.776
50 1.723 14.212 0.838 3.630 1.170 8.409 1.934 4.648 1.015 17.149 0.335 2.429
80 0.718 8.838 0.838 3.630 0.719 6.584 1.547 5.369 0.337 9.845 0.204 1.952
100 0.751 4.569 0.369 3.723 0.599 5.619 0.404 3.242 0.669 18.716 0.106 2.822
200 0.625 4.855 0.224 2.993 0.427 6.237 0.167 3.438 0.600 19.950 0.047 4.516
400 0.277 7.837 0.393 2.062 0.457 5.420 0.344 2.507 1.706 50.594
600 0.177 7.941 0.204 1.565 0.810 9.756 0.193 1.546
800 0.271 11.029 0.225 1.675 0.553 10.089 0.176 2.051
1,000 0.158 2.565 0.281 16.131 0.078 2.354
1,200 0.600 3.303
1,400 0.218 7.037

Table 5
The MSE (×103) values of testing data-sets related to the DE and EC for the three-layered ANNs calibrated at appropriate
optimum iterations, as a function of hidden neuron number

Neuron number

Model no. 1 Model no. 2 Model no. 3 Model no. 4 Model no. 5 Model no. 6

EC DE EC DE EC DE EC DE EC DE EC DE

6 4.465 13.683 0.242 3.987 0.548 10.885 0.166 2.747 0.449 11.003 0.350 4.227
7 0.562 9.662 0.314 2.083 0.362 12.264 0.261 3.028 0.767 9.486 0.378 2.587
8 0.668 6.648 0.301 2.265 0.526 12.949 0.186 3.002 0.353 7.216 0.136 2.694
9 0.645 3.619 0.154 1.680 0.371 7.693 0.219 2.698 0.478 4.383 0.098 2.166
10 0.751 4.569 0.204 1.565 0.457 5.420 0.193 1.546 0.337 9.845 0.204 1.952
11 0.388 4.382 0.245 2.446 0.108 4.645 0.207 1.808 0.445 41.009 0.044 2.994
12 0.476 4.820 0.256 2.075 0.704 6.662 0.244 1.783 0.066 4.940
13 0.469 6.006 0.091 2.503 1.705 29.731 0.062 2.653
14 0.049 3.882 0.172 2.523
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concluded that when the total neuron numbers are
similar, the optimum iteration number is not dependent
to the number of hidden layers.

Finally, by comparing the three- and four-layered
ANNs, it is found that the latter is preferred to model
the electrochemical process, due to the lower obtained
MSE. A schematic diagram of the model is presented
in Fig. 4.

3.2. K-fold cross-validation

The cross-validation is an approach to balance
complexity with accuracy. To examine the four-
layered model precisely, the K-fold cross-validation

method was utilized. In this order, the total data-sets
were subdivided into 17 equal-sized parts. The model-
ing was repeated 17 times, while at each time one of
the data parts was used for testing. Average accuracy
of the modeling was expressed by the correlation coef-
ficient (R2) and the MSE. The experimental and pre-
dicted output values of the testing data series, related
to the DE and EC parameters, have been compared in
Fig. 5. The MSE values for DE and EC simulations are
1.817 × 10−3 and 3.2 × 10−4, respectively, which confirm
the acceptable quality of the modeling. Also, Figs. 6–9
compare the simulated and experimental values of the
DE and EC parameters as a function of NaCl concen-
tration, applied voltage, initial pH, and the dye initial
concentration. It can be found that under different
operating conditions, the ANN model is able to simu-
late the process well.

3.3. Discussion on chemical aspects

It has been reported that NaCl is the most suit-
able case as supporting electrolyte [3]. The presence
of chloride ions in the solution can significantly
diminish the undesired impacts of other anions, such
as HCO�

3 . The carbonate ions can precipitate Ca2+ or
Mg2+ ions and form an insulating layer on the elec-
trode surface. This layer increases ohmic resistance of
the electrochemical cell, which in turn reduces the
current and treatment efficiencies. Hence, the
presence of chloride ions in the media is roughly rec-
ommended to conduct a normal operation of electro-
chemical treatment system [31]. Also, chlorine
molecules are evolved via the anodic oxidation of
chloride ions in aqueous media. The molecules are
converted to hypochlorous acid and hypochlorite
spices (Eqs. (1–5)), which are responsible for the
destructive oxidation of organic pollutant compounds
[32].

To optimize the NaCl amount in the electrolyte,
several tests were conducted at a constant applied
potential. Fig. 6(a) shows that increase in the NaCl
amount up to 5 g/L, has promoted the DE (e.g. 92%
after 18min), and application of the further amounts
has no considerable effect. Therefore, to avoid the
usage of excess NaCl, an amount of 5 g/L NaCl was
used in the subsequent experiments. Also, Fig. 6(b)
shows that in the presence of 5 g/L NaCl, the increase
in the EC parameter is not considerable during 18min
of the process.

The amount of applied voltage can alter the
hypochlorite ions amount in the media and conse-
quently can effect on the rate of electrochemical
process. Dependency of the DE and EC parameters to
the applied voltage variation has been presented in
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the Fig. 7(a) and (b). As it is observed, at the potential
of 4 V, the process has reached to a considerable
efficiency within 18min of the process, while the
consumed energy has still remained low. Therefore,
this voltage was considered to be used in the process.

pH of the solution is another effective operational
parameter in the electrochemical treatment processes.
Depending on the pH, the electro-generated molecular
chlorine can be disproportionated into HOCl and
OCl− ions according to the Eqs. (3) and (4) [3]. The
oxidation potential of HOCl is more than OCl−, hence,
the electrochemical oxidation of organic pollutants in
the presence of chloride ions shows a better
performance in the acidic media [33]. Fig. 8 demon-
strates the effect of pH on the DE and EC criteria. As
it was expected, highest DE was obtained at the acidicFig. 4. Schematic view of the developed four-layered ANN

model.
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pH of 2 and the increase in pH, has led to a mild
decrease in the DE. Considering the low difference
between the obtained DE at the pH 2 and the pH 6.4
(as the natural solution pH) after 18min of the process
and also considerably lower EC under pH of 6.4, this
pH was selected as the process operational pH
condition.

Influence of the initial dose of the pollutant on the
DE and EC under the preferred process conditions has
been shown in the Fig. 9. The DE is reduced when the
pollutant dosage has been increased. This is the case,
because under a certain oxidation ability of the electro
chemical system, a decrease in the DE will occur if ini-
tial concentration of the pollutant is increased.
Fig. 9(b) shows the EC variations vs. the obtained DE
at different initial concentrations of the dye. As it can
be seen, to obtain a higher efficiency, a higher energy

is needed which is more considerable when the initial
concentration of the dye is high.

3.4. COD assessment

The total amount of organic pollutants in a solu-
tion can be evaluated by the COD criterion [34]. Using
this criterion, the extent of electro-oxidative minerali-
zation of the pollutant was explored in this work. The
obtained results showed that only 36% of organic con-
tents of the dye solution have been mineralized after
18min. It reveals that up to 18min of the process, the
active chlorine species (i.e. Cl2, HOCl, and OCl¯)
mainly are able to degrade the dye molecules into
some colorless intermediates. Therefore, the electro-
chemical treatment process must be continued for
longer times to achieve higher mineralization
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efficiency [33]. This matter is in accordance with some
related previous reports [35,36].

The experimental conditions and outcomes of the
electrochemical treatment process have been summa-
rized in Table 6.

4. Conclusions

In the present study, an electrochemical treatment
process has been applied to treat AB14 aqueous solu-
tion, and the process was modeled using ANN meth-
ods. The obtained DE and EC were simulated based on
five important effective parameters, such as reaction
time, initial pH, applied voltage, supporting electro-
lyte, and the dye initial concentration. Briefly, the most
important obtained results can be summarized as:

(1) Development of several various ANNs
revealed that a four-layered feed-forward net-
work, consist of trainbfg as the learning algo-
rithm and tansig as the transfer function, has
the best performance.

(2) The existence of four and six neurons in the
first and second hidden layers, respectively,
led to the best performance of the model,
when the network was calibrated at 600th
iteration.

(3) The K-fold cross-validation confirmed the
goodness of the modeling. The MSE values of
1.817 × 10−3 and 3.2 × 10−4 and correlation
coefficients of 0.9883 and 0.983 were related to
the simulations of the DE and EC criteria,
respectively.

(4) The experimental data showed the best condi-
tions for the process performance as: 5 g/L of
NaCl as the supporting electrolyte, applied
potential of 4 V, and natural pH of 6.4.

(5) Under the above conditions, the efficiencies of
decolorization and mineralization of the dye
aqueous solution with an initial concentration
of 50mg/L, reached to 92 and 36%, respec-
tively. The efficiencies were obtained during
18min of the electrolysis process with a low
consumed energy of 0.24Wh/L.
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Fig. 9. Comparison of the experimental (symbols) and the ANN-predicted (dashed lines) values for the DE (a) and EC (b)
as a function of the dye initial concentration; [NaCl] = 5 g/L, Voltage = 4 V, initial pH 6.4, and T = 25˚C.

Table 6
The experimental characteristics of the electro-chemical treatment process

[AB14]0
(ppm)

COD0

(ppmO2)

Optimum amount of the operation
parameters

Process time (min) DE COD removal EC (Wh/L)NaCl (g/L) V (volt) pH I (Amper)

50 49.6 5 4 6.4 0.1 18 92% 36% 0.24
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