Desalination and Water Treatment

www.deswater.com

∆ 1944-3994 / 1944-3986 © 2009 Desalination Publications. All rights reserved.

Magnetic field coupled with electrochemical process for enhancing Al₁₃ formation

Wen-qi Gong, Ke-wu Pi*

School of Resources and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, P.R.China Tel. +86 (27) 87215931; Fax +86 (27) 87215931; email: pkw519@163.com

Received 5 January 2008; accepted revised 30 June 2008

ABSTRACT

Rare earth Nd-Fe-B magnetic field was used to enhance the conventional electrochemical process for preparing the polyaluminum chloride (PACl) of high Al_{13} polymer. It was found the formation process of Al_{13} polymer was obviously influenced by electrobath's voltage (V_i), magnetic field intensity (B_i), current density (d_i), the distance of two adjacent electrodes (d_{adj}), and the circulating rate. The concentration polarization was inhabited by external magnetic field and out-circulating pump, therefore, the comfortable surroundings for the formation of adequate $Al(OH)_4^-$ precursor was formed. The Al_{13} polymer content of PACl with Al_T (total aluminum concentration) = 0.8 M and B (basicity) = 2.2 reached 79.8 % of Al_T when the V_i , $Bi_i d_i$, d_{adj} and circulating rate was 2.0 V, 0.4 T, 3.34 A/dm², 20 mm and 23.7 L/h, respectively. For aging 15 d, it increased to 84.6%. In comparison with the conventional electrolysis process, the content of Al_{13} polymer was improved by 8.7% and 8.9%, respectively.

Keywords: Magnetic field; Electrochemical process; Polyaluminum chloride (PACl); Al₁₃ polymer; Flocculants; Polarization

1. Introduction

Coagulation processes are often used in water and wastewater treatment to destabilise and remove colloids and dissolved impurities from water. Polyaluminum chloride (PACl) is a kind of the most often used inorganic macromolecule flocculants. It has attracted many researchers attention in recent years because of its lower costs and higher efficiency compared with other traditional coagulants [1–6]. It is generally thought the higher efficiency of this flocculants mainly depends on the formation of the highly charged polymeric Al₁₃ ([AlO₄Al₁₂ $(OH)_{24}(H_2O)_{12}]^{7+}$ species [1,5,7]. Al₁₃ is composed of one tetrahedral center surrounded by 12 octahedral Al units, known as Keggin structure [8,9]. It was assumed by several authors [2,5] that the process of Al₁₃ formation requires the presence of $Al(OH)_{4}^{-}$ as a precursor. It is highly influenced by the solution composition and synthesizing conditions. Bertsch et al. [5] found that the base injection rate was an important parameter influencing Al₁₃ polymer formation at high basicity (B value, OH/Al molar ratio). Xu [10], Wang [11] and Bottero et al. [12] presented some different methods for preparing PACl of high Al₁₃ polymer content. However, the drawbacks of these preparation processes were tedious; time consuming and impossible for the industrial production. Lu [13] and Liu [3] illustrated the principles of PACl preparation by conventional electrolysis and demonstrated the optimum conditions for Al₁₃ polymer formation. When the electrolysis was carried out with direct current, Al³⁺ and OH⁻ ions were generated from the anode and cathode respectively. The Al3+, OH- and Al (OH)₄ ions were drove to the bulk solution to form the Al₁₃ polymer by an out-circulating pump. In this process, however, current density decreased critically for the reason of electrodes polarization and passivation. In order to sustain a stable current density, electrobath's voltage was turned up. Byproducts generated from electrodes increased rap-

^{*} Corresponding author.

idly under the higher cell's voltage, which decreased the efficiency of current and electrobath's energy transformation. The Al_{13} polymer accounted for only 70% of Al_{T} (PACl of Al_{T} =2.0 M and B =2.0) was obtained, as Qu [14] reported.

Our recent research [15] showed that the concentration polarization in electrochemical process was inhabited distinctly by external magnetic field. The purpose of this investigation was to enhance the conditions for Al₁₃ polymer formation in the electrolysis process by external magnetic field.

2. Materials and methods

2.1. Characteristics of reactor

A diagram of lab-scale reactor for PACl preparation is illustrated in Fig. 1. It consisted of four parts — a power supply (Kl-1, China), an electrobath (three sheets of 100×20 mm Al as anodes; three sheets of 100×20 mm Fe as cathodes), PACl storage box (organic glass) and some monitors (pH meter, ampere meter, volt meter and gauss meter). The distance of the adjacent electrodes (d_{adj}) could be regulated from 40 to 10 mm. A pump with max lift of 35.8 L/h was used to circulate the electrolyte to increase mass transfer rate. Magnetic field direction was parallel to the ground and the surface of the electrodes, the intensity of magnetic field could be adjusted from 0 to 0.8 T. Some 0.3 M NaCl (for increasing the conductivity of the solution) was added to the 0.22 M AlCl₃ solution to form the electrolyte.

Fig. 1. A diagram of lab-scale electrolysis reactor. (1) power supply; (2) volt meter; (3) ampere meter; (4) wire of anode; (5) wire of cathode; (6) electrobath; (7) circulating pipe; (8) pH meter; (9) reference electrode; (10) pH electrode; (11) PAC storage box; (12) circulating pump; × direction of magnetic field.

2.2. Al₁₃ formation process

When the electrolysis process is carried out at direct current in the above reactor, the following reactions will bring out on the anode and cathode.

Anode reaction:

$$2Al - 6e^{-} \rightarrow 2Al^{3+}$$
 $E^{0} = -1.706 V$ (1)

Excessive overpotential of anode results in the following side-reactions.

$$2H_2O - 4e \rightarrow 4H^+ + O_2 \uparrow$$
 (2)

$$2\mathrm{Cl}^{-} - 2\mathrm{e} \to \mathrm{Cl}_{2}^{\uparrow} \tag{3}$$

Cathode reaction:

$$6H_2O + 6e^- \rightarrow 3H_2^\uparrow + 6OH^- \qquad E^0 = 0.0 V$$
 (4)

Relative low overpotential of cathode leads to other sidereactions.

$$2H^{+} + 2e \to H_{2}^{\uparrow} \tag{5}$$

$$Al^{3+} + 3e \to Al\downarrow \tag{6}$$

It was confirmed that some of the OH⁻ ions reacted with the Al³⁺ ions to form the Al(OH)⁻₄ precursor on the metal–solution surface; others were gradually transferred to the bulk solution to react with Al(OH)⁻₄ precursor, forming the Al₁₃ polymer further.

$$Al^{3+} + 4OH^{-} \rightarrow Al(OH)^{-}_{4} \tag{7}$$

However, the amount of Al^{3+} , OH^- and $Al(OH)_4^-$ near the metal surface was much higher than those in the bulk solution, which resulted in the concentration polarization. Although the out-circulating pump could alleviate the concentration polarization, the alleviation degree was limited. The magnetic field conducted on the two sides of the electrobath was beneficial to alleviate the concentration polarization by increasing the mass transfer rate of these ions to the solution body.

The following relation was used to calculate the desired B values.

$$B = \frac{OH^{-}}{Al_{T}} = \frac{3Al_{d}}{Al_{d} + Al_{0}}$$
(8)

 Al_0 and Al_d represented the quantities (mol) of Al^{3+} from the added $AlCl_3$ solution and the precipitated from Al sheets. In solution, the Al_T of PACI was determined by titrimetric methods using nitric acid to depolymerize the polymerized Al species. The content of the Al_d was calculated according to the known Al_0 : $Al_d = Al_T + Al_0$. And then based on the current intensity through the electrolysis reactor and Faraday law, the electrolysis time was calculated.

2.3. Analytical methods

²⁷Al-NMR spectroscopy (UNITY INOVA 600, Varian

Fig. 2. ²⁷Al NMR spectra of PACl solutions on aging time. Lines i, ii and–r! represent aging for 0 d, 1 d and 7 d, respectively.

Inc., USA) was utilized to verify the existence of Al₁₃ Keggin structure. The instrumental settings were: 6mm Chemagnetics TM solid double-resonance probe; resonance frequency 156 MHz; rotation frequency 5 KHz; recycling delay time 1 s. Fig. 2 represents the ²⁷Al NMR spectra of PACl solutions along with aging time. For PACl solution, the intensities of 0 ppm resonance represented the quantities of the monomeric Al(Al_m); that of 63 ppm resonance represented the quantities of the Al₁₃ polymer. Al_c represented the colloidal, solid-phase or polymeric Al except the Al_m and Al_{13} polymer. The relation of the three species was $Al_{T} = Al_{m} + Al_{13} + Al_{c}$. Some added Na aluminate resulted in the resonance of 80 ppm. A pH meter (Orion 210A, USA) was used to measure the pH value of the solution. Al_{T} was determined by titrimetric methods [16].

3. Results and discussion

3.1. Effects of magnetic intensity (B_i) on current density (d_i)

The current density (d_i) changes as a function of magnetic field intensity ($B_i = 0$, 0.25, 0.4 and 0.6 T, respectively) is illustrated in Fig. 3 when the d_{adi} = 15 mm and $Al_0 = 0.22$ M. Fig. 3 shows that the d, was only 2.67 A/dm² when the V_i (electrobath's voltage) = 3.0 V and B_i = 0 T. In comparison with the electrolysis process coupled with external magnetic field with the intensity of 0.25 T, 0.4 T and 0.6 T, the V was only 1.8 V, 1.5 V and 1.3 V when the d_i reached to 2.67 A/dm². Especially, d_i was obviously increased when the $V_i > 1.4$ V. However, B_i had slight inference on d_i when $V_i < 0.8$ V. This was also confirmed by some other researchers [17]. According to Eqs. (1) and (4), maintaining the eletrobath's voltage under 2.0 V is beneficial for precipitatation of Al³⁺ and OH⁻ ions from electrodes. Max d_i reached 3.34 A/dm² when $B_i = 0.4$ T and V_i –2.0 V.

3.2. Effects of distance between the two adjacent cathodes (d_{adj}) on Al_{13} formation

All the experiments were carried out at d_i = 3.34 A/dm², Al_T = 1.0 M, B_i = 0.4 T, V_i = 2.0 V, B = 2.2 and circulating rate of 20.0 L/h. Fig. 4 indicates that Al₁₃ polymer content

Fig. 3. Magnetic field intensity vs. current density of electrodes.

Fig. 4. The influence of d_{adj} on the performance of Al₁₃ polymer (aging time: 24 h).

of PACl was influenced heavy by d_{adj} . Al₁₃ polymer accounted for 79.8% of Al_{T} in the electrolyte was achieved when $d_{adi} = 20$ mm at the end of electrolysis. However, the prepared PACl solution obtained only 76.6% and 72.9% of Al₁₃ polymer when d_{adj} was 30 and 40 mm. Comparing Al₁₃ polymer content of PACl prepared at $d_{adi} = 10$ and 40 mm, an increase of 6.8% of Al₁₃ appeared when d_{adi} decreased from 40 mm to 10 mm. On the one hand, more electrodes were applied in the reactor when d_{adi} decreased, the total area of the electrodes would increase in the same reactor, and then more Al(OH), was created at more interface of metal-solution. On the other hand, the magnetic field accelerated the Al³⁺ and OH⁻ precipitated from electrodes to the bulk solution to react with the Al(OH) $_{4}^{-}$ to form Al₁₃ polymer, therefore, the accumulation behavior of Al³⁺ and OH⁻ on the interface of metalsolution was alleviated. d_{adj} was controlled to 20 mm in the following experiments.

3.3. Effects of current density (d_i) on Al_{13} formation

In electrolysis process, the current density (d_i) determined the speed of adding OH into the bulk solution. Higher current density generated more OH⁻ than that could be consumed by the formation of Al₁₃ polymer, the excess Al(OH)₄⁻ re-equilibrated with the bulk solution to result in colloidal or precipitated Al(OH)₃ [5]. Obviously, controlling an ideal d_i was beneficial to keep the reaction of Al³⁺ and OH⁻ in the stage of Al₁₃ polymer. For PACl (B = 2.2) of the same $Al_{T'}$ Fig. 5 indicates that the amount of Al_{13} polymer increased as a function of di, and then passed through a peak value before it decreased at the higher di. For different Al_T, the optimum di for high content of Al_{13} polymer was different. PACl of $Al_T = 0.4$ M, the optimum di was 2.4 A/dm² and the content of Al₁₃ accounted for 77.5% of the Al_T. The maximum Al₁₃ polymer yield (79.6% of Al_{T}) was obtained when $di = 3.3 \text{ A/dm}^2$ and $Al_{T} = 0.8$ M at the end of electrolysis process. Fig. 5 also indicates that the highest Al_{13} polymer content for PACl of different Al_T was not coincident. In order to get more amount of Al_{13} polymer, the optimum Al_{T} was from 0.8 M to 1.2 M.

3.4. Effects of circulating rate and B_{i} on Al_{13} formation

Fig. 6 represents the force analysis of Al³⁺ and OH⁻ generated from the electrodes. Al³⁺ and OH⁻ took electric force of $F_1 = qE$ and magnetic force of $F_2 = qvB$ (the resultant is F_3) to escape from the interface of metal-solution to bulk solution, the accumulation behavior of charged ions surrounding electrodes was controlled strictly. Also, the charged particles in electrolyte were accelerated under the above mentioned resultants. High circulating rate caused high mass transfer rate of Al³⁺, OH⁻ and Al(OH)⁻₄ to the bulk solution to form more Al₁₃ polymer.

Fig. 7 shows that the content of Al₁₃ polymer for PACl was sensitive to the out-circulating rate and magnetic field intensity (B_i) when OH⁻ was injected into the solution containing Al³⁺ by magnetic electrochemical process. During the electrolysis process, the speed of OH- precipitating from the cathode represented the speed of the base injecting into bulk solution when OH-was dispersed immediately. A pump with max lift of 35.8 L/h was used to circulate the electrolyte to increase the interaction chance between Al(OH)₄ and aluminum oligomer to form Al_{13} polymer. Al_{13} polymer content of PACl ($Al_T = 0.8$ M, B = 2.2) prepared at different circulating rates (from 1.0 to 35.8 L/h) and B₁ (0, 0.25, 0.4 and 0.6 T, respectively) is shown in Fig. 7. When the circulating rate was 1.0 L/h, Alc was the optimum aluminum species, Al₁₃ polymer accounted for only 20.5% and 24.2% of the Al_{T} appeared when B_i was 0 and 0.8 T, respectively. For PACl with Al_T = 0.8 M and B = 2.2, the content of Al₁₃ polymer improved rapidly with increasing the circulating rate from 1.0 to 23.7 L/h and B_i from 0 to 0.8 T. Al₁₃ polymer content of

Fig. 5. Al species distribution and transformation in PACl as a function of *di* at the end of electrolysis.

Fig. 6. The principle scheme of force for Al^{3+} and OH^{-} in the electromagnetic field.

Fig. 7. Circulating rate and B_i effect on the content of Al₁₃ species (aging time: 3 d).

PACl showed no obvious changes when the circulating rate was higher than 23.7 L/h and $B_i > 0.4$ T. When the out-circulating rate was 30.0 L/h, the content of Al₁₃ polymer of PACl increased by only 1.8% when B_i changed from 0.4 to 0.8 T. For $B_i = 0.8$ T, an increase of 1.9% for Al₁₃ was obtained when the out-circulating rate varied from 35.0 L/h to 23.7. The possible reason was that the out-circulating pump with rotational speed of 2900 r/min made some low-polymeric Al disperse to monomeric Al, resulting in a decrease of Al₁₃ polymer content. Therefore, 23.7 L/h and 0.4 T were considered as the optimum circulating flux and B_i for preparing PACl of Al₁₇ = 0.8 M and B = 2.2.

3.5. Comparison of the influence of different methods on $Al_{_{13}}$ formation

In order to compare the influence of magnetic field on catholic electrochemical process for preparing PACl, catholic electrolysis without the magnetic field was also conducted. For 800 ml PACl of $Al_T = 0.8$ M and B = 2.2, the preparing parameters were as follows: $Al_0 = 0.22$ M, $di = 3.34 \text{ A/dm}^2$, $d_{adi} = 20 \text{ mm}$, $B_i = 0.4 \text{ T}$ ($B_i = 0 \text{ T}$ when the catholic electrolysis process was conducted), $V_i = 2.0$ V, electrolyzing time was 11.0 h, circulating rate was 23.7 L/h. At the end of both electrolysis processes, the PACl solutions were aqueous suspensions because some dissolved aluminum ions from the anode sheet dif not react with OH⁻ completely. It would continue to hydrolyze and the solutions would become clear over a short span of 1-3 d. Al_{T} and the changes of $Al_{m'}$, Al_{13} and Al_{c} species are shown in Fig. 8 when the aging time lasted for 15 d. Fig. 8 shows that Al₁₃ species accounted for 79.8 % of the Al_T at the end of magnetic electrolysis process. The content of Al₁₃ polymer increased to 82.3%, 82.8% and 84.6% when

Fig. 8. Distribution and transformation of Al species with aging time for PACl prepared by different approaches. \triangle , \bigtriangledown , \bigcirc , \bigcirc represent the content of Al_m' Al₁₃ and Al_c of the PACl prepared by the catholic electrolysis process; \blacktriangle , \blacktriangledown , \bigcirc represent the content of Al_m' Al₁₃ and Al_c of the PACl prepared by the magnetic electrolysis process.

the PACl was aged for 1, 4 and 15 d, respectively. In comparison with the catholic electrolysis process, an increase of 6.9%, 6.7% and 7.1% was obtained, respectively. The content of Al_{13} polymer was improved by 7.8% than that of the PACl prepared by catholic electrolysis, as reported by Qu [14]. However, it was 10.2% 13.6% lower than the content of Al_{13} separated by the ultrafiltrate method [4] and chemical precipitation [18].

4. Conclusions

The electrochemical process coupled with magnetic field was employed to prepare PACl with high content of Al₁₃ polymer. The influencing parameters were studied through lots of experiments to determine their optimum conditions on Al₁₃ polymer formation. It was observed that Al₁₃ polymer formation was dependent on $Al_{0'}$ di, $d_{adi'}$, B_i and V_i . For obtaining as much as Al_{13} polymer by magnetic electrochemical process, the optimum $Al_{0'}$ di, $d_{adi'}$, B_i and V_i were 0.22 M, 3.34 A/dm², 20 mm, 0.4 T and 2.0 V respectively when the circulating rate was 23.7 L/h. 0.8 M Al_T PACl prepared in these conditions, the content of Al₁₃ polymer reached 79.8 %, 82.3%, 82.8% and 84.6% for aging 0, 1, 4 and 15 d, meanwhile, it was only 72.6%, 75.4%, 76.1% and 77.5% at the same aging time for PACl prepared by the catholic electrolysis process.

Acknowledgements

The work described in this paper was fully supported by the National Natural Science Foundation of China (grant no. 20476023). We would also like to thank our coworkers vice-professor Lin-xia Gao and Mei Wang of Chemical Department of Hubei University of Technology for their valuable help.

References

- U.B. Ogutveren, N. Goenen and S. Koparal, Removal of dye stuffs from waste water: electrocoagulation of Acilan Blau using soluble anode, J. Environ. Sci. Health, Part A, 27 (1992) 1237– 1247.
- [2] J.W. Akitt and A. Farthing, ²⁷Al nuclear magnetic resonance studies of heteropolyanions containing aluminum as heteroatom, J. Chem. Soc. Dalton, 8 (1981) 1615–1616.
- [3] H.J. Liu, J.H. Qu and C.Z. Hu, Study on batch scale production poly-aluminum chloride by electrochemical process, High Technol. Commun., 216 (2002) 139–147.
- [4] L. Huang, D.S. Wang, H.X. Tang and S.F. Wang, Separation and purification of nano-Al₁₃ by UF method. Colloids Surfaces A: Physicochem. Eng. Aspects, 275 (2006) 200–208.
- [5] P.M. Bertsch, W.J. Layton and R.I. Barnhisel, Speciation of hydroxyl-aluminum solutions by wet chemical and ²⁷Al NMR methods, Soil. Sci. Soc. Am. J., 50 (1987) 1449–1454.
- [6] V. Pophristic, V.S.K. Balagurusamy and M.L. Klein, Structure and dynamics of the aluminu chlorohydrate polymer Al₁₃O₄ (OH) ₂₄(H₂O) ₁₂Cl₇, Phys. Chem. Chem. Phys., 6 (2004) 919–923.

- [7] H.X. Tang, Features and mechanism for coagulation flocculation processes of poly-aluminum chloride, Environ. Sci. Technol., 25 (1992) 914–921.
- [8] J.J. Bepuech, In: NMR of Newly Accessible Nuclear, P. Laszlo, ed., Academic Press, New York, USA, 1983, p. 153.
- [9] P.M. Bertsch and D.R. Parker, Formation of the Al₁₃: Tridecameric polycation under diverse synthesis conditions, Environ. Sci. Technol., 22 (1989) 895–903.
- [10] Y. Xu, D. Wang, H. Liu and H. Tang, Optimization on the separation and purification of Al₁₃, Colloids Surf., 231 (2003) 1–9.
- [11] D.S. Wang, W. Shi, H.X. Tang and J. Gregory, Speciation stability of inorganic polymer flocculant–PACl, Colloids Surf., 243 (2004) 1–10.
- [12] J.Y. Bottero, M. Axelos, D. Tchoubar, J.M. Cases, J.J. Fripiat and F. Fiessinger, Mechanism of formation of aluminum trihydroxide from Keggin Al₁₃ polymers, J. Colloid Interface Sci., 117 (1987) 47–57.

- [13] G.J. Lu, J.H. Qu and H.X. Tang, Study on the electrochemical production of highly effective poly-aluminum chloride, China Environ. Sci., 18 (1998) 140–143.
- [14] J.H Qu and H.J. Liu, Optimum conditions for Al₁₃ polymer formation in PACl preparation by electrolysis process. Chemosphere, 55 (2004) 51–56.
- [15] Y.T. Luo, K.W. Pi, C.N. Zhong and A. Cheng, Synthesis of polyaluminum chloride by electrolysis process with rearranges able electrodes, Environ. Protect. Chem. Industry, 24 (2004) 145–147.
- [16] R.S. Li, Basic Aluminum Chloride, Architecture Publisher's House, Beijing, China, 1981.
- [17] Y.C. Zhu, S.P. Wu and J.M. Lin, Electrode's behaviors of treating industry wastewater by magnetic-electrolysis process, Environ. Sci., 17 (1996) 6–9.
- [18] B.Y. Shi, G.H. Li, D.S. Wang and H.X. Tang, Separation of Al₁₃ from polyaluminum chloride by sulfate precipitation and nitrate metathesis, Separ. Purif. Technol., 54 (2007) 88–95.