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A B S T R A C T

Principal component analysis (PCA) and multivariate regressions were used to find a quantitative
structure-activity relationship (QSAR) model equation that combines interactions between mem-
brane characteristics and solute properties for predicting rejection. An internal experimental data-
base that accounts rejections of contaminants by two nanofiltration membranes (NF-90, NF-200)
was used to develop the QSAR model equation. Membrane characteristics related to hydrophobi-
city (contact angle), salt rejection, and surface charge (zeta potential [ZP]); compound properties
describing hydrophobicity (log Kow, log D), polarity (dipole moment), and size (molar volume,
molecular length, molecular depth, equivalent width, molecular weight); and operating condi-
tions (flux, pressure, cross flow velocity) were identified and evaluated as candidate variables for
rejection prediction. Subsequently, using the QSAR model, rejection predictions were made for an
external experimental database. Measured rejections were compared against predicted rejections
to determine the best model; an acceptable R2 (0.93) correlation coefficient was found for the best
model with a standard deviation of error of 7% for predicted rejections. In conclusion, a general
QSAR model equation was able to model and predict rejections of emerging contaminants during
nanofiltration.

1. Introduction

Emerging contaminants in water, also referred as
micropollutants, are a group of organic compounds
that are present in water environments. Emerging
organic contaminants derive from pharmaceuticals,
endocrine disruptor compounds, personal care pro-
ducts and solvents and products used in manufacture
industries. The presence of emerging contaminants in
water environments has been reported by various stu-
dies [1–3]. However, the concern of their presence

grows when emerging contaminants are also detected
in supplies of drinking water [4]. Actual concentrations
of micropollutants in drinking water are not a threat for
human adults but certainly they may affect the devel-
opment of human embryos [5]. Aschengrau et al. [6]
demonstrated that perchloroethene contamination of
public drinking water in Massachusetts influenced the
occurrence of congenital anomalies among children
whose mothers were exposed around the time of con-
ception. Nanofiltration (NF) and reverse osmosis
(RO) are proven technologies that are able to remove
most of the emerging contaminants but their efficiency
is highly dependent on variables related to membrane�Corresponding author
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characteristics, physicochemical compound properties,
water chemistry and operating conditions [7–9]. The
substantial number of variables makes the quantifica-
tion of removals of emerging contaminants by NF/
RO membranes a difficult task. In that sense, this pub-
lication uses a quantitative structure-activity relation-
ship (QSAR) approach to facilitate modelling of
removals of emerging contaminants for an internal
data set and subsequently predict removals for exter-
nal data, only NF membranes are considered in this
approach. Sawyer et al. [10] defines QSAR as a method
that relates an activity of a set of compounds quantita-
tively to chemicals descriptors (structure or property)
of those compounds. The principle of QSAR is to relate
an activity to a function of structure and conditions of a
process as described by hydrophobicity, steric proper-
ties and other attributes. Previous studies in drug
discovery, medicinal chemistry and RO membranes
have applied QSAR for the development of models to
find relationships between membranes and organic
compounds [11–13].

2. Experimental and methodology

Emerging organic contaminants were selected on
the basis of their occurrence in water environments
impacted by wastewater treatment plant effluents and

their physicochemical properties arranged in an ade-
quate range for classification. Two thin film aromatic
polyamide composite NF membranes were selected for
this study (NF-200 and NF-90, Dow-Filmtec). The list of
emerging contaminants with their respective physico-
chemical properties is presented in Table 1. The phar-
maceutical compounds (caffeine, sulfamethoxazole
(SFM), acetaminophen, phenacetin, phenazone, carba-
mazepine, naproxen, ibuprofen, metronidazole) and
endocrine disrupting compounds (17b-estradiol,
estrone (E1), bisphenol A, nonylphenol, atrazine) were
purchased from Sigma-Aldrich (Schnelldorf, Germany).
Potassium chloride, sodium hydroxide, hydrochloric
acid and magnesium sulphate anhydrous were
purchased from J.T. Baker (Deventer, Netherlands).
17b-Estradiol, E1, bisphenol A and nonylphenol were
analysed by gas chromatography/mass spectrometry
GC/MS after solid phase extraction (SPE) and silyla-
tion. Acetaminophen, phenacetine, phenazone, carba-
mazepine, naproxen, ibuprofen were analysed by
liquid chromatography LC/MS–MS after SPE; and caf-
feine, metronidazole and SFM were also analysed by
LC/MS–MS after SPE; however, the SPE material,
separation column and gradient differed from the rest
of pharmaceuticals. Concentrations of atrazine were
determined using microplate enzyme-linked immu-
noabsorbent assay (ELISA) kits (Abraxis LLC,

Table 1
List of emerging contaminants with physicochemical properties

Name Molecular
weight
(g/mol)

Acid
pKa
20� Ca

log
Kowd

Log
Da

(pH 7)

Dipole
moment
(debye)b

Molar
volumec
(cm3/mol)

Molec.
length
(nm)c

Molec.
width
(nm)c

Molec.
depth
(nm)c

Equiv.
width
(nm)c

Classificatione

Acetaminophen 151 10.2 0.46 0.23 4.55 120.90 1.14 0.68 0.42 0.53 HL-neutral
Phenacetine 179 N/A 1.58 1.68 4.05 163.00 1.35 0.69 0.42 0.54 HL-neutral
Caffeine 194 N/A -0.07 -0.45 3.71 133.30 0.98 0.87 0.56 0.70 HL-neutral
Metronidazole 171 N/A -0.02 -0.27 6.30 117.80 0.93 0.90 0.48 0.66 HL-neutral
Phenazone 188 N/A 0.38 0.54 4.44 162.70 1.17 0.78 0.56 0.66 HL-neutral
Sulfamethoxazole 253 5.7 0.89 -0.45 7.34 173.10 1.33 0.71 0.58 0.64 HL-ionic
Naproxen 230 4.3 3.18 0.34 2.55 192.20 1.37 0.78 0.75 0.76 HP-ionic
Ibuprofen 206 4.3 3.97 0.77 4.95 200.30 1.39 0.73 0.55 0.64 HP-ionic
Carbamazepine 236 N/A 2.45 2.58 3.66 186.50 1.20 0.92 0.58 0.73 HP-neutral
Atrazine 216 N/A 2.61 2.52 3.43 160.07 1.26 1.00 0.55 0.74 HP-neutral
17 b-estradiol 272 10.3 4.01 3.94 1.56 232.60 1.39 0.85 0.65 0.74 HP-neutral
Estrone 270 10.3 3.13 3.46 3.45 232.10 1.39 0.85 0.67 0.76 HP-neutral
Nonylphenol 220 10.3 5.71 5.88 1.02 236.20 1.79 0.75 0.59 0.66 HP-neutral
Bisphenol A 228 10.3 3.32 3.86 2.13 199.50 1.25 0.83 0.75 0.79 HP-neutral

a ADME/Tox Web Software.
b Chem3D Ultra 7.0.
c Molecular modeling Pro.
d Experimental database: SRC PhysProp Database.
e HL¼Hydrophilic, HP¼Hydrophobic, log Kow� 2 were hydrophobic; log Kow < 2 were hydrophilic; ionic if ionic speciation
occurred at pH 7, otherwise neutral.
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Warminster, PA). The detection limit was 10 ng/L per
compound (except for atrazine, 0.04 mg/L). The uncer-
tainty of estimates was of +15% (also for atrazine) as
reported by TZW (Karlsruhe, Germany), the laboratory
that performed the analyses. More details of analysis
protocols were previously reported [14–16].

The experimental setup consisted of two filtration
SEPA CF II cells and cell holders in parallel, two
hydraulic pumps, a 60L stainless steel tank, a positive
displacement pump, a frequency driver, a chiller/hea-
ter, control needle valves, pressure gauges, flow
meters, a proportional pressure relief valve, stainless
steel tubings, a digital balance and, a computer for flow
rate data acquisition. A scheme of the experimental
setup is presented in Fig. 1. The experiments were con-
ducted in a recycle mode in which permeate and con-
centrate were recirculated into the feed tank for the
first 72 hours (a pre-equilibration period); then, perme-
ate was collected within the next 24 h. The feed solution
of all the experiments contained a cocktail of 14 com-
pounds (concentration ranging from 6.5 to 65 mg/L).
The operating pressures were in the range of 276 to
482 kPa and, the fluxes between 4.32 and 30.22 L/m2

h. All the experiments were carried out at a controlled
temperature of 20 �C, pH 7 and ionic strength of 10 mM
as KCl.

The pH of the solutions was measured using a cali-
brated Metrohm 691 pH-meter (Metrohm AG, Herisau,
Switzerland); the electrical conductivity and tempera-
ture were measured with a WTW Cond 330i (WTW
GmbH, Weilheim, Germany) portable conductivity

meter. Membranes were characterized to determine
magnesium sulphate salt rejection (SR) at standard
conditions specified by manufacturers (2,000 mg/L,
25 �C, pH 8, 1034 kPa and recovery of 15%). To deter-
mine the hydrophobicity of membranes, contact angles
of clean and fouled membrane surfaces were measured
with CAM200 optical contact angle meter (KSV Instru-
ments, Finland) at Delft University of Technology; to
measure contact angle, the sessile drop method was
used. Surface charge, in terms of zeta potential (ZP),
of clean and fouled membranes was quantified using
ELS-8000 ZP analyzer (Otzuka Electronics, Japan). The
ZP analyses were performed at pH 7 and ionic strength
of 10 mM KCl.

3. Results and discussion

To develop the QSAR model, 106 rejection cases
(defined as internal experimental data set) of emerging
contaminants by NF-90 and NF-200 considering 21
variables were analyzed with principal component
analysis (PCA) and multivariate regressions. The vari-
ables considered as compound descriptors were mole-
cular weight (MW), solubility, log Kow, log D, dipole
moment, molar volume, molecular length, molecular
width, molecular depth and equivalent width; vari-
ables describing membrane characteristics were
molecular weight cut-off (MWCO), pure water perme-
ability (PWP), SR, charge of the membrane as ZP,
and hydrophobicity as contact angle (CA); variables
describing operating conditions were operating
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flow control valve

pressure relief valve

pump + frequency converter (FC)

pressure gauge

 C   concentrate,    P   permeate,   F   feed

chiller/heater
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Membrane cells

C P F

FM
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bypass
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Two cells in parallel 

Fig. 1. Scheme of experimental setup.
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pressure (P), cross flow velocity (v), back diffusion
mass transfer coefficient (k), flux (J), ratio of pure water
permeation flux J0 and back diffusion mass transfer
coefficient (J0/k) and recovery. The range of values for
membrane characteristics, operating conditions and
rejections is presented in Table 2.

Three components were extracted (Table 3) after
PCA with SPSS Statistics 16.0. It means that there are
3 components that define our initial database of 21 vari-
ables with 11 variables describing three relations
namely membrane/operating-conditions (comp. 1),
hydrophobicity (comp. 2) and size (comp. 3). The final
3 components accounted for 89.3% explanation of total
variance as can be seen in Table 4. The size of the com-
ponent loadings (correlation coefficients between the
variables and the components they represent) higher
than 0.33 represent each component in Table 3.

Variables with large loadings indicate that they are
representative of the component, while small loadings
(less than 0.33, in blank) suggest that they are not. The
reason for using the +0.33 criterion is that if the value
is squared, the squared value represents the amount of
the variable’s total variance accounted for by the
component. Therefore, a component loading of 0.33
denotes that approximately 10% of the variable’s total
variance is accounted for by the component [17].

After PCA, multiple linear regression (MLR) and
multiple non-linear regression (NLR) were used to
develop the QSAR model. Variables (log Kow, log D,
length, depth, eqwidth, PWP, SR, ZP, v, k, J) corre-
sponding to the three components were used to model
rejection using MLR and multiple NLR. The best linear
equation for the MLR model included variables SR,
eqwidth (equivalent width), log D, length and depth;
the linear QSAR model (linear equation) presented an
R2 of 0.75. However a multiple NLR equation was able
to model rejection with an R2 of 0.84, the equation for
the non-linear QSAR model is

rejection ¼ 100

1þ e�a
ð1Þ

Where a is equal to

a ¼ 6:283 lengthþ 19:377 eqwidthþ 108:337 SR

� 0:443 log D� 8:112 depth� 119:146

Fig. 2 shows modelling rejection results of the non-
linear QSAR model of Eq. (1) with a confidence interval
of 95%, only a few rejection modelling cases (four) for
phenacetine (PHN), SFM and E1 were outside of the
95% confidence interval, and all corresponded to the

Table 2
Data range of membrane characteristics, operating conditions and rejections

Variable Unit Min. value Max. value

Molecular weight cut-off (MWCO) Da 200 300
Pure water permeability (PWP) L/m2/day/kPa 0.86 2.23
Salt rejection (SR)a – 0.96 0.98
Zeta potential (ZP) mV �48.04 �10.78
Contact angle (CA) � 39.30 58.00
Pressure (P) kPa 275.79 482.63
Cross flow velocity (v) cm/s 0.50 4.46
Back diffusion mass transfer coefficient (k) cm/s 2.70E-04 5.99E-04
Flux (J) L/m2 h 4.32 30.22
Hydrodynamic ratio (Jo/k) – 1 2
Recovery % 3 8
Rejection % 17.70 99.00

a 2,000 mg/L MgSO4, 25 �C, recovery 15%, pressure 1034 kPa, pH 8.

Table 3
Rotated component loadings

Component

1 2 3

J .979
PWP .967
SR .949
ZP �.936
k .936
v .880
Length .951
log Kow .930
log D .867
eqwidth .972
depth .910

152 V. Yangali-Quintanilla et al. / Desalination and Water Treatment 13 (2010) 149–155



NF-200 membrane, the explanation for these cases
could be related to the higher MWCO of NF-200
(300 Da) that allowed more/less passage of the com-
pounds or analytical quantification errors (+15%) of
concentrations in permeate.

The coefficient a of Eq. (1) that determines its
asymptotic behaviour with rejections up to 100% can
be mechanistically interpreted. The mechanism of
steric hindrance due to size exclusion has been recog-
nized as a main cause of rejection in many studies
[18–21]. When a increases by the effect of size, which
is explained by the positive coefficients of length and
equivalent width, rejection will also increase accord-
ingly. In contrast, a shows a negative coefficient for log
D, thus it will decrease rejection, which clearly states
that the effect of hydrophobicity lessens rejection due
to adsorption and subsequent partitioning mechan-
isms. It is important to mention that log D is assuming
the role of hydrophobicity for neutral and ionic com-
pounds; compounds with high log D values will
adsorb to the membrane and partition after saturation.
Ionic compounds will present very low or negative log
D values indicating not adsorption onto the membrane.
Hydrophobicity influences rejection after adsorptive
interactions with the membrane; this fact has been
recognized in some studies [18,22,23]. The role of depth
in a will only compensate size exclusion contributions
of length and equivalent width in a final a value and
subsequent rejection. The equation for a also shows
that SR is a parameter incorporating steric/size hin-
drance and electrostatic repulsion effects related to
charge of the membrane and operating conditions. The
R2 (goodness of fit of internal data set) is the most
widely used measure of the ability of a QSAR model
to reproduce the internal data set, but does not explain
its robustness and prediction of an external data set.
One technique to evaluate prediction is the leave-one-
out cross-validation technique, in which one case at a
time is iteratively held-out from the training set and the
rest is used for model development and the excluded
case is predicted by the developed model [24]. Accord-
ing to Gramatica [24], the predictive power of a model

may be estimated by the goodness of prediction para-
meter Q2 leave-one-out (1-PRESS/TSS, where PRESS
is the predictive error sum of squares and TSS is the
total sum of squares). In general, a Q2 > 0.5 is regarded
as good and Q2 > 0.9 as excellent [25]. For the devel-
oped QSAR models, the linear model presented a Q2

leave-one-out of 0.72, and the non-linear model pre-
sented a Q2 leave-one-out of 0.8. Therefore, after inter-
nal cross-validation it was demonstrated that the linear
and non-linear QSAR models were suitable to model
external rejections. External validation of the linear and
non-linear QSAR model was implemented with inde-
pendent prediction of rejections for an external data-
base of experiments performed with different
compounds and by three NF aromatic polyamide
membranes. One NF membrane was of the same man-
ufacturer (NF-90, different batch) and the other two NF
membranes were of different manufacturers (TS-80,
Trisep, and Desal HL, GE Osmonics). Experimental

Table 4
Extracted components and total variance explaineda

Comp. Initial eigenvalues Rotation sums of squared loadings

Total % Var. Cum. % Total % Var. Cum. %

1 5.33 48.47 48.47 5.32 48.39 48.39
2 3.08 28.04 76.51 2.61 23.72 72.11
3 1.41 12.82 89.33 1.89 17.22 89.33

a Extraction method: principal component analysis.

length, eqwidth, 
depth, log D, SR

R² = 0.84

95%
confidence 

interval

E3

PHN

SFM

PHN

Fig. 2. Non-linear quantitative structure-activity relationship
(QSAR) model of experimental internal database.
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methodologies and details about the external data has
been reported by Kim et al. [26], Yangali-Quintanilla
et al. [27] and Verliefde et al. [28,29]. The external data
set was generated under comparable experimental
conditions.

Fig. 3 illustrates results of measured rejections vs.
predicted rejections for the linear QSAR model. Fig. 4
illustrates results of measured rejections vs. predicted
rejections for the non-linear QSAR model.

In order to determine which of the model was the
best model for prediction; an error parameter was
determined. The standard deviation of error (STDE),
measured as a percentage, provides an unbiased mea-
sure of model performance compared to the regression
coefficient (R2) that only measures the regression
response between predicted and measured rejections.
The R2 for predictions of the linear QSAR model was
0.88 with an STDE of 9% (Fig. 3). The best model was
the non-linear QSAR model, with an R2 of 0.93 and
an STDE of 7% (Fig. 4). It is important to mention that
organic compounds with rejections of less than 40%
have been identified (labelled) in the figures. Chloro-
form (CF), perchloroethene (PCE), carbon tetrachloride
(CT), 2-methoxyethanol (MET), ethanol (ETH), 2-
ethoxyethanol (EET), 2-(1H)-Quinoline (QNL), glycerol
(GLY) and N-Nitrosodimethylamine (NDMA) were
low molecular weight compounds used in external
experiments. It can be observed that the model has
been able to extrapolate rejections of small compounds
not present during the developmental phase of the

model. An improved model can be obtained when
those compounds are included in the initial data set
that defines the model. Although the model has been
demonstrated to be valid, the limitation of the model
is that it will be valid under comparable experimental
conditions and only for aromatic polyamide NF mem-
branes. Nonetheless, its applicability and approach can
be of value for the construction of a robust model for
pilot and full-scale NF applications.

4. Conclusions

• A QSAR model with physicochemical descriptors,
membrane characteristics and operating conditions
can be able to model and predict rejection of emer-
ging organic contaminants.

• A non-linear QSAR model showed better perfor-
mance than a linear QSAR model.

• The accuracy of the models can be further improved
with additional experimental data.

• The limitation of the model is that experimental con-
ditions such as pH, pressure, and more importantly
the type of membrane used must be comparable.
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