

Desalination and Water Treatment www.deswater.com

1944-3994 / 1944-3986 © 2009 Desalination Publications. All rights reserved. doi: 10.5004/dwt.2009.974

Effect of competitive interference on biosorption of cadmium by immobilized Lentinus edodes residue

Pei Ma^{a,b}, Dan Zhang^{a*}, Haijiang He^{a,b}

^aInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China Tel. +86 15 910684702; Fax +86 28 85222258; email: daniezhang@imde.ac.cn ^bChinese Academy of Sciences, Beijing 100081, China

Received 8 September 2009; Accepted in revised form 7 December 2009

ABSTRACT

Use polyvinyl alcohol-Na-alginate (PVA-SA) to immobilize Lentinus edodes residue for Cd²⁺ removal. In a single-metal solution, the biosorption of Cd²⁺ reached equilibrium within 7 h which can be well described by a pseudo-second-order model, with equilibrium biosorption 0.2008 mg/g; 4-7 was the suitable pH value for Cd²⁺ biosorption by immobilized fungus, a much wider range than that required by mobilized fungus. Unlike the single-metal solution, the Cd²⁺ biosorption ratio in a two-metal solution increased linearly as the pH values increased. When the concentration of the interferential ion (Cu²⁺/Pb²⁺) increased, Cd²⁺ biosorption decreased significantly (p = 0.01). Isotherm analysis showed that Cd²⁺ biosorption increased as the initial concentration in a single-metal solution increased. When the initial Cd^{2+} concentration in the two-metal solution increased, the biosorption increased at first, but when the Cd²⁺ concentration was over 90 mg/g, a remarkable decrease occurred. Langmuir, Freundlich, Dubinin-Radushkevich and Langmuir-Freundlich isotherm models were fit to the experimental data. The Langmuir model fit the Cd²⁺ isotherm biosorption best, with correlation coefficients of 0.9981 in Cd²⁺ single-metal solution and 0.9291 in a Cd²⁺-Pb²⁺ solution. The D–R isotherm fit the Cd^{2+} isotherm biosorption in the Cd^{2+} – Cu^{2+} solution with a correlation coefficient of 0.9623.

Keywords: Immobilization; L. edodes; Two-metal solution; Interference; Cd2+; Biosorption isotherm

1. Introduction

Sewage usually contains a variety of metal ions, so interference between ions cannot be ignored. Biosorption mainly relies on cell-surface functional groups, so if both competitor ions and target ions can combine with the same adsorption site, the existence of competitor ions will reduce the biosorption efficiency of the target ions.

Due to the differences in affinity for the adsorption site, different competitive cations will have different effects cationic on the adsorption of target ions. Sar [1] found that effect of different ions on uranium and thorium adsorption by *pseudomonas* bacteria was as follows: Fe³⁺ > Th⁴⁺> Fe²⁺> Cu²⁺> Al³⁺ and the adsorption of uranium was reduced by 80% when Fe³⁺ was present. In addition, cations compete with anions in biological cell walls, which leads to a decline in adsorption. The extent of this decline depends on the bonding force between the metal cations

^{*} Corresponding author.

and the anions. The more intense the bonding force is, the lower the effect.

Microbial immobilization technology uses physical or chemical means to bind cells or enzymes located in a limited region, keeping them active and reusable. Initially, this technology was used in fermentation and then it was introduced to water treatment in the late 1970s. Now this technology is a research focus because it overcomes difficulties such as the small size of a free cell, the dissociation of biosorbents from water and secondary pollution. This technology has a high efficiency and stability and the biosorbent can be easily purified, and microbial immobilization has great prospects in the field of wastewater treatment.

Many studies have shown that various kinds of edible fungus can accumulate heavy metal ions effectively [3-5]. In this study, Lentinus edodes residue was used as an adsorbent. Polyvinyl alcohol-Na-alginate (PVA-SA) embedding technology was used to immobilize L. edodes residue for Cd²⁺ removal from both a single-metal and a two-metal solution and to investigate the effect of crossinterference metal ions on Cd²⁺ adsorption. The kinetics of the single-metal solution, the effect of solution pH on the two-metal solution system and the effect of crossinterference metal ions on Cd2+ biosorption by PVA-SA L. edodes beads were investigated. Finally, Langmuir, Freundlich, Langmuir-Freundlich and Dubinin-Radushkevich (D-R) isothermal adsorption models were used to fit the Cd²⁺ isothermal adsorption process in single-metal and two-metal solutions.

2 Materials and methods

2.1. Biomass

L. edodes residue was obtained by cutting off the edible part of *L. edodes* and then grinding and sieving to select particles between 35 and 100 mesh sieves. *L. edodes* residue powder was dried in an oven at 50±1°C for 2 h and then stored in desiccators.

2.2. PVA-SA L. edodes beads

Five grams of polyvinyl(PVA) and 1 g of alcohol-Naalginate(SA) were added to 100 mL of distilled water, mixed and dissolved with heating. The solution was cooled to 45–50°C and 3 g of *L. edodes* powder was added. A saturated boric acid solution containing 2% CaCl₂ was added to the mixture with 7–9 syringe needles and continuous stirring. After immobilization for 24 h without disturbance, the PVA-SA *L. edodes* beads were obtained. The PVA-SA *L. edodes* beads were washed in distilled water and dried 2 h in an oven at a temperature of 50±2°C.

2.3. Metal ion solution

The lead stock solution was made by dissolving

1.5990 g of lead nitrate in 100 mL of nitric acid and adding distilled water to a final volume of 1000 mL. The cadmium stock solution was prepared by dissolving 0.100 g of cadmium in 1:1(V/V) HCl followed by 1 mL of concentrated HNO₃ and then diluting with distilled water to 100 mL. Copper was dissolved in 5 mL of 1:1 HNO₃ and diluted with distilled water to 100 mL to obtain the copper stock solution.

The metal solution was made by diluting a stock solution and using HCl and NaOH to regulate the pH value.

2.4. Biosorption experiments

Batch biosorption experiments were carried out in 250 mL shake flasks containing 25 mL of stock solution $(CdCl_2 \text{ and/or } Cu(NO_3)_2 \text{ and/or } Pb(NO_3)_2)$. Analytical grade reagents were used in all cases. Flasks were agitated in an HY-5 orbital shaker at 25°C.

To investigate Cd^{2+} biosorption kinetics by PVA-SA *L. edodes* beads, samples of 1.5 mL were taken at different times from the mixed adsorption flasks. The effect of the initial solution pH was tested by adjusting the pH of either the $CdCl_2$ and $Cu(NO_3)_2$ solution or the $CdCl_2$ and $Pb(NO_3)_2$ solution to between 1.0 and 7.0. The initial metal concentrations were measured after pH adjustment and before the addition of the PVA-SA *L. edodes* beads. To investigate the effect of interferential metal ions on Cd^{2+} biosorption, the Cd^{2+} concentration was fixed at 10 mg/L, the pH was fixed at 5–6 and the varied interferential metal ion (Cu^{2+}/Pb^{2+}) concentration varied from 0 to 30 mg/L.

Adsorption thermodynamics tests were conducted by varying the Cd²⁺ concentration from 0 to 120 mg/L and fixing the solution pH value at 5–6. The interferential metal ion concentration was 0 mg/L or 10 mg/L. The contents of the flask were shook and allowed to adsorb for 7 h at 25°C and the filtrate was analyzed for Cd²⁺, Pb²⁺ and Cu²⁺ by flame atomic adsorption spectroscopy (AAS).

3. Results and discussion

The adsorption may be described by [6,7]:

$$q_e = (C_o - C_e) V / M \tag{1}$$

and the biosorption efficiency of metal ions may be calculated by

$$X = (C_0 - C_e) / C_0 \times 100$$
⁽²⁾

where q_e is the amount of the heavy metal adsorbed onto the unit amount of the biomass (mg/g); *X* is the biosorption ratio (%); C_0 and C_e are the concentrations of heavy metal in the initial and equilibrium solution (mg/g); *M* is the mass of PVA-SA beads and *V* is the volume of the aqueous phase. 3.1. Adsorption curve and adsorption kinetics of Cd^{2+} in a single-ion solution

3.1.1. Cd²⁺ adsorption curve

Contact time is an important parameter for successful biosorption. Fig. 1 shows that the Cd²⁺adsorption process can be divided into a fast phase and a slow phase. The adsorption rate increases from 0 to 53.51% within 1 h and increases gently after 1 h. Adsorption equilibrium was reached after 7 h with 0.2008 mg/g. The time required to reach equilibrium when adsorbing Cd²⁺ is much longer for when the mushroom is immobilized (7 h) than when it is mobile (1 h) [8].

3.1.2. Adsorption kinetics

Two widely used kinetic models for investigating the mechanism of adsorption are the pseudo-first-order and pseudo-second-order kinetic models [9–11]. Many studies show that the biosorption process of various bivalent heavy metal ions can be described by the pseudo-second-order dynamic equation [9,10,12]:

$$q_e = q_m b C_e / (1 + b C_e) \tag{3}$$

where q_e and q_t refer to the amount of metal ions adsorbed at equilibrium at any time(mg/g) and k_2 is the equilibrium rate constant of the pseudo second-order adsorption

Fig. 1. Effect of time on Cd^{2+} biosorption onto PVA-SA beads at a biomass concentration of 20 mg/L, pH of 5–6 and 25°C.

Fig. 2. Second-order modelling of Cd^{2+} biosorption onto PVA-SA beads at a biomass concentration of 20 mg/L, pH of 5–6 and 25°C.

(g/mg·min). Plots of t/q_t vs. t are shown in Fig. 2. The correlation coefficient (R^2) is 0.9946, which indicates that pseudo second-order adsorption model is suitable for describing the adsorption of Cd²⁺ onto PVA-SA bead.

3.2. Impact of pH

The pH is an important factor for metal ions adsorption. Fig. 3 shows the relation between pH values and the Cd²⁺ adsorption ratio in a solution of Cd²⁺, Cd²⁺–Cu²⁺ and Cd²⁺–Pb²⁺. When the pH value is small, the Cd²⁺ adsorption rate is lower in all three solutions. When the pH is low, H⁺ (or H₂O⁺) ions will compete with the metal ions at binding sites on the surface of the sorbent, thereby reducing the adsorption of the metal ions. When the pH value changes from 0 to 4, the Cd²⁺ adsorption in the singlemetal solution increases rapidly. When the pH is above 4, the Cd²⁺ adsorption curve becomes approximately flat. At a pH of 4–7, a range that encompasses the typical pH range of mobilized fungi (pH 6-7) [8], the adsorption rate of Cd²⁺ in a two-metal-ion solution is much smaller than that in single-metal solution (Fig. 3). The Cd²⁺ adsorption rate increases linearly with increasing pH values. This increase may be the result of competition between the ions. Liu [13] pointed out that a strong dependence on pH suggests that the functional groups on the surface of the organisms and that the oxidation state and/or coordination of the metal ions may play an important role in the process of heavy metal adsorption by organisms.

3.3. Influence of the initial concentration of interferential ions on Cd^{2+} adsorption

Fig. 4 shows that different concentrations of Cu^{2+} or Pb^{2+} have a similar impact on Cd^{2+} adsorption. That is, a low concentration of interferential ions has a strong negative effect on Cd^{2+} biosorption, while for high concentrations, this negative disturbance is mild. Different interferential ions have different points of inflection on the Cd^{2+} adsorption curve. The points of inflection is at 1 mg/L in the Cu^{2+} – Cd^{2+} solution and 5 mg/L in the Pb^{2+} –

Fig. 3. Effect of pH on Cd^{2+} biosorption onto PVA-SA beads at a biomass concentration of 8 mg/L and 25°C.

Fig. 4. Effect of interferential metal ions on Cd^{2+} biosorption onto PVA-SA beads at a biomass concentration of 8 mg/L and 25°C.

Table 1 Effect of Pb^{2+} concentration on Cd^{2+} biosorption onto PVA-SA beads

 Cd^{2+} solution. After the turning points, the Cd^{2+} adsorption curve decreases more rapidly in the $Cu^{2+}-Cd^{2+}$ solution than in the Pb²⁺-Cd²⁺ solution. On one hand, these differences may be related to the physical and chemical characteristics of Cu^{2+} , Pb²⁺ and Cd²⁺ such as atomic number, atomic radius and the bonding of the ions with hydroxide groups on the surface of the absorbent. On the other hand, the differences may be ascribed to the functional groups on the surface of the absorbent. Tables 1–4 show the adsorption data for Cd²⁺ and the variance analysis for the three solutions described above. Both Pb²⁺ and Cu²⁺ significantly inhibit Cd²⁺ adsorption onto PVA-SA beads. This result is similar to the impact of competing ions on adsorption onto *auricularia* [18]. Table 2 shows that Pb²⁺ has a significant influence on Cd²⁺ adsorption onto

Cd ²⁺ concentration (mg/L)	Pb ²⁺ concentration (mg/L)	C _e (mg/L)	$q_e \ (mg/g)$	Cd ²⁺ biosorption ratio (%)
10	0	4.1545	0.7307	58.50
10	1	4.2200	0.7225	57.80
10	5	5.1970	0.6004	48.03
10	10	4.680	0.6650	53.20
10	30	4.8210	0.6474	51.79

Table 2

Variance analysis of the effect of Pb2+on Cd2+ biosorption

Variance source	Sum of squares	Degree of freedom	Mean square	F	Sig.
Between group	226.041	4	56.510	72.818	0.000
Within group	7.760	10	0.776		
Total variance	233.801	14			

Table 3

Effect of Cu2+ concentration on Cd2+ biosorption onto PVA-SA beads

Cd ²⁺ concentration (mg/L)	Cu ²⁺ concentration (mg/L)	C _e (mg/L)	$q_e \pmod{(\mathrm{mg/g})}$	Cd ²⁺ biosorption ratio (%)
10	0	4.1505	0.7312	58.50
10	1	4.5550	0.6806	54.45
10	5	4.8125	0.6484	51.88
10	10	4.9600	0.6300	50.40
10	30	5.4470	0.5691	45.53

Table 4

Variance analysis of the effect of Cu²⁺ on Cd²⁺ biosorption

Variance source	Sum of squares	Degree of freedom	Mean square	F	Sig.
Between group	277.535	4	69.384	155.922	0.000
Within group	4.450	10	0.445		
Total variance	281.985	14			

PVA-SA beads (p<0.01). When the Pb²⁺ concentration is 5 mg/L, the negative effect on Cd²⁺ biosorption is strongest (Table 1) because Pb²⁺ competes with Cd²⁺ for binding sites. The presence of 1–30 mg/L Cu²⁺ decreases the Cd²⁺ adsorption rate by 12.07% (Table 3, Table 4). When the concentration of the interferential ions is greater than 30 mg/L, Cd²⁺ biosorption is more strongly restrained by Cu²⁺ than by Pb²⁺ (Fig. 4).

3.4. Adsorption thermodynamics

An accurate adsorption model is very important for optimizing the adsorption process. Langmuir, Freundlich, D–R and Langmuir–Freundlich isothermal adsorption models have been widely used for wastewater analysis. The Langmuir model assumes that the adsorption surface is uniform, that there is no interaction between the adsorbed molecules and that the adsorption occurs on a single-layer. The Langmuir model expression is as follows:

$$q_e = q_m b C_e / (1 + b C_e) \tag{4}$$

where q_e is the adsorption capacity (mg/g adsorbent), q_m is the maximum adsorption capacity (mg/g adsorbent), C_e is the metal ion concentration left in the solution when adsorption equilibrium is reached (mg/L) and *b* is the Langmuir adsorption constant, which is related to the affinity of the heavy metal ions for the binding site. q_m is a coefficient characteristic of the adsorbent and is determined by the nature of the adsorbent only, not the concentration of the adsorbent. The Freundlich model is an experimental model that assumes ions adsorption occurs as a monolayer and the absorbing surface is not uniform. The expression is as follows:

$$q_e = k C_e^{1/n} \tag{5}$$

where k and n are adsorption constants. k is related to the adsorption capacity of the adsorbent and n indicates the difficulty of adsorbing the metal ions onto the absorbent. When 1/n is between 0 and 1, the metal ions adsorb eas-

ily. The other parameters are the same as in Eq. (4). The expression for the Langmuir–Freundlich isotherm is as follows [14]:

$$q_e = q_m b_{LF} C_e^{\theta} / \left(1 + b_{LF} C_e^{\theta} \right) \tag{6}$$

where b and n are adsorption parameters and the other parameters are the same as in Eq. (4).

The expression of the D–R isotherm is as follows [15,16]:

$$\ln q_e = \ln q_m - \beta \varepsilon^2 \tag{7}$$

$$\varepsilon = RT \ln\left(1 + 1/C_{e}\right) \tag{8}$$

where β is a constant related to the energy (kJ²·mol⁻²), ϵ is the Polanyi potential and the other parameters are the same as in Eq. (4). The adsorption energy, $E_{s'}$ can be calculated with the following equation:

$$E_{s} = (2\beta)^{-1/2}$$
 (9)

3.4.1. Isothermal adsorption curves

Fig. 5 and Fig. 6 show the relation between the adsorption of the metal ions and the initial concentration of Cd²⁺ in the single-metal and two-metal solutions. In Cd²⁺ single-metal solution, the amount of Cd²⁺ adsorbed increases with the initial concentration of Cd²⁺. The increase rate decreases with Cd2+ initial concentration increasing. When the initial concentration of Cd²⁺ is 120 mg/g, the adsorption capacity reaches 6.0469 mg/g, which is much higher than the maximum adsorptive capacity in the two-metal solution. The slope of the curve represents the affinity between the adsorbent and the metal ions. The greater the slope is, the greater the affinity. In the single-metal solution, the slope of the curve is larger and the presence of Pb²⁺ reduces the slope of the Cd²⁺ adsorption curve greatly (Fig. 5). When the Cd²⁺ concentration is less than 90 mg/g, the slope of the Cd^{2+} adsorption curve is reduced slightly (Fig. 6). When the Cd²⁺ concentration is greater than 90 mg/g, the slope of

Fig. 5. The relationship between metal ion biosorption quantities and initial Cd^{2+} concentration in Cd^{2+} single-metal solution and $Cd^{2+}-Pb^{2+}$ solution, at a biomass concentration of 8 mg/L, pH of 5–6 and 25°C.

Fig. 6. The relationship between metal ion biosorption quantities and initial Cd^{2+} concentration in Cd^{2+} single-metal solution and $Cd^{2+}-Cu^{2+}$ solution, at a biomass concentration of 8 mg/L, pH of 5–6 and 25°C.

the curve falls remarkably in both two-metal solutions. When the concentration of Cd^{2+} is 90 mg/g, the quantity of Cd²⁺ adsorbed in both the Cd²⁺-Pb²⁺ solution and Cd²⁺-Cu²⁺ solution reaches the maximum (Cd²⁺-Pb²⁺: 2.9544 mg Cd/g; Cd²⁺–Cu²⁺: 4.8075 mg Cd/g). Ferraz et al. [17] studied the effect of interferential ions on metal ions adsorbing to Saccharomyces cerevisiae and confirmed that there was competition between the metal ions for adsorption sites on the surface of cell walls. Fig. 5 and Fig. 6 indicate that when the Cd^{2+} concentration is low (0–90 mg/g), the competition for adsorption sites mostly comes from interferential ions. When the Cd²⁺concentration is high (>90 mg/g), the amount of adsorbing Pb^{2+} and Cu^{2+} is basically unchanged, but the number of PVA-SA beads that are adsorbing Cd²⁺ decreases greatly because of an overabundance of Cd²⁺, which means competition and repulsion between Cd2+ on the cell wall play an important role in the decrease in Cd²⁺ adsorbing.

3.4.2. Isothermal adsorption model

To determine the similarities and differences of the adsorption mechanisms and the adsorption laws for Cd²⁺ in single-metal and two-metal solutions, Langmuir, Freundlich, Langmuir-Freundlich and D-R isothermal adsorption models were fit to the experimental data (Tables 5–7). In the single-metal solution, all of the models except the D-R model can describe the isothermal adsorption of Cd2+. Langmuir model is the best, with a correlation coefficient of 0.9981 and theoretical q_m of 6.4475 mg/g, which is slightly higher than the adsorbed amount when the initial concentration of Cd^{2+} is 120 mg/g (6.0469 mg/g). Langmuir-Freundlich model is the secondbest model and the D-R model is the worst. Langmuir model fits the isothermal adsorption of Cd²⁺ in the Cd²⁺-Pb²⁺ solution, with a correlation coefficient of 0.9291 and theoretical $q_{\rm w}$ of 2.6788 mg/g, which is slightly lower than the experimental q_w (2.9544 mg/g). The D–R model fits the isothermal adsorption of Cd²⁺ in the Cd²⁺-Cu²⁺ solution with a correlation coefficient of 0.9623.

Table 5 Parameters of isotherm models for Cd²⁺ removal from onemetal system

Thermodynamic	Parameters	<i>R</i> ²	
models	Symbol	Values	_
Langmuir	$q_m (\mathrm{mg/g})$	6.4475	0.9981
	b	0.05916	
Freundlich	k	0.43102	0.9823
	п	1.5099	
Langmuir–	$q_m (\mathrm{mg/g})$	11.3636	0.9913
Freundlich	Θ	0.8485	
	b_{LF}	0.03437	
D-R	$q_m (mg/g)$	53.4529	0.4072
	В	_	
	E_s (kJ/mol)	10000	

Table 6

Parameters of isotherm models for Cd^{2+} removal from Cd+Pb system

Thermodynamic	Parameters	R^2		
models	Symbol Values			
Langmuir	$q_m (mg/g)$	2.6788	0.9291	
	B	0.02524		
Freundlich	Κ	0.1778	0.6146	
	Ν	1.8889		
Langmuir–	q_{m} (mg/g)	20000	0.6146	
Freundlich	Θ	0.5294		
	b_{IF}	8.889E-07		
D–R	q_{m} (mg/g)	1.6318	0.7389	
	В	1×10-5		
	E_{s} (kJ/mol)	223.607		

Table 7

Thermodynamic	Parameters	R2	
models	Symbol	Values	
Langmuir	$q_m (mg/g)$	-3.2051	0.9013
	В	-0.01274	
Freundlich	Κ	0.08490	0.7316
	Ν	1.0851	
Langmuir–	$q_m (\mathrm{mg/g})$	33.3333	0.7323
Freundlich	Θ	0.9655	
	$b_{_{LF}}$	0.0024	
D–R	$q_m (\mathrm{mg/g})$	3.6616	0.9632
	В	3×10 ⁻⁵	
	E_{a} (kJ/mol)	129.099	

Parameters of isotherm models for $Cd^{2\scriptscriptstyle +}$ removal from Cd+Cu system

4. Conclusions

With an adsorptive capacity of 0.2008 mg/g, PVA-SA beads absorb Cd²⁺ and reach equilibrium in a single-metal solution after 7 h, a much longer time than is required with mobilized fungus. Pseudo-second-order dynamic equations describe the process of PVA-SA beads adsorbing Cd²⁺ in a single-metal solution with a correlation coefficient of 0.9946. In a single-metal solution, when the pH changes from 0 to 4, the Cd²⁺ adsorption ratio increases rapidly, but when the pH is above 4, the Cd²⁺adsorption curve become approximately flat. A pH between 4 and 7 is the optimal rang for Cd²⁺ adsorption. This range is much wider than the range for mobilized fungi. In a twometal solution, the Cd²⁺ adsorption ratio is much smaller than in a single-metal solution and the Cd²⁺ adsorption ratio increases linearly with increasing pH. The presence of Cu²⁺ or Pb²⁺ reduces Cd²⁺ adsorption significantly and when the Cd²⁺ concentration is low, the interference of the competing metal ions is large. The interference lessens when the Cd²⁺ concentration is increased. When the initial concentration of Cd^{2+} is 120 mg/g, the Cd^{2+} adsorbed from a single-metal solution reaches 6.0469 mg/g. The number of PVA-SA beads adsorbing Pb2+ and Cu2+ remains basically unchanged in a two-metal solution. When the Cd^{2+} concentration is less than 90 mg/g, the presence of Pb²⁺ has a negative effect on Cd²⁺ adsorption, but when the Cd^{2+} concentration is greater than 90 mg/g, both Pb^{2+} and Cu²⁺ reduce Cd²⁺ adsorption greatly. When the Cd²⁺ concentration reaches 90 mg/g, Cd²⁺ adsorption from the two-metal solution reaches a maximum (Cd²⁺-Pb²⁺: 2.9544 mg Cd/g; Cd²⁺-Cu²⁺: 4.8075 mg Cd/g). The Langmuir isotherm model can describe the Cd²⁺ isothermal adsorption process in a single-metal solution with a correlation coefficient of 0.9981. The second-best model is the Langmuir-Freundlich model and the D-R model is the worst. The Langmuir model fits the Cd2+ isothermal adsorption process in the Cd²⁺–Pb²⁺ solution (R^2 =0.9291) with a theoretical q_{m} of 2.6788 mg/g, which is slightly

smaller than the experimental value (2.9544 mg/g). The D–R model can fit the Cd²⁺ isothermal adsorption process in the Cd²⁺–Cu²⁺ solution and the correlation coefficient is 0.9623.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (40871111) and Key Scientific and Technological Project of Sichuan Province (04SG023-006-05).

References

- P. Sar, S.K. Kazy and D. Souza, S F. ?? Radionuclide remediation using a bacterial biosorbent, Intern. Biodeter. Biodegrad., 54(2/3) (2004) 193–202.
- [2] J.Z. Luo X.X. Zhang, Q.X. Qiao and F.G Xu, The application of immobilized cell technology in wastewater advanced treatment. Environ. Pollut. Treat. Technol. Equip., 3(6) (2002) 69–71.
- [3] J. Gabriel, P.Baldrian, K. Hladõkova and M. Hakova, Sorption by native and modified pellets of wood-rotting *Basidiomycetes*. Lett. Appl. Microbiol., 32 (2001) 194–198.
- [4] X.L. Pan, J.L. Wang and D.Y. Zhang, Biosorption of Pb(II) by *Pleurotus ostreatus* immobilized in calcium alginate gel. Process Biochem., 40 (2005) 2799–2803.
- [5] J.H. Wang, Z.F. Tong and A.G. Zeng, The application of immobilized cell in synthesis of adenosine triphosphate. Microorganism J., 31(3) (2004) 141–145.
- [6] E. Galli, F. Di Mario, P. Rapana, P. Lorenzoni and R. Angelini , Copper biosorption by *Auricularia polytricha*. Lett. Appl. Microbiol., 37 (2003) 133–137.
- [7] A. Kappoor and T. Viraraghavan, Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol., 53(3) (1995) 195–206.
- [8] T.Y. Gao, D. Zhang and Y. Zhang, The removal of cadmium from solution by *Flammulina velutipes* residue. J. Safety Environ., 7(5) (2007) 20–23.
- [9] M.Y. Arica, Y. Kacar and O. Genc, Entrapment of white-rot fungus Trametes versicolorin Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour. Technol., 80 (2001) 121–129.
- [10] Z. Aksu, Equilibrium and kinetic modelling of cadmium(II) biosorption by *C. bulgaris* in a batch system: effect of temperature. Separ. Purif. Technol., 21 (2001) 285–294.
- [11] F. Kargi and S. Cikla, Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microbial Technol., 38 (2006) 705–710.
- [12] P. Vasudevan, V. Padmavathy and S.C. Dhingra, Kinetics of biosorption of cadmium on Baker's yeast. Bioresour. Technol., 89 (2003) 281–287.
- [13] Y.Y. Liu, T.S Du, P. Chen, D.L. Tang, Y.J. Ni, P.Y. Gu and J.K. Fu, The study of Pb²⁺ removal from solution by beer yeast waste. J. Adv. Chem., 24(12) (2003) 2248–2251.
- [14] G.M. Liu and D.Q. Yi, The biosorption behavior on alkyl phenol polyoxyethylene ether of clay mineral. Ecol. Environ., 17(2) (2008) 593–597.
- [15] X.S. Wang, H.Q. Hu, J. Wang and C. Sun, The equilibrium and dynamics of Cu²⁺ biosorption by Na-type mordenite, Sci. Technol. Rev., 24(11) (2006) 31–36.
- [16] M.H. El-Naas, F. Abu Al-Rub and M. Al Marzouqi, Effect of competitive interference on the biosorption of lead(II) by *Chlorella vulgaris*. Chem. Eng. Processing, 46 (2007) 1391–1399.
- [17] A.L. Ferraz and J.A. Teixeira, The use of flocculating brewer's yeast for Cr(III) and Pb(II) removal from residual wastewaters. Bioprocess Eng., 21 (1999) 431–437.
- [18] D. Zhang, Y.W. Gong and P. Ma, Effect of competitive interference on the metal ions biosorption by *Auricularia polytricha* mycelial, Ecol. Environ., (2008), in press.