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A B S T R A C T

The efficiency of protein fractionation by ultrafiltration is reduced by concentration polarization,
which indirectly reduces the apparent selectivity of the membrane. The complete understanding
of this phenomenon requires the knowledge of the electrical interactions between the membrane
and the solutes. These interactions are studied by numerical methods. A numerical code, based on
a finite volume method, is developed to study the separation of a solution containing two charged
solutes by solving the Poisson-Boltzmann, the Navier-Stokes and the Nernst-Planck equations.
The code is used to study the effects of the electric charge of the membrane in the concentration
fields of the solutes.
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1. Introduction

In protein fractionation by ultrafiltration, mass
accumulates near the surface of the membrane, given
rise to the so called concentration polarization
phenomenon. Concentration polarization reduces the
permeability and the selectivity of the process [1–3].
It is known that concentration polarization can be
influenced by the physicochemical conditions near the
membrane [4–6]. The effect of physicochemical condi-
tions is due to ion-ion, membrane-ion, protein-ion,
protein-protein [7] and membrane-protein interactions.
Molecular and ionic interactions can be dealt with by
modeling their effects on the diffusivity of the compo-
nents and on the osmotic pressure of the solution [4,5].

However, membrane-ion and membrane-protein inter-
actions deserved relatively less attention by researchers.
Analytical and numerical methods developed so far can
capture the effects of concentration dependent properties
[8,9], multicomponent diffusion [10] and convection-
diffusion across the membrane [11,12]. Electrical interac-
tions between the membrane and charged components
are usually neglected in most studies. However, in some
separation processes, they cannot be ignored.

Here, we cover the modeling of the interactions
between the membrane surface and charged compo-
nents by solving numerically the electric potential
equation and the flow and mass transport equations
in the separation cell. Our interest is to study the
separation of a solution of two species with opposite
charges by a charged membrane in a parallel plate
membrane cell.�Corresponding author
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2. Cell description

The cell under study is schematically represented in
Fig. 1. It is a parallel plate cell with a permeable
membrane on both sides. The distance between the
plates, H, is 10�3 m. The width and length of the cell are
W and L, respectively. The inlet (Lin) and outlet (Lout)
sections are both impermeable to the solutes and to the
solvent.

The feed stream is separated into two streams: the
retentate stream which is richer in the charged species,
and the permeate stream which is richer in the solvent.
The membrane has a negative zeta potential (ranging
between �w ¼ �1 mV and �w ¼ �10 mV [13]) and a
resistance of 5.714 � 109 kg m�2 s�1. The feed stream

is a diluted ionic solution (Cþ0 ¼ 1� 10�5 mol m�3 and

C�0 ¼ 1� 10�5 mol m�3).

3. Theory

To model the flow and mass transport in the cell, the
following simplifications were considered:

• The solutes are completely rejected by the
membrane;

• The osmotic pressure can be neglected;
• The physical properties are constant (viscosity of the

solution and diffusivity of the solutes);
• The electric field is determined based on the Boltz-

mann distribution of charged components. Effects
of convection in the electric field are considered
negligible;

• Electric effects on the flow are neglected.

To study the effect of the electric interactions in the
concentration at the membrane surface, it is necessary
to determine the electric field, the concentration field
and the flow field. Therefore, the Poisson-Boltzmann,
the Navier-Stokes equations and the Nernst-Planck
equation were solved. Although only steady state
results are presented, the numerical method is based
on the solution of the transient equations. The equa-
tions were solved in the numerical domain represented
in Fig. 2. The numerical domain represents half of the

physical cell (the cell is symmetric) and comprises an
inlet section, an outlet section and the membrane.

4. Electric Potential Equation

The electric potential follows the Poisson-
Boltzmann equation:

@�

@t
¼ @2�

@x2
þ @

2�

@y2

� �
��2re ð1Þ

where � is the electric potential normalized by the
membrane potential (�w), re is the ionic concentration
and �2 is defined by:

�2 ¼
FC0H2

eM�w
ð2Þ

where F is the Faraday constant, C0 the feed concentra-
tion, M the mean molar mass of the species in solution
and e the permittivity.

The normalized ionic concentration is the algebraic
sum of the individual ionic concentrations:

re ¼
XN

i¼1

zici ð3Þ

where zi is the electric charge number and ci the nor-
malized (by the feed concentration) concentration of
component i.

Considering the approximation of negligible con-
vection in both directions (X and Y), the normalized
concentration of the components are related to the elec-
tric field through the Boltzmann distribution:

ci ¼ c0exp �zi�3 �� �0ð Þ½ � ð4Þ

where c0 is the normalized concentration of the compo-
nent in the bulk (far from the membrane), �0 the non-
dimension electric potential in the bulk, and �3 a
dimensionless number defined by:

�3 ¼
F�w

RT
ð5Þ

Combining Eq. 3 and Eq. 4, the normalized ionic
concentration can be related with the electric field by:
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Fig. 1. Cell.
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Fig. 2. Numerical domain.
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re ¼ �2 sinh �3 �� �0ð Þ½ � ð6Þ

Combining all the previous equations, the Poisson-
Boltzmann becomes:

@�

@t
¼ @2�

@x2
þ @

2�

@y2

� �
þ 2�2 sinh �3 �� �0ð Þ½ � ð7Þ

To solve the Poisson-Boltzmann equation by
numerical methods, boundary conditions must be
specified at the boundaries of the domain. At the mem-
brane surface (z ¼ 0), non-dimensional electric poten-
tial is:

� ¼ �w

�w
¼ 1 ð8Þ

At the axis of symmetry the variation of the
non-dimensional electric potential along the normal
direction is equal to zero:

@�

@y
¼ 0 ð9Þ

At the cell inlet and at the cell outlet the variation of
the non-dimensional electric potential along the nor-
mal direction is also equal to zero:

@�

@x
¼ 0 ð10Þ

The Poisson-Boltzmann was solved by a finite
difference method. The second derivatives were
approximated by implicit central differences and the
non-linear term was taken explicitly.

4.1. Flow Equations

The flow is described by the Navier-Sokes equa-
tions. For a bi-dimensional cell, the Navier-Sokes equa-
tion can be written for secondary variables (vorticity, !,
and stream function,  ) as the vorticity transport equa-
tion and a Poisson equation. For Cartesian coordinates
(x and y), the vorticity transport equation is:
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where �1 is a non - dimensional number given by:

�1 ¼
FC0�w

MrV2
0

ð12Þ

where r is the fluid density and V0 the feed velocity.
The Reynolds number (Re), based on the height of

the parallel plate cell, is given by:

Re ¼ rV0H

m
ð13Þ

Considering that the variation of the electric poten-
tial along the horizontal direction is negligible and that
re changes slowly along x, as first approximation, the
electric term of the vorticity equation can be neglected:
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The Poisson equation for the stream function is:

! ¼ @
2 
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ð15Þ

The velocity components are related to the stream
function by:

vx ¼
@ 

@y
; vy ¼

@ 

@x
ð16Þ

When the osmotic pressure of the solution can be
neglected, the velocity boundary condition at the mem-
brane surface is:

vz ¼
�P0

RmV0
ð17Þ

where �P0 is the transmembrane pressure and V0 the
feed velocity. The remaining boundary conditions and
the numerical methods to solve the vorticity transport
equation and the Poisson equation are presented
in [10].

5. Mass transport equations

The mass transport equation, for each compo-
nent, is:
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where Pei is the Peclet number:
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Pei ¼
V0H

Di
ð19Þ

In this definition Di is the diffusivity of component i.
The electric and convective terms of equation 18 can

be grouped:
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Defining the following variables:
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Equation 20 can be simplified:
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The terms
@ v̂ycið Þ
@y and

@ v̂ycið Þ
@y are pseudoconvective

terms that, from the numerical point of view, can be
solved by methods designed to solve convection terms.
The mass transport equation was solved by a
fractional-step method [14], with the pseudoconvective
terms separated from the diffusive terms:
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Equations (24) and (25) were discretized by a finite
volume method. In each control volume the mass bal-
ance is:

Fyup þ Fxleft
¼ Fydown

þ Fxright
þ dm

dt
ð26Þ

where the letter F is used to represent the mass fluxes,
Fig. 3, and m is the mass of fluid in the finite volume.

The convective flux (Fc) is defined by:

Fc ¼ vci ð27Þ

and the diffusive flux by:

Fd ¼ �Di
@ci

@y
ð28Þ

To assure mass conservation, the pseudoconvective
terms were discretized by the donor-cell upwind
method [14].

Boundary conditions were introduced in the discre-
tized equations of the finite volumes by considering the
appropriate boundary fluxes or concentrations. At the
membrane surface, the pseudoconvective flux at the
membrane surface is zero:

Fydown
¼ 0 ð29Þ

and the pseudoconvective flux at the symmetric axis is
also zero:

Fyup ¼ 0 ð30Þ

At the cell inlet the normalized concentration of
both components are equal to 1:

ci ¼ 1 ð31Þ

and, at the cell outlet, the variation of the normalized
concentration is equal to zero:

@ci

@x
¼ 0 ð32Þ

At membrane surface the diffusive flux down is
equal to zero:
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Fig. 3. Mass fluxes across the boundaries of a finite volume.
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Fydown
¼ 0 ð33Þ

as well as the diffusive flux up at the symmetric axis:

Fyup ¼ 0 ð34Þ

The diffusive flux left at cell inlet is also equal to
zero

Fxleft
¼ 0 ð35Þ

as well as the diffusive flux right at cell outlet:

Fxriht
¼ 0 ð36Þ

5.1. Validation of the numerical code

The numerical code developed to solve the mass
transport equation is a new code that needs to be vali-
dated. The validation can be accomplished by compar-
ing the solution obtained with the code for a cell with
stagnant fluid with the theoretical prediction given
by the Boltzmann equation. The concentration profile,
given by the Boltzman equation, is:

ci ¼ c0exp �zi�3 �� �0ð Þ½ � ð37Þ

5.2. Grid optimization

Grid tests were performed to select the best grid to
perform the simulations (Fig. 4). The result obtained
for grid 81� 671 is almost the same as the one obtained
for the grid 81� 1,281. Therefore, error associated with
a grid with 81� 641 nodes is very small and so this was
the grid selected.

5.3. Convergence

The study of the convergence of the numerical
method was based on the error in the concentration
of the solutes in a critical node of the cell. The critical
node is located near the cell exit, where the conver-
gence is slower. The error of the concentration in the
critical node was determined by:

ecrit ¼
Ck

crit � Ck�1
crit

Ck
crit

����
���� ð38Þ

where crit refers to the critical node and k to the current
iteration.

An example of the study of the convergence is pre-
sented in Fig. 5. The normalized concentration con-
verges to a constant value. The iterative process stops
when the following criterions were observed:

ecrit < 10�3 ð39Þ

6. Results and discussion

The electric potential equation was solved to deter-
mine the electric field in the membrane cell. The
results, for two values of the membrane potential are
in Fig. 6. The data show that the membrane disturbs the
electric field along a short distance of 0.05 H.

The introduction of the electric field requires the
validation of the numerical method implemented. The
numerical method was validated by comparing data
obtained for a stagnant fluid with the Boltzmann equa-
tion. The comparison is shown in Figs. 7 and 8. The
results obtained by the numerical method are accurate,
even for large membrane potentials.

Fig. 4. Normalized concentration along the membrane sur-
face for several grids for Pe ¼ 1� 105, �P0 ¼ 1� 104Pa,

V0¼5:7�10�3ms�1, �2¼1:36�106, �3¼0:39, �w ¼ �10 mV
and z ¼ 1.
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Fig. 5. Normalized concentration in a critical node near
the end of the cell versus the number of iterations for

Pe ¼ 1 � 105, �P0 ¼ 1 � 104Pa, V0 ¼ 5:7 � 10�3ms�1, �2 ¼
1:36 � 106, �3 ¼ 0:39, �w ¼ �10 mV and z ¼ 1.
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The separation process was studied considering two
membrane cells: a neutral membrane cell and a nega-
tively charged membrane cell. The results are in Fig. 9.
Fig. 9 shows that the concentration along the membrane
is higher when the membrane and the component have
opposite charges and lower when the membrane and the
component have the same charge. Both components
have the same intermediate concentration in the cell with
a neutral membrane.

7. Conclusions

The Poisson-Boltzmann, the Nernst-Planck equation
and the Navier-Stokes equations were solved by numer-
ical methods to study the mass transport of charged spe-
cies in the vicinity of a charged membrane. The
fractional-step method used to solve the mass transport
equation is sufficiently adequate and easy to implement.
The donor-cell upwind method used to discretize the
convective terms of the mass transport equation assures
mass conservation. The method to solve the mass

transport equation was validated by comparing the
numerical solution for a membrane cell containing stag-
nant fluid with the Boltzman equation.

The code developed was used to study the mass
transfer of two charged species in the vicinity of a
semi-permeable negatively charged membrane. As it
was expected, the ion with positive charge accumu-
lates, in a higher quantity, near the membrane.

Further work is necessary to improve the code devel-
oped. In the future we intend to solve the full vorticity
equation, including electric terms neglected in this work.
The electric potential equation will be solved considering
the effect of convection in the charged species distribu-
tion. Finally, the code will be improved to include a
higher number of charged species, an improvement that
will allow the study of protein fractionation.
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Fig. 7. Normalized concentration along the vertical direction
of the species with a positive charge in a cell containing stag-
nant fluid for �2 ¼ 1:36� 106 and �3 ¼ 0:39.

Fig. 9. Concentration along the membrane for Pe ¼ 1� 105,

�P0 ¼ 1 � 104Pa, V0 ¼ 5:7 � 10�3ms�1, �2 ¼ 1:36 � 106,
�3 ¼ 0:39, �w ¼ 0 and �w ¼ �10 mV (z1 ¼ 1 and z2 ¼ �1).

Fig. 8. Normalized concentration along the vertical direction
of the species with a negative charge in a cell containing stag-
nant fluid for �2 ¼ 1:36� 106 and �3 ¼ 0:39.
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Fig. 6. Normalized potential along the direction normal to the
membrane for �2 ¼ 1:36� 106 and �3 ¼ 0:39.
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Symbols

Ci Solute concentration of component i
ci Normalized solute concentration of compo-

nent i
C0 Ionic feed/bulk concentration
C0 Normalized ionic feed/bulk concentration
Cþ0 Concentration of the positively charged

component
C�0 Concentration of the negatively charged

component
Cm

i Concentration of component i at membrane
surface

cm
i Normalized solute concentration of compo-

nent i at membrane surface

Ck
crit

Concentration on a critical location

Di Molecular diffusivity of component i
F Faraday constant
Fc Convective mass flux
Fd Diffusive mass flux
Fydown

Mass flux across the lower boundary of a
finite volume

Fyup Mass flux across the upper boundary of a
finite volume

Fxleft
Mass flux across the left boundary of a finite
volume

Fxriht
Mass flux across the right boundary of a
finite volume

H Distance between parallel plates
k Current time step
Lout Length of the outlet section
Lin Length of the inlet section
Lm Total length of the membrane
L Length of the cell
M Molar mass
R Gas constant
re Normalized ionic concentration
Rm Membrane resistance
T Temperature
T Non-dimensional time
V0 Mean feed velocity
Vx Longitudinal component of the velocity
vx Normalized longitudinal component of the

velocity
v̂x Normalized pseudovelocity (component x)
Vy Vertical component of the velocity
vy Normalized vertical component of the

velocity
v̂y Normalized pseudovelocity (component y)

X Longitudinal coordinate

x Normalized longitudinal coordinate
Y Vertical coordinate
y Normalized vertical coordinate
W Width of the cell
zi Charge of component i

Non-dimensional numbers

Pe Peclet number
Re Reynolds number
�1 Non-dimensional number defined by Eq. (12)
�2 Non-dimensional number defined by Eq. (2)
�3 Non-dimensional number defined by Eq. (5)

Greek symbols

~P0 Static pressure difference across the perme-
able membrane

e Permitivity
ecrit Numerical error of the concentration on a cri-

tical location
 Stream function
! Vorticity
r Density
m Viscosity
� Electric potential
� Non-dimensional electric potential
�0 Electric potential of the bulk
�0 Normalized electric potential of the bulk
�w Membrane electric potential
�w Normalized membrane electric potential
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