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A B S T R A C T

This article presents the development & comparison of Non-parameter Regression Methods such as
Artificial neural network (ANN), Genetic algorithm optimization (GA) and Support vector machine
(SVM) models for the prediction of cell voltage and caustic current efficiency (CCE) versus different
operating parameters in a lab scale chlor-alkali membrane cell. In order to validate the model pre-
dictions, the effects of various operating parameters on the cell voltage and CCE of the membrane
cell were experimentally investigated. Each of six process parameters including anolyte pH (2–5),
operating temperature (25–90�C), electrolyte velocity (1.3–5.9 cm/s), brine concentration
(200–300 g/L), current density (1–4 kA/m2), and run time (up to 150 min) were thoroughly studied.

The new models yielded the accurate prediction of experimental data with the lowest standard
deviation error (SD). It was found that the developed models are not only capable to predict the
voltage and CCE but also to reflect the impacts of process parameters on the same functions.
According to the obtained results, SVM model is suitable for the prediction of CCE with an
average deviation of 1.53% while GA & ANN models are more accurate than SVM model for
predicting the voltage with an AD of 1.21% & 1.27%, respectively.

Keywords: Chlor-Alkali; Membrane cell; Electrolysis; Artificial neural network; Genetic
algorithm; Support vector machine

1. Introduction

Chlor-alkali (CA) production is the largest indus-
trial scale electro synthesis. One of the major issues
confronting the chlor-alkali industry is the high power
consumption, i.e. about 1.5 � 108 MWh of electricity
per year [1]. It was estimated that the power consump-
tion accounts for over 50% of the operating costs [2,3].
Improvement of the electrolytic process in this respect,
i.e. reduction in cell voltage, would be beneficial from
both economical and environmental point of views.

Cell voltage and current efficiency are two most

important process parameters proportional to the

power consumption of a CA plant. Therefore, the
process evaluation is important from industrial point

of view in order to quantify the impact of process

variables on these two parameters. At the same time,

prediction of the cell voltage and current efficiency can
facilitate achieving the optimum conditions which will

further reduce the intercalary costs of trial and error

experiments.
Various methods have been employed to predict

and quantify the process parameters, i.e. statistical�Corresponding author
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methods [4], analytical formulations [5] and non-
parameter regression methods like artificial neural
network (ANN) [6], Genetic Algorithm (GA) and sup-
port vector machine (SVM) [7]. On the other hand, the
effects of operating parameters (five factors) on the
performance of a CA membrane cell using Taguchi and
ANOVA techniques were recently studied by Jalali
et al. [4] but the effect of electrolysis duration was
neglected in that study.

Statistical methods are used to analyze the results of
the experiments and models on response and also they
can be used to determine the contribution of each
influencing factor. However, the main concern with
statistical methods is the difficulties in fulfilling many
rigid assumptions that are essential for justifying their
applications such as those of sample size, linearity,
and continuity. One alternative approach for system
predicting is non-parameter regression methods. In
nonparametric regression a priori knowledge of the
functional relationship between the dependent vari-
able Y and independent variables, X1, X2,. . .Xm, is not
required. In fact, one of the main results of non-
parametric regression is determination of the actual
form of this relationship.

The objective of this article is to develop general
models based on these techniques including ANN,
Genetic Algorithm Optimization (GA) and SVM that
relate the cell voltage and caustic current efficiency
(CCE) to operation parameters and quantify the impact
of process variables on these two parameters. Imple-
mentation of such methods would enable the operators
of chlor-alkali membrane cell units to define their opti-
mum process conditions and benefit from the savings
in time and energy.

On the other hand, the CA model achieved by these
methods can be employed to examine the effects of
various operating parameters as well as to compare the
model predictions with the experimental values. With
the developed models, one can further study the varia-
tions of dependent parameters versus independent
parameters. The main difference of non-parameter
regression techniques from statistical methods is attrib-
uted to its relinquishment in terms of strict conditions
for data samples and associated assumptions. This is
applicable to the existing situation of data availability
for the cell voltage and CCE factors, which are not good
enough for either statistical or numerical modeling.
At the same time, analytical models are better than
these models in terms of their touching the detailed
mechanisms of interactions among various impact
factors. Nevertheless, such methods’ limitations are
also from their attempts to specify the complicated pro-
cesses by detailed mathematical formulations, since
many doubtful, interactive, and dynamic system

components can barely be expressed as precise analyti-
cal formulations. Under such conditions, non-
parameter regression methods become one of the
usable means for analyzing the related effects and
interactions; it can be used without disturbing either
a number of prerequisites associated with statistical
models or being forced to assume unrealistic or over-
simplified system conditions that are needed for analy-
tical simulation [6,7].

So, the main aim of this study was thus to investi-
gate the impacts of operating parameters on the cell
performance indicators, i.e. cell voltage and CCE, and
to predict the same by ANN, GA & SVM techniques.
Process parameters that have been experimentally
studied at four levels include anolyte pH (2–5), cell
temperature (25–90�C), electrolyte velocity (1.3–
5.9 cm/s), brine concentration (200–300 g/L), current
density (1–4 kA/m2) and run time (up to 150 min).

2. Theoretical background

One alternative approach for system predicting is
the non-parameter regression methods like ANN
based on the theory of artificial intelligence, genetic
algorithm (GA) based on the idea of ‘‘survival of the
fittest’’ and ‘‘natural selection’’ and SVM based on the
structural risk minimization (SRM) principles.

Meanwhile, with the developed models, one can
further study the variations of dependent parameters
versus independent ones.

Artificial neural networks have several attractive
properties for the modeling of complex production
systems, i.e. capability of universal function approxi-
mation, resistance to noisy or missing data, accommo-
dation of multiple non-linear variables with unknown
interactions, and good generalization ability [8]. For
manufacturing processes where either no satisfactory
analytical model exists or a low-order empirical
polynomial model is inappropriate, neural networks
are a good alternative approach.

When artificial neural networks are used for
prediction and forecasting, the underlying philosophy
is similar to that used in traditional statistical
approaches. Therefore, ANNs and statistical models
are closely related. Consequently, the principles that
are considered good practice in the development of sta-
tistical models need to be given careful consideration.
The major areas that should be addressed include data
pre-processing, choice of adequate model inputs,
choice of an appropriate network geometry, parameter
estimation, and model validation. At each stage, a
number of alternatives are available to modellers. This
offers great flexibility, but can also create difficulties as
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there are no clear guidelines to indicate under what cir-
cumstances particular approaches should be adopted.
Therefore, the performance is very much dependent
on the network architecture. Hence, an optimum or
near optimum network structure is of utmost impor-
tance. This can be done by means of GAs as a powerful
optimization tool. So, the design of neural networks
using GA principles can be very helpful in terms of two
main issues [9]:

• It automates the design of the network which will
otherwise have to be done by hand using trial and
error.

• The process of design can be analogous to a biologi-
cal process in which the neural network blueprints
encoded in chromosomes develop through an
evolutionary process.

Based on SVM principle, this method achieves an
optimum network structure by striking a right bal-
ance between the quality of the approximation of the
given data and the complexity of the approximating
function. The SVM reveals the underlying statistical
relationships among variables corrupted by random
error. This SVM algorithm presented by Vapnik [10],
as other similar non-parametric statistical regression
methods is intended to alleviate the main drawback
of parametric regression, i.e., the mismatch of
assumed model structure and the actual data. Based
on this principle, SVM achieves an optimum network
structure by striking a right balance between the qual-
ity of the approximation of the given data and the
complexity of the approximating function. Therefore,
the over-fitting phenomenon in the general ANN can
be avoided and excellent generalization performance
can be obtained. Furthermore, in SVM, support vec-
tors corresponding to the hidden units of the general
ANN are automatically determined after the SVM
training. This implies that the difficult task of deter-
mining the network structure in the general ANN can
be prevented.

• Compared with traditional neural networks, SVM
possesses prominent advantages:

• Strong theoretical background provides SVM with high
generalization capability and can avoid local minima.

• SVM always has a solution, which can be
quickly obtained by a standard algorithm (quadratic
programming).

• SVM need not determine network topology in
advance, which can be automatically obtained when
training process ends.

• SVM builds a result based on a sparse subset of
training samples, which reduce the workload.

2.1. Artificial neural network

The enormous interconnections in the ANN frame-
work create a great number of degrees of freedom, or
fitting parameters, and thus may permit it to reflect the
system’s complexity more effectively than conven-
tional statistical techniques.

Artificial neural networks are massively parallel
interconnected networks of simple elements and their
hierarchical organizations which are intended to
interact with the objects of the real world in the
same way as biological nervous do, or simply a
system of interconnected computational units, or
nodes [11]. A simple neural network is shown in
Fig. 1. It consists of an input layer, a hidden layer,
and an output layer.

In turn, these layers have a certain number of nodes
or neurons, so that the nodes are also called input
nodes, hidden nodes, and output nodes. Fig. 1 shows
a network with one node in the input layer, two nodes
in the hidden layer, and one node in the output layer.
The output, y(x), is a function of the input, x, and a set
of parameters. Input nodes receive data from sources
external to the network and send them to the hidden
nodes, in turn the hidden nodes send and receive data
only from other nodes in the network, and output
nodes receive and produce data generated by the
network which goes out of the system. In general, the
number of input nodes may be greater than one.
Likewise, the number of hidden layers can be greater
than one, but a network with a single hidden layer is
simpler and useful for many applications. Further-
more, the output layer can have several nodes. In gen-
eral, a typical network has n input nodes, one hidden
layer with h nodes, and m output nodes. A typical pro-
blem is then to estimate the output as a function of
input. This function is unknown but may be approxi-
mated by a superposition of certain activation functions
such as hyperbolic tangents, sigmoids, polynomials,
and sinusoids in a neural network fashion.

Fig. 1. A simple ANN scheme with one input node, two
hidden nodes, and one output node.
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2.2. GA

Based on the idea of ‘‘survival of the fittest’’ and
‘‘natural selection’’, GA is a class of parallel iterative
algorithm with a certain learning ability that repeats
evaluation, selection, crossover and mutation after initi-
alization until the stopping condition is satisfied [12].
GA is naturally parallel and exhibits implicit paralle-
lism, which does not evaluate and improve a single
solution, but analyses and modifies a set of solutions
simultaneously. Even if the selection operator can select
some ‘‘good’’ solutions as seeds with random initializa-
tion, the crossover operator can generate new solutions,
hope-fully retaining good features from parents, and the
mutation operator can enhance diversity and provide a
chance to escape from the local optima [9].

A major issue in the genetic based design of a neural
network is that of representation (encoding). The encod-
ing should be capable of capturing all of the important
aspects of the problem. Therefore in GA, the representa-
tion scheme should be capable of allowing new, meaning-
ful and valid network architecture to be produced by the
genetic operators, (like crossover or mutation). GA is
applied to the neural network in two different ways:

• They either employ a fixed network structure with a
connection under evolutionary control.

• They are used in designing the structure of the
network.

Therefore the evolution that has been introduced to
neural networks can be divided roughly into different
levels: (a) connection weights; (b) architecture; (c) learn-
ing rules. Fig. 2 shows the working principles of GA [12].

2.3. SVM

SVM is a relatively novel powerful machine learn-
ing method based on statistical learning theory (SLT),
which is a small-sample statistical theory introduced
by Vapnik [10]. SVM is powerful for the problems
characterized by small samples, nonlinearity, high
dimension and local minima. Currently, SVM is an
active field in the artificial intelligent technology, and
has been applied to the pattern recognition and func-
tion estimation [13]. The empirical risk minimization
(ERM) principle is generally employed in the classical
methods such as the least-square methods, the maxi-
mum likelihood methods and traditional ANN. In
SVM, the ERM is replaced by the SRM principle, which
seeks to minimize an upper bound of the generaliza-
tion error rather than minimize the training error
[13,14].

In addition, the basic concept of the SVM regression
is to map the input data into a feature space via a non-
linear map. In the feature space, a linear decision func-
tion is constructed. The SRM principle is employed in
constructing optimum decision function. Then SVM
nonlinearly maps the inner product of the feature space
to the original space via kernels [15].

3. Experimental

3.1. Materials

The electrolyte was prepared from analytical grade
NaCl and NaOH from Merck Inc. (Germany) using
double distilled water. All other chemicals used for
analysis were also of analytical grade.

3.2. Apparatus

The cell performance test was carried out in a CA
set-up similar to a scaled-down industrial brine elec-
trolysis unit. Fig. 3 shows a simplified flow diagram
of the set-up used in this study. The cell was a divided
filter-press type (Electrocell AB, Sweden) with Flemion1

892 as the separator, a standard DSA Cl2 as the anode
and a Ni plate as the cathode. The electrode membrane
gap was 2 mm (See Fig. 4). The feed tanks were heated
by means of jacketed heaters and their temperatures

Fig. 2. A flowchart of working principle of genetic
algorithm [12].
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were monitored by digital thermometers. Galvano-
static operation was employed using a DC power

supply. Anolyte pH was measured by a pH-meter
inserted in the anolyte feed tank. The membrane was
immersed in a NaOH solution for a day to reach equi-
librium before each experiment.

3.3. Experimental procedure

The anolyte and catholyte were circulated in sepa-
rate hydraulic circuits during the experiment by two
magnetic pumps according to Fig. 3. The overflows
from the anolyte and catholye compartments of the cell
were fed into distinct separators. The bubble free elec-
trolytes were returned to the appropriate feed tanks for
further recirculation. During electrolysis, Cl2 gas pro-
duced was absorbed by 2M NaOH solution in D-03 and
then D-04. Constant currents were applied to the cell
and the cell voltages were measured. After each test,
the set-up was washed thoroughly with distilled water,
drained and dried. The electrolysis run times were 30,
60, 90, 120 and 150 min.

3.4. Chemical analysis

In order to measure the amount of caustic pro-
duced, catholyte samples were collected and titrated
against 0.1 N HCl. These data were then used for calcu-
lation of the CCE.

4. Results and discussions

4.1. Data collection

According to our experiences as well as those of
previous works [16–18] the important parameters
affecting the CA cell performance along with the levels
of these parameters are as follows: (1) anolyte pH: 2, 3,
4 and 5, (2) cell temperature (�C): 25, 50, 70 and 90 (3)
flow velocity (cm/s): 1.3, 2.2, 3.7 and 5.9, (4) brine
concentration (g/L): 200, 235, 270 and 300, (5) current
density (kA/m2): 1, 2, 3 and 4 and (6) run time: from
30 to 150 min. The latter are summarized in Table 1.

By running experiments under these conditions
using the procedure described elsewhere, cell voltage
and CCE data at various operating conditions were
obtained.

4.2. Calibration & models development

The cell voltage and CCE data were divided into
two data sets, consisting of training and validation test
data. In the training phase, a larger part of the data,
i.e. 75–80%, was used to train the models and the
remaining data, 20–25%, were used in the validation
phase.

Fig. 3. Process flow diagram of the chlor-alkali set-up
utilized: 1. Membrane flow cell (M.F. cell), 2. Electrolyte
tank (D-01, D-02), 3. Magnetic pumps (p-01, p-02), 4. Gas
separator (S-01, S-02), 5. Rotameter (RM-01, RM-02), 6. DC
power supply & 7. Two feed tank consist of NaOH for
neutralization produced chlorine (D-03, D-04).

Fig. 4. Side view of the membrane cell used in this study,
Cell body (Teflon), EPDM gasket, Standard DSA/Cl2 anode,
Flemion 892 membrane, Nickel cathode, Flow frame
(Teflon), Electrolyte inlet, Electrolyte outlet.

N. Shojaikaveh et al. / Desalination and Water Treatment 14 (2010) 135–145 139N. Shojaikaveh, S.N. Ashrafizadeh / Desalination and Water Treatment 14 (2010) 135–145



The scatter plots in Figs. 5–8 (a & b) provide
comparisons of the measured cell voltage and CCE
levels with the ANN & GA-derived test and train ones
respectively, while Figs. 9 and 10 (a & b) shows com-
parisons of the measured cell voltage and CCE levels
with those of the SVM-derived.

Different scenarios on the type of kernel and kernel
parameters for SVM & ANN structure were analyzed
to obtain the best fit to the given data in previous works
[6,7].

Also, in order to get performance variation informa-
tion for GA model, a total of five runs for cell voltage &
CCE are performed that the variation information is
shown in Tables 2 and 3, respectively.

According to these results, all data sets provide a
low average deviation (AD) among experimental
data, ANN, GA and SVM model predictions. Also
Tables 4 and 5 show the results of error analysis for
prediction outputs of cell voltage & CCE from a
developed ANN, GA & SVM models, respectively.

There are indicated that outputs from the GA &
ANN models are more accurate than SVM model for
cell voltage prediction with an AD of 1.21% & 1.27%,
respectively. On the other hand, SVM model is suitable
for the prediction of current efficiency with an AD (for
test validation data) of 1.53%.

4.3. Effect of operating parameters on the cell
performance indicators

Based on ANN, GA & SVM outputs, the effect of
controllable factors on mean responses for the CA cell
voltage is displayed in Fig. 11.

According to these results, cell voltage is enhanced
dramatically with current density while it is altered
slightly with the anolyte pH. On the other hand, the cell
voltage is significantly decreased with increasing the
cell temperature while only slightly with those of flow
rate and brine concentration. The cell voltage is also
decreased with run time.

R2 = 0.9969
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Fig. 5. The measured versus ANN-simulated for Cell Voltage (a) Train and (b) Test values.

Table 1
Levels of process parameters

pH Cell temperature
(�C)

Flow velocity
(cm/s)

Brine concentration
(g/L)

Current density
(kA/m2)

Run time
(min)

Level 1 2 25 1.3 200 1 30
Level 2 3 50 2.2 235 2 60
Level 3 4 70 3.7 270 3 120
Level 4 5 90 5.9 300 4 150
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The operating conditions to obtain a minimum
value for the cell voltage simulated by ANN & SVM
models are as follows: pH (2), T (90�C), Flow
(5.9 cm/s), Cbrine (300 g/L), ip(1 kA/m2) and run time
(150 min).

Another valuable response which is directly propor-
tional to the total energy consumed by an electrolysis cell
is the current efficiency. The CCE was thus measured
according to the procedures described in the experimen-
tal section and was calculated based on the following

equation [19]:

ZNaOH ¼
mðtÞ �mðt ¼ 0Þ
ðIt=nFÞ �MWNaOH

¼ mðtÞ �mðt ¼ 0Þ
ðIt=nFÞ � 40

ð1Þ

The impacts of various operating parameters on the
CCE, based on ANN & SVM results, are shown in Fig. 12.

According to Figs. 11 and 12, the current efficiency
decreases with pH due to the production of by pro-
ducts such as hypochlorite and chlorate in the anolyte

R2 = 0.9992
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Fig. 7. The measured versus GA-simulated for Cell voltage (a) Train and (b) Test values.
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Fig. 6. The measured versus ANN-simulated for CCE (a) Train and (b) Test values.
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solution at higher pH while pH does not have a sensi-
ble impact on the CA cell voltage.

As it is seen, CCE improves with cell temperature due
to depressing of the side reactions while the overall cell
voltage decreases with temperature because of a decrease
in the voltage components of the cell such as decomposi-
tion potential, IR drops and the overpotentials.

By increasing electrolyte velocity, a slight decrease
in the cell voltage can be observed as shown in Fig. 11.
This may be caused by a reduction in the amount of
attached H2 and Cl2 bubbles on both sides of the mem-
brane and the bubbles remained within the catholyte

and anolyte [20,21]. The presence of the bubbles
decreases the actual conductivity of the electrolyte and
thus increases the cell voltage.

The cell voltage is also decreases slightly with brine
concentration within the brine concentration range
studied, but the effect of brine concentration on current
efficiency is pronounced, as seen in Fig. 12. This is
likely to be due to suppressing the oxygen evolution
as a major side reaction at low brine concentrations.

According to the data of these Figures, the current
density was discovered to be the most remarkable
parameter influencing the cell voltage and current

R2 = 0.995

3

4

5

6

7

8

9

10

11

3 4 5 6 7 8 9 10 11

Measured cell voltage (V)

SV
M

 s
im

ul
at

ed
 c

el
l v

ol
ta

ge
 (

V
)

(T
ra

in
)

R2 = 0.988

3

4

5

6

7

3 4 5 6 7

Measured cell voltage (V)

SV
M

 p
re

di
ct

ed
 c

el
l v

ol
ta

ge
 (

V
)

(T
es

t)

(a) (b)

Fig. 9. The measured versus SVM-simulated for cell voltage (a) Train and (b) Test values.
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Fig. 8. The measured versus GA-simulated for CCE (a) Train and (b) Test values.
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efficiency. These facts were expected to consider the
ohms law for the cell voltage (~VCell ¼ I � RCell); and
Eq. (1) describing the inverse relationship between cur-
rent density and CCE.

Both functions have a downtrend with increasing
run time. The lower CCE achieved at higher run times.
In other words, the higher caustic concentration may
be due to the OH� back migration toward anolyte at
higher run times. The catholyte conductivity enhances
with NaOH concentration within the caustic

concentration range studied resulting in a decrease in
the cell voltage.

5. Conclusions

Cell voltage and CCE are widely employed for
improving or enhancing the performance of chlor-
alkali membrane cells. Therefore, accurate prediction
of CCE and cell voltage is of utmost importance. In this
study novel non-parameter regression methods for the
prediction of cell voltage and CCE were developed.
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Fig. 10. The measured versus SVM-simulated for CCE (a) Train and (b) Test values.

Table 2
Performance variation information of GA for different runs of cell voltage

Run Structure profile Train error Test error Train performance Test performance

1 RBF 4:4-16-1:1 0.099 0.194 0.155 0.300
2 Linear 5:5-1:1 0.070 0.068 0.311 0.324
3 Linear 6:6-1:1 0.070 0.066 0.310 0.315
4 MLP 5:5-5-1:1 0.022 0.052 0.122 0.297
5 MLP 6:6-10-7-1:1 0.006 0.034 0.028 0.138

Table 3
Performance variation information of GA for different runs of CCE

Run Structure profile Train error Test error Train performance Test performance

1 RBF 6:6-3-1:1 16.367 16.008 0.795 0.908
2 RBF 6:6-7-1:1 13.877 12.958 0.674 0.686
3 Linear 6:6-1:1 0.156 0.157 0.681 0.767
4 MLP 6:6-8-1:1 0.029 0.073 0.157 0.465
5 MLP 6:6-10-6-1:1 0.024 0.074 0.130 0.465
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Based on the results obtained in this study, the
following conclusions are drawn:

• Non-parameter regression methods can be used to
predict the process variables & impacts of operating
parameters including pH, temperature, flow rate,
brine concentration, current density and run time in
experimental systems such as membrane cell of
chlor-alkali.

• This technology has been shown to be a useful tool
not only to approximate but also to predict cell vol-
tage and CCE versus process parameters in mem-
brane chlor-alkali cell.

• ANN, SVM & GA models were able to predict the
cell voltage values with an AD of 1.27%, 1.59% and
1.21%, respectively.

• Prediction of ANN, SVM & GA models for CCE
values in test validation data have an AD of 3.50%,
1.53% and 1.77%, respectively.

• The current density and cell temperature have the
highest effect values on the cell voltage.

• Based on simulated outputs, the following operating
conditions are proposed to maximize the current effi-
ciency and minimize the cell voltage: pH ¼ 2; Tem-
perature ¼ 90�C; flow rate ¼ 5.9 cm/s; brine
concentration ¼ 300 g/L; and current density ¼
1 kA/m2.

• The comparison between GA model in this work and
ANN & SVM modes from previous works [17,18], is
shown that developed GA & ANN models can fore-
cast the cell voltage, and the developed SVM model
can predict CCE values, more accurately.

Acknowledgements

Financial support of Iranian National Elites Foun-
dation is highly acknowledged.

Symbols

AD Average deviation ¼ 1
n

Pn
i¼1

� yexp : � ycal:

yexp :

�
� 100

Cbrine Brine concentration, g/L
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Fig. 11. Effect of various operating parameters on the cell
voltage resulted from the models.
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Fig. 12. Effect of various operating parameters on the CCE
resulted from the ANN & SVM based models.

Table 5
Error analysis for prediction outputs of CCE

Method Error
analysis

Test validation
data

Train
data

Overall
data

ANN [17] AD% 3.50 2.27 3.14
R2 0.802 0.903 0.879

SVM [18] AD% 1.53 0.79 0.98
R2 0.873 0.966 0.943

GA AD% 1.77 0.52 0.87
R2 0.809 0.983 0.941

Table 4
Error analysis for prediction outputs of cell voltage

Method Error
analysis

Test validation
data

Train
data

Overall
data

ANN [6] AD% 2.46 0.94 1.27
R2 0.989 0.997 0.995

SVM [7] AD% 2.52 1.29 1.59
R2 0.988 0.995 0.993

GA AD% 2.82 0.67 1.21
R2 0.981 0.999 0.994
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F Faraday’s constant (96,458 C/mol)
F Electrolyte velocity, cm/s
I Current, kA
m(t ¼ 0) Mass of initial caustic soda, 5 g
m(t) Mass of produced caustic at time t, g
MwNaOH Caustic molecular weight, 40 g/mol
N Number of exchange mole electron
R2 R-squared value
t Run time, s
X, X1. . .,
Xp

Independent or predictor variables

y(x) Artificial neural network output
ZNaOH Caustic current efficiency
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