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abstract
At the time being there are several technological designs of membrane-based seawater reverse os-

mosis (SWRO) pretreatment systems on the desalination market. The abundance of different mem-
brane materials and configurations (pressurized/submerged/inside-out/outside-in etc.) combined 
with site specific conditions make the unbiased assessment of their general performance a difficult 
task. In this paper we suggest a data mining method based on the principal component analysis 
(PCA) to serve as a more systematically logical regression tool on currently available literature data. 
PCA is a multivariate statistical method that uses a linear transformation for dimension reduction 
and pattern recognition. The results show how this method can be used effectively in the case of 
SWRO membrane based pretreatment for both literature data reconciliation and reconstruction, 
as well as for future data prediction.
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1. Introduction

The use of porous membranes for the pretreatment 
of seawater in the reverse osmosis desalination industry 
has been on the rise since the beginning of the century. 
Membrane pretreatment involves removing seawater 
borne fouling inducing substances such as suspended 
solids, colloids, organics and bacteria. This step is essen-
tial if the reverse osmosis (RO) process is to be operated 
in an efficient manner with as little (fouling induced) 
RO membrane performance reduction as possible. There 
are currently several companies supplying membrane 
technology for seawater treatment but there is neither 
an official nor unofficial industry standard for the de-

sign or operation of this technology [1]. This is a typical 
characteristic of a still-immature technology that has 
not yet found its optimal point. RO desalination, on the 
other hand, can already be considered a well-established, 
well-proven membrane technology utilizing cross flow 
operation of unofficially standardized 4 or 8 inch spiral 
wound composite polyamide elements aligned in a row 
inside a horizontal pressure vessel. It is still constantly 
improving and changing, but that is mostly due to de-
velopment of better membrane chemistry (increasing 
water flux and salt rejection) or some process operation 
optimization, and not so much due to changes of the 
mechanical, geometrical and physical design of the unit 
operations’ core technology.

When comparing that with the current state of the art 
in membrane pretreatment technology one sees a com-* Corresponding author.
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pletely different picture. Although most solutions today 
deploy dead-end filtration through hollow fibers of an 
ultrafiltration membrane (usually having a molecular 
weight cut off of around 100 kDa), the physical design 
of the units themselves as well as their operation modes 
have a large spectrum of variance. Some use inside-out 
filtration while others use outside-in filtration. Some use 
pressurized vessels (either horizontal or vertical) while 
others prefer submerged membrane tanks with the fil-
trate being sucked out under vacuum. The membrane 
elements’ geometry, materials (most common ones are 
polyvinylidiene fluoride (PVDF), polyether sulfone (PES) 
and polysulfone (PS)) and packing are also inconsistent 
when comparing products of different companies (some 
of the main suppliers and their technology are listed 
in Table  1). This in turn affects the different operation 
parameters: filtration fluxes, trans-membrane pressures, 
backwash fluxes and frequency, chemical use for coagula-
tion as well as for membrane cleaning, air scouring and 
others all make the membrane pretreatment process 
design and operation question not only site specific but 
also vendor specific. Furthermore, unlike the RO systems, 
using different elements in the same skid is currently not 
possible, making membrane pretreatment systems pro-
prietary ones [2]. As a result, not only the over-all plant 
flexibility and sustainability are impaired [3], but also 
the unbiased assessment and comparison of the general 
performance of different membrane plants becomes a 
difficult task. For example if certain process parameters 
of an existing plant are documented in the literature, how 
can one estimate the value of a different parameter of the 
same plant when it is not given? Furthermore, how can 
one make a prediction regarding theoretical non existing 
plants regardless of the membrane vendor? Consider a 
known seawater intake water quality and desired filtrate 
flow rate: How can one forecast the expected chemical 
demand of an ultrafiltration plant regardless of its con-
figuration? This could prove to be especially important 
when trying to generally assess entire processes regarding 
aspects such as economical feasibility or environmental 
impacts. Relying on published literature and guessing the 

Table 1
Common types of membrane pretreatment solutions for SWRO

Manufacturer Product Material Pore size (µm) Configuration

Dow SFP PVDF 0.03 Outside–in
Hydranautics Hydracap PES 0.02–0.025 Inside–out
Inge Multibore PES 0.01–0.025 Inside–out
Koch PMPW PS 0.01–0.02 Inside–out
Siemens Memcor PVDF 0.04 Submerged
Norit Seaguard PES 0.02–0.025 Inside–out
Pall Microza PVDF 0.01 Outside–in
Zenon Zeeweed PES 0.01–0.025 Submerged

values of process parameters which are not documented 
could be a necessary and yet very inexact process. Usu-
ally, one has to use some kinds of inaccurate rules of 
thumb, semi-educated guesses or pure averages to pro-
spectively estimate certain process parameters. Based on 
multivariate statistics, the method proposed in the next 
section does that in a more mathematically and logically 
sound manner.

2. Materials and methods 

Multivariate analysis is a field in statistics that search-
es to study and explain the behavior of more than one 
statistical variable at a time. PCA is one of the multivari-
able analysis methods that can be used on a data set in 
order to investigate it for existing patterns and internal 
behaviors.

The covariance is a two dimensional size that tells us 
how much two variables’ dimensions vary from their sta-
tistical mean with respect to each other. For a two variable 
(x, y) sample the covariance estimator is calculated using:
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where ,x y  are the means, n the number of samples and 
i their indexes. When the covariance is positive, the two 
samples have a positive linear connection between them. 
When the covariance is close or equal to zero, the two 
groups have no linear connection between them and no 
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The main diagonal of the covariance matrix contains 
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the one dimensional variance: A measure of how much 
each variable is spread around its own mean.

Every matrix can be seen as a linear transformation 
over a specific basis in vector space. It takes vectors from 
one defined space into the other. Whenever a linear trans-
formation, implemented as multiplication by a matrix, is 
imposed on an arbitrary vector, the result is a new vector 
spread in a new vector space belonging to that matrix. 
This new vector usually has different length and dif-
ferent direction, which represent the same information 
in another spanned vector space. There are however, 
special vectors that do not change their direction when 
transformed by a matrix, rather only their size (Fig. 1). 
These are the eigenvectors of that matrix and they can be 
understood as the ones spanning the new space connected 
with that matrix/linear transformation. They can be found 
using Eq. (3). The degrees to which these eigenvectors ( v ) 
change their size are often referred to as eigenvalues (λ).

0v v− λ =A I


   (3)

Eigenvectors are orthogonal and linearly independent. 
As a result, one can express all of the information in the 
matrix’s space (known as eigenspace) using a linear com-
bination of the eigenvectors.

The principal components can be understood as none 
other than the eigenvectors of the covariance matrix. Due 
to linear algebra properties, the trace of the covariance 
matrix is exactly equal to the sum of its eigenvalues, 
meaning that the eigenvalues can be treated as variance 
components. By dividing each eigenvalue with the sum 
of all eigenvalues one can determine what part of the 
variance in the original data is being accounted for by 
this specific eigenvalue and its corresponding eigenvec-
tor. By finding the eigenvalues and eigenvectors of the 
covariance matrix, one can use only the most significant 
eigenvectors, corresponding to the biggest eigenvalues, 
in order to express the data in a new space which has 
fewer dimensions than the original space of the covari-
ance matrix. This can be understood as compressing the 
data, keeping only the important information or patterns 
in it, and getting rid of the unwanted parts such as noises 
or unimportant dynamics. Generally speaking, principal 
component analysis can be seen as an orthogonal linear 

Fig. 1. Eigenvector in a two-dimensional system.

transformation, transforming the data to a new coordinate 
system in which the first axis projects the biggest variance 
in the data (Karl Pearson, inventor of PCA, called it “line 
of best fit”), the second axis the second biggest variance 
and so on [4].

At this point a large amount of statistical data should 
be collected in order to form a sound representation of 
the covariances and linear relations between different 
process parameters. The statistical data set used in this 
work is process information taken from 20 different 
pilot or industrial plants that was gathered by exten-
sive literature research. These 20 publications describe 
different SWRO plants around the world, all utilizing 
different ultrafiltration membrane technology as pretreat-
ment under different conditions. Since the membrane 
technology is constantly evolving, we have focused our 
search on information published in the last 5 years. The 
16 gathered parameters either refer to inlet seawater 
quality (temperature, TSS, SDI, turbidity, TOC, TSS), 
membrane operation (flux, transmembrane pressure, 
cleaning regime), chemical use (Fe coagulation, NaOCl 
concentration in chemically enhanced backwashes) or 
over-all process information (production rates, recovery, 
UF configuration, energy demand). In the case a certain 
parameter was not given, an average value from all of 
the other publications was used (not always resulting in 
logical values but considered a common way of handling 
missing data in PCA [4]). For the UF configuration the 
following markers were used: 1 = pressurized outside-
in, 2 = pressurized inside-out, 3 = submerged outside-in. 
The data is shown in Table 2 with the arithmetic average 
values highlighted. A ‘|’ or a ‘;’ sign mean several param-
eters were given or tested in one reference (as they were 
in this analysis). The bracketed numbers on the first row 
correspond to the reference numbers.

Before applying the principal component analysis the 
data must be transformed into a 16×16 covariance matrix. 
In this case, because the different variables have very 
different units and variances, a more prudent approach 
would be to use the correlation matrix instead. The cor-
relation matrix is nothing else but the covariance matrix 
normalized to the different variables’ standard deviation. 
This makes sure that there is no over significance given 
to large numbers in the data.

3. Results and discussion

After building the correlation matrix (including mean 
centration and standard deviation scaling), the 16 prin-
cipal components and their respective eigenvalues (the 
variances) were found. A depiction of the first 12 PCs’ 
relative contribution to the overall correlation in the data 
set is shown in the Pareto diagram in Fig. 2. 

As it implies from this analysis, 8 principal compo-
nents can be used to explain 83.78% of the data’s variance. 
This means we can shrink down the dimension size of 
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the problem in half (from 16 to 8), while still retaining a greater part of the information regarding the correlation 
between the variables. The eight normalized vectors are the columns of the following V matrix going left to right in 
order of significance:

0.176 0.424 0.167 0.175 0.371 0.073 0.091 0.269
0.436 0.036 0.210 0.165 0.137 0.335 0.011 0.263
0.045 0.093 0.094 0.129 0.033 0.769 0.189 0.308
0.193 0.194 0.310 0.391 0.010 0.141 0.257 0.129
0.464 0.102 0.139 0.254

− − − −
− − − − −
− − −
− −
− − − −

=V

0.047 0.241 0.049 0.013
0.022 0.153 0.165 0.310 0.334 0.161 0.610 0.270
0.304 0.158 0.053 0.208 0.007 0.230 0.252 0.555
0.021 0.241 0.437 0.381 0.037 0.169 0.134 0.189
0.255 0.074 0.387 0.317 0.243 0.238 0.082 0.213

− −
− − − − −
− − − −
− − −
− − − − −
−0.117 0.184 0.450 0.129 0.402 0.025 0.181 0.009

0.375 0.159 0.206 0.035 0.022 0.167 0.419 0.255
0.287 0.408 0.105 0.102 0.092 0.006 0.044 0.214
0.142 0.400 0.082 0.307 0.065 0.053 0.175 0.201

0.144 0.422 0.061 0.334 0.3

−
− − − −
− − − − − −
− − − − −

− 70 0.063 0.114 0.117
0.296 0.277 0.317 0.078 0.133 0.116 0.362 0.087
0.02 0.188 0.057 0.287 0.582 0.018 0.207 0.335

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
 − −
 − − − − − − 

 (4)

Fig. 2. Pareto diagram of the first 12 principal components.

The regression method for data prediction or recon-
ciliation proceeds as follows: since every point in the 16 
dimensional correlation space can be described as a linear 
combination of the principal components and since we 
chose only 8 components to reproduce and downscale 
that space, any point in the 16 dimensional space can be 
fully described in the 8 dimensional space by knowing 
only 8 of its coordinates. In other words, in order to fully 
define one point of information, k, one needs to solve 
Eq. (5):

( ) ( )1 2 8 1 2 8, ,... , , ,... ,T Ta a a a k k k k⋅ = ⋅ = =V V


  (5)

by knowing 8 of k’s 16 coordinates and fully determining 
a . As an example, let us presume we know the first five 
entries of an imaginary data point applying to the feed 
water’s quality: temperature = 22°C, TSS = 30 mg/l, SDI 
= 20, NTU = 7 and TOC = 5 mg/l. Now only three more 
entries are needed in order to solve the problem. Let us 
assume we are planning a 10,000 t/d SWRO plant with a 
20,000 t/d inside-out UF system as a pre-treatment. What 
would be some of the UF operation parameters we can 
predict from the PCA? At first we need to center our data 
around the mean and normalize with the standard devia-
tion of each variable (as we did with the original data). 
This makes sure our data is placed in the correct area of 
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the principal components’ vector space. Next we simply use this data to solve Eq. (5), first by finding the vector a

and then figuring out the other entries of k. These entries correspond to the data we are looking for but since they 
still need to be translated back to the units of the original parameters, we first have to multiply each one of them 
with the appropriate standard deviation and add the mean. The result is:
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which makes sense as a high flux and (relatively) high 
pressure operation utilizing relatively frequent NaOCl 
chemically enhanced backwashes.

Other estimations are made possible using any 8 of the 
16 starting parameters but one has to take the following 
into consideration:

Choose reasonable starting parameter values (within 
the ranges provided in Table 2).

Be critical in handling and interpretating parameters 
which are not well documented by the literature data. 
These are easy to identify in Table 2 as the rows having the 
most highlighted cells (such as energy demand or SDI).

A failure in doing so can give faulty results which 
may make no sense in reality (such as negative or very 
large numbers). One should keep in mind that PCA as-
sumes linear connections between variables and that 
high signal-to-noise ratios exist within the data. This 
is not always the real life case when handling process 
related statistics, but as a basic approximation, PCA can 
give useful results which are often more reasonable than 
using thumb-ruled based estimations. This enables the 
user to perform general assessments of SWRO membrane 
pretreatment systems without conforming to a specific 
vendor assumption. Currently, the amount of data col-
lected for this analysis is only sufficient for a basic, rough 
prediction. For better accuracy, one should increase the 
size of the sampled data set by collecting more docu-
mented information from the literature.

4. Conclusions

This paper has introduced the PCA-Regression 
method for the systematic retrieval of undocumented data 
and estimation of membrane technology performance in 
SWRO pretreatment. For the first time, such a multivari-
ate statistical method was applied to large data collected 
from recent literature. The method is very helpful when 
one is looking to generally analyze proprietary, location-
dependent UF technology for SWRO pretreatment (for 
example for economic or environmental assessment). 
Since the method includes the use of orthogonal regres-
sion (based on the principal components), the estimation 
can be made from any variable to another even when all 
variables contain inaccuracies (an advantage over nor-
mal regression which assumes inaccuracies only in the 
predicted variables).

Future work would include increasing the accuracy 
of the analysis by collecting more data. 

The next step would be using this method for a gen-
eral analysis of membrane based SWRO pretreatment for 
the sake of either comparing different manufacturers or 
comparing the technology as a whole with that of con-
ventional rapid filtration. 
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