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A B S T R AC T

In this paper, the effect of heat generation and radiation parameters on MHD fl ow along a 
uniformly heated vertical fl at plate in the presence of a magnetic fi eld has been investigated 
numerically. The nonlinear partial differential equations, governing the problem under consid-
eration for this analysis are transferred to simultaneous nonlinear ordinary differential equa-
tions of fi rst order and those are further transformed into initial value problem by applying 
Multi-segment integration technique. Finally, solutions are obtained by integrating the initial 
value problem using fourth order Runge-Kutta integration scheme. Rosseland approximation 
is used to describe the radiative heat fl ux in the energy equation. Comparison with previously 
published work is performed and excellent agreement with the results is obtained. Numerical 
results for the details of the temperature profi les are shown graphically with the variation of the 
governing parameters considering in the present problem. 
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1. Introduction

The importance of the radiation effect on MHD fl ow 
and heat transfer problems has found increasing attention 
in industries. At high operating temperature, radiation 
effect can be quite signifi cant. Many processes in engi-
neering areas occur at high temperatures and knowledge 
of radiation heat transfer becomes very important for the 
design of pertinent equipment. Nuclear power plants, 
gas turbines and the various propulsion devices for air-
craft, missiles, satellites and space vehicles are examples 
of such engineering areas. Most of the existing analytical 
studies for this problem are based on the constant physi-
cal properties of the ambient fl uid. However, it is known 
that these properties may change with temperature, 

especially fl uid viscosity. To accurately predict the fl ow 
and heat transfer rates, it is necessary to take into account 
this variation of viscosity with temperature.

Ostrach [1] presented the similarity solution of natu-
ral convection along vertical isothermal plate. Kay [2] 
reported that thermal conductivity of liquids with low 
Prandtl number varied linearly with temperature in 
range of 0–400°F. Arunachalam and Rajappa [3] con-
sidered forced convection fl ow of liquid metals (having 
low Prandtl number) with variable thermal conductiv-
ity and derived explicit closed form of analytical solu-
tion. Chaim [4] also studied heat transfer in fl uid fl ow of 
low Prandtl number with variable thermal conductivity. 
Carey and Mollendorf [5] observed the effect of temper-
ature dependent viscosity on free convective fl uid fl ow. 
Crepeau and Clarksean [6] discussed similarity solu-
tion of natural convection with internal heat generation, *Corresponding author.
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which decayed exponentially. Chamkha and Khaled [7] 
obtained similarity solution of natural convection on an 
inclined plate with internal heat generation or absorp-
tion in presence of transverse magnetic fi eld.

The thermal radiation of a gray fl uid, which is emit-
ting and absorbing radiation in a non-scattering medium 
has been examined by Ali et al. [8], Ibrahim [9], Mansour 
[10], Hossain et al. [11] and Elbashbeshy and Dimian [12]. 
In the aspect of convection and radiation, Viskanta and 
Grosh [13] considered the effects of thermal radiation 
on the temperature distribution and the heat transfer in 
an absorbing and emitting media fl owing over a wedge 
by using the Rosseland diffusion approximation. This 
approximation leads to a considerable simplifi cation in 
the expression for radiant fl ux. In Viskanta and Grosh 
[13] and Raptis [14], the temperature differences within 
the fl ow were assumed suffi ciently small such that T4 
might be expressed as a linear function of temperature, 
i.e.T4 ≈ 4(T∞)3T − 3(T∞)4. Hossain et al. [15] investigated the 
natural convection–radiation interaction on a boundary 
layer fl ow along a vertical plate with uniform suction. 
Yih [16] investigated the natural convection fl ow of an 
optically dense viscous fl uid over an isothermal trun-
cated cone. Recently, Bataller [17] investigated radiation 
effects in the laminar boundary layer about a fl at-plate in 
a uniform stream of fl uid. He found that as the value of 
radiation parameter increases, a diminution in the ther-
mal radiation’s effect occurs. Later, he studied radiation 
effects for the Blasius and Sakiadis fl ows with a convec-
tive surface boundary condition [18]. A comparison of 
these two fl ows was described in this work. 

Chen [19] performed an analysis to study the MHD 
natural convection fl ow over a permeable inclined sur-
face with variable wall temperature and concentration. 
The results showed that the velocity was decreased in 
the presence of a magnetic fi eld and with the increase 
of the angle of inclination, the effect of buoyancy force 
decreased. Heat transfer rate was however increased 
when the Prandtl number was increased. Duwairi [20] 
investigated the effect of viscous and Joule heating on 
forced convection fl ow from radiative isothermal sur-
faces. He found that the heat transfer rate was decreased 
when the radiation parameter was increased. Duwairi 
and Damseh [21] also studied the convection heat trans-
fer problem with radiation effects from vertical surface 
for buoyancy aiding and opposing fl ows. They concluded 
that increasing the conduction – radiation parameter 
decreased the heat transfer rates for the buoyancy aided 
fl ow and increased them for the buoyancy opposing fl ow. 
Ibrahim et al. [22] investigated similarity reductions for 
problems of radiative and magnetic fi eld effects on free 
convection and mass transfer fl ow past a semi-infi nite 
fl at plate. They obtained new similarity reductions and 
found an analytical solution for the  uniform magnetic 

fi eld by using Lie group method. They also presented 
the numerical results for the non-uniform magnetic 
fi eld. Seddeek [23] investigated effects of radiation and 
variable viscosity on a MHD free convection fl ow past a 
semi-infi nite fl at plate with an aligned magnetic fi eld in 
the case of unsteady fl ow. The effect of variable viscosity 
on hydromagnetic fl ow and heat transfer past a continu-
ously moving porous boundary with radiation was fur-
ther studied by Seddeek [24].

In the present paper, investigation is carried out for 
the thermal radiation interaction of the boundary layer 
fl ow of electrically conducting fl uid past a uniformly 
heated vertical plate embedded in a porous medium. 
The governing equations are converted into nonlinear 
system of coupled ordinary differential equations and 
solved numerically using Multi-segment integration 
technique. The normalized similarity solutions are then 
obtained numerically for various parameters entering 
into the problem and discussed them from the physical 
point of view.

2. Mathematical formulation of the problem

Let us consider a steady, two-dimensional fl ow of 
a viscous, incompressible and electrically conducting 
fl uid of temperature T∞ past a semi-infi nite heated ver-
tical plate having constant temperature Tw (where, Tw > 
T∞). A magnetic fi eld of uniform strength, Bo is applied 
perpendicular to the plate. The magnetic Reynolds 
number is taken to be small enough so that the induced 
magnetic fi eld can be neglected. The fl ow is assumed 
to be in the x-direction, which is taken along the plate 
in the upward direction and y-axis is normal to it. The 
fl ow confi guration and the coordinate system are shown 
in Fig. 1. In order to consider the effect of radiation, in 
terms of the radiative heat fl ux, the Rosseland approxi-
mation is incorporated in the energy equation. The radi-
ative heat fl ux in the x-direction is considered negligible 
in comparison to the y-direction. Within the framework 
of the above-noted assumptions, it is considered that the 
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Fig. 1. Flow confi guration and coordinate system.
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boundary layer approximations hold and the govern-
ing equations relevant to the problem in the presence of 
radiation are given by
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where u and υ are the velocity components along x and 
y coordinates respectively, U(x) is the free stream veloc-
ity, ν = μ/ρ  is the kinematic viscosity, μ is the coeffi -
cient of dynamic viscosity, ρ is the mass density of 
the fl uid, σ is the electrical conductivity of the fl uid, Bo 
is the magnetic induction, K* is the Darcy permeability, 
T is the temperature of the fl uid in the boundary layer,  
T∞ is the temperature of the fl uid outside the boundary 
layer, cp is the specifi c heat of the fl uid at constant pres-
sure, κ is the thermal conductivity and qr is the radiative 
heat fl ux.

It is assumed that the velocity of the free stream is in 
the form of

U(x) = a x + c x2 (4)

where a and c are constants.
In the free stream u = U(x), Eq. (2) reduces to
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By using Rosseland approximation, qr [25] for radia-
tion from an optically thick layer (Ali et al. [8]), it can be 
written as follows
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where σ* is the Stefan–Boltzmann constant and κ* is the 
mean absorption coeffi cient.

Moreover, the temperature differences within the 
fl ow are assumed to be suffi ciently small such that T4 
may be expressed as a linear function of temperature. 
This is accomplished by expanding T4 in a Taylor’s 
series about T∞ and neglecting higher-order terms, 
thus 
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By using Eqs. (7) and (8), Eq. (3) gives
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The corresponding boundary conditions for the 
above problem are given by
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In order to obtain a solution of Eqs. (1), (6) and (9), 
the following transformations are introduced:
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where prime denotes differentiation with respect to η.
In view of (11), Eq. (1) is satisfi ed identically and 

Eqs. (6) and (9) reduce to
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The nonlinear system of coupled differential Eqs. 
(12)–(15) together with the boundary conditions (16) 
are solved numerically using Multi-segment integra-
tion technique. First of all, higher order nonlinear dif-
ferential Eqs. (12)–(15) are converted into simultaneous 
linear or nonlinear differential equations of order fi rst 
and they are further transformed into initial value 
problem by applying Multi-segment integration tech-
nique (Kalnins and Lestingi [26]). Once the boundary 
value problem is reduced to initial value problem, it is 
then solved using Runge-Kutta fourth order technique 
(Jain [28]). Now rewrite the governing Eqs. (12)–(15) 
into a set of fi rst order ordinary differential equations 
as follows:

⇒
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The fundamental set of nonlinear equations (17) 
together with the boundary conditions (16) has to 
be integrated over a fi nite range of the independent 
variable η. However, the numerical integration of 
these equations is not possible beyond a very limited 
range of η due to the loss of accuracy in solving for 
the unknown initial values, as pointed out by Sepe-
toski et al. [27]. Thus, the multi-segment integration 
technique developed by Kalnins and Lestingi [26] has 
been used in this analysis. If the fundamental variables 
f f f g g g T T T T, , , , , , , , ,′ ′′ ′ ′′ ′ ′

0 0 1 1  of Eqs. (17) are repre-
sented in matrix notation by [w] in a standard form as 
follows:
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The boundary conditions Eqs. (16) can be rearranged 
in the following form as follows:

A w(0) + B w(η→∞) = C, (20)
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Let us consider the initial value problem correspond-
ing to boundary value problems,
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with

W I and W W where i ji j0 1 10
10 10

( ) = = ≤ ≤
×

[ ] ,,
 (22)

G J where J
F F F F F F F F F F

w w w w w
0 1 2 3 4 5 6 7 8 9 10

1 2 3 4

( ) = =[ ]
, , , , , , , , ,

, , , , 55 6 7 8 9 10, , , , ,w w w w w

⎛
⎝⎜

⎞
⎠⎟

 (23)
where I is the Identity matrix and J is the Jacobian 
matrix.

In which,

G

G

G

G

G

G

G

G

G

G

j

j

j

j

j

j

j

j

j

j

1

2

3

4

5

6

7

8

9

10

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥

=

− + + +( )

=j

j

j

j j j j

j

w

w

w w w w w w N M w

w

w

1 2 10

2

3

2 2 1 3 1 3 2

5

6

2

, ,..,

( )

jj

j j j j j j j

j

w w w w w w w w w w w w N M w

w

− + + + − + + +( ) ( ) ( ) ( )1 6 1 6 2 5 2 5 3 4 3 4 5

8

3 2

PPn Q w w w w w

w

Pn w w w w w w w w

j j j

j

j j j j

7 1 8 1 8

10

2 9 2 9 1 10 1 10

− +( ){ }

− − +( ) + +(( ) + +( ){ } −

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

w w w w PnQ wj j j4 8 4 8 9

⎪⎪
⎪

 (24)

3. Results and discussion

To assess the accuracy of the present code, the 
graphs of similarity temperatures T0(η) and T1(η) for 
different radiation parameter have been plotted where 
the Prandtl number and magnetic parameter are taken 
fi xed at 0.71 and 0.8 respectively. These graphs are also 
compared with that of Raptis et al. [29] for K = 3 and 30. 
Fig. 2 shows the comparison of the temperature profi les 
T0 and T1 for P = 0.71 and N = 0.8 produced by the pres-
ent code and that of Raptis et al. [29]. They obtained the 
solution using Runge-Kutta shooting method whereas 
the scheme exploited in the present paper is Multi-seg-
ment integration technique. Infact, the results show a 
close agreement and thus give an encouragement for 
the use of the present code. Hence, the scheme used in 
this paper is stable and accurate. 

The aim of this work is to determine the effects of 
different parameters on the normalized similarity tem-
peratures T0(η) and T1(η). In the calculations, the val-
ues of magnetic parameter (N), Darcy parameter (M), 
heat generation parameter (Q), Prandtl number (P) and 
radiation parameter (K) are chosen arbitrarily. The effect 
of the Darcy parameter M on the normalized similarity 
temperatures T0(η) and T1(η) is shown in Fig. 3. From 
this fi gure, it is observed that temperature profi les T0(η) 
increase with the increase of M whereas T1(η) decrease 
at the same time. As the value of M increases, the resis-
tance to the fl ow also increases, which means that the 
temperature fi eld approximates more closely to the 
equivalent conductive state. Fig. 4 shows the effect of 
magnetic fi eld parameter (N) on the temperature pro-
fi les. This fi gure reveals that the normalized similarity 
temperature T0(η) shows no effect with the variation of 
magnetic fi eld parameter but similarity temperature 
T1(η) increases with the increase of N. This is due to the 
fact that the magnetic fi eld tends to retard the velocity 
fi eld, which in turn induces the temperature fi eld and 
thus results the increase of the temperature profi les. The 
magnetic fi eld can therefore be used to control the fl ow 
characteristics. In Fig. 5, the heat generation parameter 
(Q) is varied keeping all other parameters fi xed. It is 
found that the similarity temperatures T0(η) increase 
monotonically and similarity temperatures T1(η) also 
increase close to the plate as Q increases. However, after 
a short distance from the plate, the profi les overlap and 
decrease monotonically as Q increases. For different 
values of Prandtl number (P), signifi cant changes on 
temperature profi les are observed, which is presented 
in Fig. 6. From this fi gure, it can be concluded that in 
case of cooling the plate, normalized similarity tem-
perature T0(η) increases as P increases and similarity 
temperatures T1(η) also increases close to the plate. It 

Fig. 2. Comparison of the temperature profi les T0 and T1 for 
P = 0.71 and N = 0.8.
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4. Conclusions

An analysis is presented for the problem of MHD 
fl ow via a porous medium bounded by a semi-infi nite 
vertical plate. Numerical results are presented to illus-
trate the details of the heat transfer characteristics of 
an electrically conducting fl uid and its dependence 
on the material parameters in the presence of radia-
tion. Results show that the normalized similarity tem-
peratures T0(η) and T1(η) are greatly infl uenced by the 
variations of magnetic parameter (N), Darcy param-
eter (M), heat generation parameter (Q), Prandtl num-
ber (P) and radiation parameter (K). From the present 

is apparent that the peak region of each profi le move 
close to the plate as P increases and after a short dis-
tance from the plate, these profi les overlap and decrease 
monotonically.

All the above calculations have been carried out for 
a fi xed radiation parameter (K). Therefore, the effects 
of radiation parameter on temperature profi les are not 
clear from the earlier discussions. Fig. 7 shows the effect 
of radiation parameter (K) on the temperature profi les. It 
is observed that the temperature increases as K increases 
for both normalized similarity temperatures T0(η) and 
T1(η). It is also apparent from the fi gure that for large 
values of K, the profi les have less signifi cant effect.

Fig. 4. Temperature profi les with the variation of N for 
P = 0.71, M = 0.5, K = 3, Q = 0.5.

Fig. 3. Temperature profi les with the variation of M for 
P = 0.71, N = 0.5, K = 3, Q = 0.5.
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Fig. 5. Temperature profi les with the variation of Q for 
P = 0.71, M = 0.5, K = 3, N = 0.5.

calculation, it is observed that, when the Darcy param-
eter (M) increases the normalized similarity tempera-
ture T0(η) increases whereas the normalized similarity 
temperature T1(η) deceases.  It can be concluded that 
heat generation and magnetic fi eld parameter have 
increasing effect on the temperature profi les.  Prandtl 
number and Radiation effect also play a signifi cant 
role on the temperature profi les.
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Fig. 6. Temperature profi les with the variation of P for 
M = 0.5, N = 0.5, K = 3, Q = 0.5.

Nomenclature

B0 Magnetic fi eld intensity [T]
cp Specifi c heat at constant pressure [J/Kg K] 
I Identity matrix 
J Jacobian matrix 
K* Darcy permeability [TL3/M]
K Radiation parameter, Eq. (11 i)
M Darcy number, Eq. (11 g)
N Magnetic parameter, Eq. (11 f)
p Pressure [N/m2]
P Prandtl number (= ν / α)
Pn Radiative Prandtl number, Eq. (11 j)
qr Radiative heat fl ux [W/m2]
Q0 Volumetric rate of heat generation [W/m3]
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Q Heat generation parameter, Eq. (11 h) 
T Temperature within boundary layer [K]
Tw Temperature at the plate [K]
T∞ Temperature of the ambient fl uid [K]
u Velocity along x-axis [m/s]
U(x) Free stream velocity (= a x + c x2)
υ Velocity along y-axis [m/s]
x Coordinate along the plate [m]
y Coordinate normal to the plate [m]

Greek symbols

ρ Fluid density [kg/m3]
μ Coeffi cient of dynamic viscosity [kg/ms]

ν Kinematic viscosity [m2/s]
σ Electrical conductivity [S/m]
σ* Stefan-Boltzmann constant [W/m2K4]
κ Thermal conductivity of fl uid [W/m2k]
κ* Mean absorption coeffi cient 
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