
Finite Time Thermodynamic Optimization for Heat-driven Binary Separation
Processes

Lingen Chen�, Liwei Shu, Fengrui Sun

Postgraduate School, Naval University of Engineering, Wuhan 430033, P. R. China
Tel. þ862783615046; Fax: þ862783638709; email: lgchenna@yahoo.com and lingenchen@hotmail.com (Lingen Chen);
hjgc_slw@126.com (Liwei Shu); Hj9b@yahoo.com.cn (Fengrui Sun)

Received 14 October 2009; accepted 4 March 2010

A B S T R A C T

The performance of heat-driven binary separation processes with linear phenomenological heat
transfer law (q / �ðT�1Þ) is optimized by using finite time thermodynamics. Two perfor-
mance indexes, the dimensionless minimum average entropy production rate and
dimensionless minimum average heat consumption of the heat-driven binary separation
processes, are taken as optimization objectives, respectively. The separation processes
are viewed as heat engines which work between high- and low-temperature reservoirs
and produce enthalpy and energy flows out of the system. The temperatures of the heat
reservoirs are assumed to be time- and space-variables. The convex optimization pro-
blem is solved using numerical method, and the average optimal control problem is
solved using Lagrangian function. The major influence factors on the performance of the
separation process, such as the properties of different materials and various separation
requirements for the separation process, are represented by dimensionless entropy pro-
duction rate coefficient and dimensionless enthalpy flow rate coefficient. The dimen-
sionless minimum average entropy production rate and dimensionless minimum
average heat consumption of the heat-driven binary separation processes are obtained,
respectively.

Keywords: Linear phenomenological heat transfer law; Heat-driven separation; Binary separation
process; Heat consumption; Entropy production rate; Finite time thermodynamics
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1. Introduction

Separation process is one of traditional industry
fields with high energy consumption. The thermody-
namic study of separation process is of great impor-
tance because of world-wide overdevelopment and
shortage of energy. Some thermodynamic studies have

focused on the problem of decreasing the energy
consumption for separation process by using thermo-
dynamic theory, especially heat-driven separation
processes.

The performance bounds of heat engines, heat
pumps, and refrigerators have been studied with the
development of finite time thermodynamics [1–9].
Among them, the limits on the average power output
of heat engines are well known [10, 11]. The efficiency�Corresponding author
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of a heat engine at the maximum power point is lower
than or equal to 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TL=TH

p
, where TH and TL

(TH > TL) are the temperatures of high- and low-
temperature heat reservoirs. The efficiency is less than
the classical reversible limit 1� TL=TH because of the
finite rate of the process with fixed nonzero average
power output. The result is also suitable for separation
process. Many heat-driven separation processes can be
analyzed by taking them as heat engines which work
between high-temperature heat reservoir TH and low-
temperature heat reservoir TL and produce enthalpy
and energy flows out of the system (instead of power
output of the conventional heat engines). For separa-
tion process, there exists an upper bound on the aver-
age enthalpy flow rate of the system for fixed entropy
flow rate, or there exists a lower bound on the average
entropy flow rate of the system for fixed average
enthalpy flow rate. It implies that there exists an upper
bound on the average feed flow rate when proper
assumptions on input and output are made.

Finite time thermodynamics has been a powerful
tool for researching the performance of separation
processes [12]. Mullins and Berry [13] studied the
minimum average entropy production of perfect
separation process and imperfect separation processes.
The optimal locations of intermediate heat exchangers
that reduce entropy production are found. Brown et al.
[14] optimized the performance of a porous plug
separation system by taking ‘‘turnpike’’ (i.e.,
boundary-singular-boundary branch) trajectory. The
minimum work required to move the plug from one
equilibrium position to another in a given time period
was optimized. And the lower bound for the separa-
tion work of gases by diffusion was obtained. Kazakov
and Berry [15] calculated the upper bound on average
productivity and efficiency and the low bounds on
entropy production of an irreversible cyclic separation
process with space-variable temperature and chemical-
potential reservoirs via the generalized formalism of
finite time thermodynamics. Tsirlin et al. [16] derived
the new thermodynamic limits on the performance of
irreversible separation processes, including work of
separation in finite time (a generalization of Van’t Hoff
reversible work of separation for finite rate processes),
maximum productivity of heat-driven binary separa-
tion process, the minimum average dissipation and the
ideal operating line in an irreversible distillation col-
umn. The minimum dissipation level and the distilla-
tion column’s maximum productivity are achieved by
realizing the ideal operating line for the profiles of heat
supply/removal. The total entropy production of a
fully diabatic distillation column was minimized by
Schaller et al. [17]. The entropy production counts the
interior losses due to heat and mass flow as well as the

entropy generated in the heat exchangers. The results
show that a column design with consecutive interior
heat exchanger and only one exterior supply for each
of the two sections (stripping section and rectifying
section) is appealing. Koeijer et al. [18,19] improved the
model for minimization of entropy production rate in
diabatic tray distillation. Equal thermal driving force
distribution rule, linear with steam flow rate distribu-
tion rule, equal area distribution rule, and equal
entropy production rate distribution rule for heat
transfer area were studied. They found that heat
exchangers had a significant effect on the entropy pro-
duction rate and the minimum entropy production rate
was obtained when the heat exchangers were distribu-
ted with equal thermal driving force. Jimenez et al. [20]
carried out improvement on the model of the diabatic
distillation column. The diabatic distillation column
with fully controllable heat exchangers took place by
diabatic distillation column with sequential heat
exchangers. The exergy loss of diabatic distillation was
significantly reduced by sequential heat exchangers.
Shu et al. [21] improved the diabatic distillation model
and researched the optimal allocation of the heat
exchanger inventory for the sequential heat exchangers
in the diabatic distillation column. The optimal alloca-
tion of the heat exchanger inventory for the sequential
heat exchangers was obtained and the optimal perfor-
mance of the diabatic distillation column was achieved.

Orlov and Berry’s work [22] has been one of the
representative studies on heat-driven separation pro-
cesses by using finite time thermodynamic theory. The
separation process was assumed to be weakly periodic,
and simplified as a heat engine that works between
high- and low-temperature heat reservoirs and pro-
duces enthalpy and energy flows out of the system
(instead of power output of conventional heat engines).
The analytical expressions of minimum average heat
consumption and minimum average entropy produc-
tion rate for the process with fixed average enthalpy
flows and average entropy flows out of the system
were obtained. The minimum average heat consump-
tion problem for heat-driven separation process with
time-variable feed flow, time- and space-variable tem-
perature heat reservoirs was transformed to a convex
optimization problem and was solved with numerical
method.

Heat transfer law has effects on the performance of
various processes and devices [23–31]. Therefore, the
optimal performance of heat-driven binary separation
process with linear phenomenological heat transfer
law (q / �ðT�1Þ) is studied in this paper based on Ref.
[22] by using finite time thermodynamics. Two perfor-
mance indexes, the dimensionless minimum average
entropy production rate and dimensionless minimum
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average heat consumption of the heat-driven binary
separation processes, are taken as optimization objec-
tives, respectively. The temperatures of the heat reser-
voirs are assumed to be time- and space-variables. The
convex optimization problem is solved by numerical
method and the average optimal control problem is
solved by using Lagrangian function. The dimensionless
entropy production rate coefficient and dimensionless
enthalpy flow rate coefficient are adopted to indicate the
major influence factors on the performance of the separa-
tion process, such as the properties of different materials
and various separation requirements for the separation
process. The analytical expressions and the numerical
examples for the dimensionless minimum average
entropy production rate and dimensionless minimum
average heat consumption of the heat-driven binary
separation processes are obtained, respectively.

2. Physical model

A binary heat-driven separation process is shown in
Fig. 1. The heat transfer in the separation system
obeys linear phenomenological heat transfer law
(q / �ðT�1Þ). The flow rates of feed, product, and
waste are F, P, and W, respectively. The mass balance
equation of the binary separation process is

dN

dt
¼ F� P�W;

dNx

dt
¼ xFF� xPP� xWW; ð1Þ

where N and Nx are the total mole numbers of the mass
and the volatile mass in the system, xF, xP, and xW are
the volatile mass molar fractions in the feed, separation

output, and the waste, respectively. The major
assumptions made in this paper are:

(1) The changes of potential energy and kinetic energy
of flows are neglected;

(2) The separation process under consideration is a
binary one;

(3) The molar fractions xF, xP, and xW , enthalpies hF, hP,
and hW , and entropies sF, sP, and sW are stationary (inde-
pendent of time);

(4) The process is weakly periodic in material, energy,
and entropy, that is, Nð0Þ ¼ NðtÞ, Eð0Þ ¼ EðtÞ,
Sð0Þ ¼ SðtÞ, where time t is the period of the process.

Then, one can obtain the following equations:

�P ¼ �F ðxF � xWÞ=ðxP � xWÞ; ð2Þ

�W ¼ �F ðxP � xFÞ=ðxP � xWÞ; ð3Þ

where �F , �P , and �W are the average molar flow rates of
feed, product, and waste, respectively. The energy bal-
ance for the heat-driven binary separation process with
linear phenomenological heat transfer law is

dE

dt
¼ FhF � PhP �WhW þ

ð
AHðtÞ

aH
1

T
� 1

TH

� �
da

�
ð

ALðtÞ
aL

1

TL
� 1

T

� �
da;

ð4Þ

where EðtÞ is the total energy of the separation process,
hF, hP, and hW are the molar enthalpies of feed, product,
and waste, respectively. aH ¼ aHð�Þ is the heat transfer
coefficient between the process and the high-
temperature heat reservoir, and aL ¼ aLð�Þ is the heat
transfer coefficient between the process and the low-
temperature heat reservoir. Tðt; �Þ, THðt; �Þ and
TLðt; �Þ are the temperatures of the system, high-
temperature heat reservoir, and low-temperature heat
reservoir. AHðtÞ and ALðtÞ are the surface between the
process and the high-temperature heat reservoir, and
the surface between the process and the low-
temperature heat reservoir, and � ¼ ð�1; �2; �3Þ is a vec-
tor of coordinates of a point in the Cartesian system.
Integration in Eq. (4) is carried out over the area of the
surfaces AH and AL.

The entropy balance of the system is as follows

dS

dt
¼ FsF � PsP �WsW þ

ð
AHðtÞ

aH
1

T
� 1

TH

� �

T
da

�
ð

ALðtÞ

aL
1

TL
� 1

T

� �

T
daþ sðtÞ;

ð5Þ

TH

QH

QL

TL

F

hF , sF , TF
hP , sP , TP

hW , sW , TW

W

P

Fig. 1. Schematic diagram of a heat-driven binary separation
process.
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where SðtÞ is the total entropy production of the
system, and sðtÞ � 0 is the total entropy production
rate inside the system. The separation process is not
specified in this paper. They may be distillation, ther-
mal diffusion, absorption, or something else. The most
important thing is that sðtÞ � 0 holds for any specific
separation process.

The period of the process is t. Let us now calculate
the classical reversible minimum average heat assump-
tion amount per cycle Qrev

H . Temperatures TH and TL

are considered as constants in the calculation. Let

�f ¼ 1

t

ðt
0

f ðtÞdt; ð6Þ

fhðtÞ ¼ PhP þWhW � FhF; ð7Þ

fsðtÞ ¼ PsP þWsW � FsF; ð8Þ

where fhðtÞ and fsðtÞ are the molar flow rates of
enthalpy and entropy. From Eq. (6), one can obtain

�fh ¼ rh
�F; �fs ¼ rs

�F; ð9Þ

where

rh ¼ hPðxF � xWÞ=ðxP � xWÞ
þ hWðxP � xFÞ=ðxP � xWÞ � hF;

rs ¼ sPðxF � xWÞ=ðxP � xWÞ
þ sWðxP � xFÞ=ðxP � xWÞ � sF

ð10Þ

According to Eq. (4), the average enthalpy flow rate for
a weakly periodic process can be written as follows

QH �QL ¼ �fh; ð11Þ

where QH ¼
1

t

ðt
0

ð
AHðtÞ

aH
1

T
� 1

TH

� �
da dt is the average

heat flow rate from high-temperature heat reservoir to

the system, and QL ¼
1

t

ðt
0

ð
ALðtÞ

aH
1

TL
� 1

T

� �
da dt is the

average heat flow rate from the system to the low-
temperature heat reservoir. From Eq. (5), one can obtain

QH

TH
�QL

TL
¼ �fsþ d; ð12Þ

where

d ¼ � 1

t

ðt
0

sðtÞ þ
ð

AHðtÞ
aH

1

T
� 1

TH

� �2

da

(

þ
ð

ALðtÞ
aL

1

TL
� 1

T

� �2

da

)
dt:

ð13Þ

It is easy to see that d � 0 holds for the heat-driven
separation process with linear phenomenological heat
transfer law, and the equality holds for reversible

process. The heat consumption can be obtained
according to Eqs. (11) and (12)

QH �
�fh � TL

�fs � TLd
1� TL=TH

: ð14Þ

The following equation is obtained according to Eq.
(14) and d � 0

QH �
�fh� TL

�fs

1� TL=TH
¼ Qrev

H : ð15Þ

The equality in Eq. (15) holds for a stationary process
because of net work Wn � �Bsep [15], where �Bsep ¼
�H � T0�S is the change in exergy, Wn ¼ QH

ðTH � T0Þ=TH �QLðTL � T0Þ=TL, and �H ¼ fh, �S ¼ fs.
The heat consumption for real separation processes

is much higher than the right-hand side of inequality in
Eq. (15). The more realistic higher bound of the heat
consumption for heat-driven binary separation process
with linear phenomenological heat transfer law is stu-
died in this paper, and the finite time of the process, the
corresponding finite flow rates of heat, and the finite
thermal resistance have been taken into account.

3. Optimization

If the temperature of the heat-driven binary separa-
tion system with linear phenomenological heat transfer
law is Tðt; �Þ, the average heat consumption is

QH ¼
1

t

ðt
0

ð
AHðtÞ

aH
1

T
� 1

TH

� �
da dt: ð16Þ

It seems that it is necessary to define the model more
accurately to find the temperature Tðt; �Þ. However, this
will not be done in this paper. Instead, Eqs. (4) and (5),
and the fact that Tðt; �Þ > 0 holds for any process, are
adequate for the study. The temperature Tðt; �Þ is taken
as a control, and the following problems are solved.

Problem 1: Given functions fhðtÞ and fsðtÞ, solving
the maximum of�QH with constraints Eð0Þ ¼ EðtÞ and
Sð0Þ ¼ SðtÞ.

Problem 1 is a typical average optimization control
problem, Orlov and Berry solved the similar problem
for heat engine [11] and heat-driven binary separation
process [22] with Newtonian heat transfer law by using
the same method. The difference between heat-driven
separation process and heat engine is the nonzero item
fsðtÞ ¼ PsP þWsW � FsF in Eq. (5). The upper bound of
criteria of problem 1 can be solved by using Lagrangian
function. There exist two constraints of problem 1 that
can be reduced to a two-dimensional convex optimiza-
tion problem by using Lagrangian function. However,
the problem will be simplified to a one-dimensional
convex optimization problem after solving problem 2.

Problem 2: Given function fsðtÞ, solving the
maximum of QH �QL with constraint Sð0Þ ¼ SðtÞ.

L. Chen et al. / Desalination and Water Treatment 21 (2010) 264–273 267



Problem 2 is also a typical average optimization
control problem similar to the maximum average
power output problem in Ref. [11] and the maximum
enthalpy flow rate problem in Ref. [22]. The difference
between heat-driven separation process and heat
engine is the nonzero item fsðtÞ ¼ PsP þWsW � FsF in
Eq. (5). There exists one constraint of problem 2 that
can be transformed to a one-dimensional convex opti-
mization problem by using Lagrangian function.

3.1. Transformation to convex optimization problems

The problem in this section is problem 2. The upper
bound of problem 2 can be solved by solving average
unconstrained problem 2’.

Problem 2’: Solving the maximum of L2 over the
range of admissible control T > 0. The Lagrangian
function is as follows

L2 ¼ QH �QL þ
�

t

ðt
0

ð
AHðtÞ

aHð1=T � 1=THÞ
T

da

(

�
ð

ALðtÞ

aLð1=TL � 1=TÞ
T

da

)
dt� � �fs;

ð17Þ

where � < 0 is Lagrangian multiplier, and the nonposi-
tive item � �s is omitted. It is denoted that

f2ðTH;TL; �fs; �Þ ¼ maxT > 0 L2. The upper bound of f2

can be obtained analytically by maximization with
T > 0 under the constraints of � < 0 and T > 0. The
upper bound is

f2 ¼
1

t

ðt
0
�
ð

AHðtÞ

aHðTH þ �Þ2

4�TH
2

da

(

�
ð

ALðtÞ

aLðTL þ �Þ2

4�TL
2

da

)
dt� � �fs :

ð18Þ

The optimum upper bound is PðTH;TL; �fsÞ ¼ min� f2

ðTH;TL; �fs; �Þ. Differentiating Eq. (18) with respect to

�, the expression of optimum �, �̂ can be written as
follows

�̂ ¼ � THTL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gHTL
2 þ 4TH

2TL
2 �fs

q ; ð19Þ

where aHðtÞ is the area of the surface AHðtÞ, aLðtÞ is the
area of the surface ALðtÞ, gH ¼ aHaH, and gL ¼ aLaL.
Functions gH and gL are used here to define the aver-
aging value,

gH
� ¼ ð1=tÞ

ðt
0
ð1=aHÞ

ð
AHðtÞ

gHðt; �Þdadt;

gL
� ¼ ð1=tÞ

ðt
0
ð1=aLÞ

ð
ALðtÞ

gLðt; �Þdadt:

ð20Þ

Substituting Eq. (19) into (18), one can obtain

PðTH;TL; �fsÞ ¼ f2ðTH;TL; �fs; �ðTH;TL; �fsÞÞ

¼ gH

4TH

TL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2 þ 4TH

2TL
2 �fs

q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2 þ 4TH

2TL
2 �fs

q
TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p � 2

0
B@

1
CA

þ gL

4TL

TH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2 þ 4TH

2TL
2 �fs

q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2 þ 4TH

2TL
2 �fs

q
TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p � 2

0
B@

1
CA;

þ THTL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2 þ 4TH

2TL
2 �fs

q �fs ð21Þ

where the first two arguments are functions THðt; �Þ
and TLðt; �Þ, the third argument is the scalar �fs . And this
function solves the problem 2’ and gives the estimation
under the condition of average enthalpy flow
�fh ¼ QH �QL

�fh � PðTH;TL; �fsÞ: ð22Þ

The inequality (22) will be used to get the value of
the maximum average feed flow into the system in
section 3.3.

3.2. The minimum average heat consumption problem

In this section, problem 1 is under consideration.
The upper bound for the criterion in this problem can
be obtained by solving the unconstrained averaged
problem 1’.

Problem 1’ is maximizing function L1 over the range
of the admissible control T > 0

L1 ¼�QH þ lðQH �QLÞ

þ �
t

ðt
0

ð
AHðtÞ

aHð1=T � 1=THÞ
T

da

(

�
ð

ALðtÞ

aLð1=TL � 1=TÞ
T

da

)
dt� � �fs�l �fh;

ð23Þ

where � < 0 is Lagrangian multiplier, and the nonposi-
tive item ��s is omitted again. It is denoted that

f1ðTH;TL
�fs; �fh; �; lÞ ¼ maxT > 0 L1. The upper bound of

L1 can be obtained analytically by maximization with
T > 0 under the constraints of � < 0 and T > 0. The
upper bound is

f1 ¼
1

t

ðt
0

ð
AHðtÞ

aH½ðl� 1ÞTH þ ��2

�4T2
H�

 !
da

(

þ
ð

ALðtÞ

aLðlTL þ �Þ2

�4T2
L�

 !
da

)
dt� � �fs�l �fh :

ð24Þ

The optimum (least average) upper bound of
convex function f1 can be obtained by minimizing
Eq. (24) with respect to variables � and l. Firstly,
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minimizing f1 with respect to the variable �, one can

obtain c1 ðTH;TL; �fs; �fh; lÞ ¼ min� f1. Using the expres-
sion of Eq. (21), when � gets the optimum in the follow-
ing form:

�̂ ¼ �
THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLT2
H þ 4TH

2TL
2 �fs

q ð25Þ

the expression of function c1 can be obtained

c1ðTH;TL; �fs; �fh; lÞ ¼

¼
gH l� 1� TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

gHT2
L þ gLT2

H þ 4TH
2T2

L
�fs

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s

þ
gL l� TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s :

þ THTL
�fs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� 1Þ2gH þ l2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s
� l �fh

ð26Þ

Let c1ðTH;TL; �fs; �fh; l̂Þ � c1ðTH;TL; �fs; �fh; lÞ for all
l > 1. Then the upper bound for problem 1 is

c1ðTH;TL; �fs; �fh; lÞ. The corresponding minimum heat

consumption in the separation process is Q min
H ðTH;

TL; �fs; �fhÞ ¼ �c1ðTH;TL; �fs; �fh; l̂Þ and the corresponding
estimate is

QH > Q min
H : ð27Þ

Let us now consider some problems about the heat-
driven separation process obeying linear phenomeno-
logical heat transfer law (q / �ðT�1Þ). It is easy to see

that Q min
H ðTH;TL; �fs; �fhÞ is a convex function in the vari-

ables �fs and �fh , and, qQ min
H =q �fs ¼ �̂; qQ min

H =q �fh ¼ l̂.
From these equalities and the conditions � < 0 and

l > 1, it is found that Q min
H is a strictly monotonically

decreasing function in the argument �fs and a strictly

monotonically increasing function in the argument �fh .

It is also easy to see that dc1=dl! � �fh when l! 1.
The condition liml!þ1 c1=l > 0 guarantees the

existence of a minimum point. Using PðaTH; aTL; �fsÞ ¼
aPðTH;TL; �fsÞ for a > 0, one can obtain the equivalent

condition PðTH;TL; �fsÞ > �fh , which is the strict form of
inequality (22).

It is reasonable to assume that �fh � 0 for heat-driven
separation processes, which implies that PðTH;TL;
�fsÞ � �fh according to Eq. (22). The inequality gives the

lower bound for �fs . In fact, PðTH;TL; �fs
minÞ ¼ 0. Then

�fs � �fs
min

because P is a strictly monotonically increas-

ing function in the argument �fs .
From Eq. (22), one can obtain

�fs
min ¼ � gHgLðTH � TLÞ2

4TH
2T2

LðgH þ gLÞ
: ð28Þ

When the functions aHð�Þ, THðt; �Þ, aLð�Þ, and TLðt; �Þ
of the surfaces AHðtÞ and ALðtÞ, and the corresponding
flows fsðtÞ and fhðtÞ are given, one can calculate the
minimum heat consumption by solving a one-
dimensional convex minimization problem for the
function c1. For constant-temperature reservoirs, this
minimization is carried out analytically as follows:

The best (least) upper bound of c1ðTH;TL; �fs; �fh; l̂Þ
can be obtained by substituting l̂ into Eq. (26).

Q min
H ðTH;TL; �fs; �fhÞ ¼ �c1ðTH;TL; �fs; �fh; l̂Þ

¼ l̂ �fh�
gH l̂� 1� TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s

�
gL l̂� TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s ;

� THTL
�fs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHTL
2 þ gLTH

2 þ 4TH
2TL

2 �fs

s

ð29Þ

where, l̂ is as follows

l̂ ¼

gHf�4THT2
L½ �fh

2
TH þ gHð �fh � �fs THÞ� þ gL½4TH

2TLð �fsTL � �fhÞ þ gHðTH � TLÞ2�g

þ

gHgLf�4THT2

L½�fh
2

TH þ gHð �fh � �fs THÞ� þ gL½4TH
2TLð �fsTL � �fhÞ þ gHðTH � TLÞ2�g

½THgL þ TLð2 �fh TH þ gHÞ�2

s

ðgH þ gLÞf�4THT2
L½ �fh

2
TH þ gHð �fh � �fs THÞ� þ gL½4TH

2TLð �fsTL � �fhÞ þ gHðTH � TLÞ2�g
; ð30Þ
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3.3. The maximum feed flow rate problem

According to Eqs. (12) and (14), one can obtain

Q min
H �

�fh�TL
�fs

1� TL=TH
: ð31Þ

According to Ref. [22], one can get that

Q min
H ðTH;TL; rs

�F; rh
�FÞ

�F
! rh � TLrs

1�TL=TH
when �F! 0. When

the heat transfer in the heat-driven separation process
obeys linear phenomenological law, it is easy to see

that the function Qð�FÞ ¼ Q min
H ðTH;TL; rs

�F; rh
�FÞ is a con-

vex and strictly monotonically increasing function for
rs < 0 and rh > 0, which means that the average heat
consumption increases with the increase in the average
feed flow. Inequality (22) follows that the average feed

flow �F could not be increased to infinity. There is an

upper bound for average feed flow �F
max

, which is the
solution of the following equation

�Frh ¼ PðTH;TL; rs
�FÞ: ð32Þ

In fact, the function Pð�FÞ ¼ PðTH;TL; rs
�FÞ is a con-

cave, a strictly monotonically decreasing concave for
rs < 0 and rh > 0, and

Pð0Þ ¼ gH

4TH

TL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2

q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2

q
TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p � 2

0
B@

1
CA

þ gL

4TL

TH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHTL

2 þ gLTH
2

q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHT2

L þ gLTH
2

q
TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ gL

p � 2

0
B@

1
CA > 0:

ð33Þ

These properties guarantee the existence and the
uniqueness of the solution of Eq. (32). Calculating

Qð�FÞ at �F
max

, one can obtain the following equation
by using Eq. (29)

Qð�FmaxÞ ¼ Q min
H ðTH;TL; �fs; �fhÞ ¼ �c1ðTH;TL; �fs; �fh; l̂Þ

¼ l̂rh
�F

max

�
gH l̂� 1� TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHT2
L þ gLT2

H þ 4TH
2T2

Lrs
�F

max

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHT2
L þ gLT2

H þ 4TH
2T2

Lrs
�F

max

s

�
gL l̂� TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHT2
L þ gLT2

H þ 4TH
2T2

Lrs
�F

max

s !2

4THTL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHT2
L þ gLT2

H þ 4TH
2T2

Lrs
�F

max

s ;

� THTLrs
�F

max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂� 1Þ2gH þ l̂ 2gL

gHT2
L þ gLT2

H þ 4TH
2T2

Lrs
�F

max

s

ð34Þ

where the optimum l̂ is

l̂ ¼

gHf�4THT2
L½ðrh

�F
maxÞ2TH þ gHðrh

�F
max � rs

�F
max

THÞ� þ gL½4TH
2TLðrs

�F
max

TL � rh
�F

maxÞ þ gHðTH � TLÞ2�g

þ

gHgLf�4THT2

L½ðrh
�F

maxÞ2TH þ gHðrh
�F

max � rs
�F

max
THÞ� þ gL½4TH

2TLðrs
�F

max
TL � rh

�F
maxÞ þ gHðTH � TLÞ2�g

½THgL þ TLð2rh
�F

max
TH þ gHÞ�2

s

ðgH þ gLÞf�4THT2
L½ðrh

�F
maxÞ2TH þ gHðrh

�F
max � rs

�F
max

THÞ� þ gL½4TH
2TLðrs

�F
max

TL � rh
�F

maxÞ þ gHðTH � TLÞ2�g
: ð35Þ

Eq. (34) is the analytical expression of the minimum
average heat consumption when feed flow rate reaches
its upper bound.

4. Numerical examples and discussions

The dimensionless minimum heat consumption

Qmin0

H ¼ Q min
H =Qrev

H for propylene-propane distillation
column is calculated. The temperatures of high- and
low-temperature heat reservoirs are TH ¼ 377:6 K and

TL ¼ 294:3 K. The heat transfer coefficients and contact
areas for this process are appointed physically reason-

able values, gH ¼ aHaH ¼ 13; 000kW=ðm2�KÞ, and

gL ¼ gH. The minimum entropy production rate �f
min

s

can be calculated according to Eq. (28).
According to Ref. [22], the dimensionless entropy

production rate and dimensionless enthalpy flow rate
which indicate the major influence factors for the per-
formance of the separation process, such as the
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properties of different material and various separation
requirements for the separation process are adopted.
The dimensionless entropy production rate is assumed
to be �f 0s ¼ �f s =

�f
min

s , and the dimensionless enthalpy

flow rate is assumed to be �f 0h ¼ �f h =PðTH;TL; �f
min

s Þ. The

parameters are taken as �f s ¼ �f 0s
�f

min

s and �f h ¼ �f 0hPðTH;

TL; �f sÞ. The dimensionless minimum average heat con-

sumption Qmin0

H ¼ Q min
H =Qrev

H is calculated by using
Eqs. (14) and (29).

Table 1 lists the dimensionless minimum heat con-
sumption Qmin0

H for different �f 0s and �f 0h . From Table 1
one can see that the dimensionless minimum average

heat consumption Qmin0

H varies from 1.0557 to 1.9761.

And the dimensionless heat consumption Qmin0

H

increases with the increases in dimensionless entropy
production rate and dimensionless enthalpy flow rate.

Fig. 2 shows the dimensionless minimum average
heat consumption Qmin0

H versus the dimensionless

enthalpy flow rate �f 0h characterized by different

dimensionless entropy production rate �f 0s . Curves 1
to 4 correspond to the dimensionless entropy produc-

tion rates �f 0s¼ 0.2, 0.4, 0.6, and 0.8, respectively. One
can see that dimensionless minimum average heat con-

sumption Qmin0

H increases with the increase in the

dimensionless enthalpy flow rate �f 0h . Moreover, Qmin0

H

increases with the increase in dimensionless entropy

production rate �f 0s .
Fig. 3 shows the dimensionless minimum average

heat consumption Qmin0

H versus the dimensionless

entropy production rate �f 0s characterizes different

dimensionless enthalpy flow rates �f 0h . Curves 1 to 6
correspond to the dimensionless enthalpy flow rate
�f 0h ¼ 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. It can
be seen that dimensionless minimum average heat con-

sumption Qmin0

H increases with the increases in dimen-

sionless entropy production rate �f 0s and the

dimensionless enthalpy flow rate �f 0h . Because �f s < 0,

the increase of �f 0s means the decrease of �f s . This indi-

cates that Qmin0

H decreases with the increase on �f s .

When TH, TL, gH, and gL are other appointed physi-
cally reasonable values, the results are qualitatively
coincide with those in Table 1, and Figs. 2 and 3.
The minimum heat consumption of heat-driven binary
separation process with linear phenomenological
heat transfer law calculated by Eq. (29) is more realistic
than that of reversible heat-driven binary separation
process. For the process with time- and space-variable
temperatures of the heat reservoirs, Eq. (22) may be
employed to search the minimum heat consumption.

5. Conclusion

The performance optimizations of the heat-driven
binary separation process are carried out in this paper
by using finite time thermodynamics. Two perfor-
mance indexes, the dimensionless minimum average
entropy production rate and dimensionless minimum
average heat consumption of the heat-driven binary
separation processes, are taken as optimization
objectives, respectively. The heat transfer in the

Table 1
Dimensionless minimum average heat consumption Qmin0

H for different f
0
s and f

0
h

f
0
hnQmin0

H n f
0
s 1.0 0.8 0.6 0.4 0.2 0.0

0.8 1.9761 1.6533 1.5503 1.4800 1.4260 1.3819
0.6 1.9539 1.5363 1.4141 1.3337 1.2733 1.2251
0.4 1.9333 1.4557 1.3239 1.2391 1.1764 1.1270
0.2 1.9142 1.3935 1.2562 1.1691 1.1054 1.0557

Fig. 2. Dimensionless minimum average heat consumption

Qmin0

H versus dimensionless enthalpy flow rate f
0
h.
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separation process obeys linear phenomenological
law (q / �ðT�1Þ) and the temperatures of the heat
reservoirs are assumed to be time- and space-
variable. The analytical expressions of minimum aver-
age heat consumption and minimum average entropy
production rate of the separation process with given
average enthalpy flow rate and entropy flow rate are
obtained. The analytical expression of minimum average
heat consumption of the binary separation process with
fixed average flow rate is also obtained. The minimum
heat consumption problem of the heat-driven separation
process with time- and space-variable temperature heat
reservoirs is transformed to a convex optimization
problem by using numerical method. The dimensionless
entropy production rate and dimensionless enthalpy
flow rate which indicate the major influence factors
for the performance of the separation process, such as
the properties of different material and various separa-
tion requirements for the separation process, are
adopted. As a special example, in the case of constant
temperature heat reservoirs, the analytical expressions
of dimensionless entropy production rate and dimen-
sionless minimum average heat consumption of separa-
tion processes are obtained. The numerical results
indicate that dimensionless minimum average heat

consumption Qmin0

H increases with the increases in

dimensionless enthalpy flow rate �f 0h and the dimen-

sionless entropy production rate �f 0s . Qmin0

H increases

with the decrease in �f s because of �f s < 0. The purity
of reactants and feed is not taken as a constraint in this
theoretical optimization study. How to obtain more
practical results including purity constraint will be a
future subject.
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