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abstract
Membrane fouling is the most serious problem in membrane bioreactor (MBR) process, which is 
restricting the widespread application of MBRs in wastewater treatment processes. In recent years, 
several studies on the precise diagnosis and prediction of the membrane fouling have been carried 
out to obtain an efficient operation of MBRs. The aims of this study are 1) to predict the membrane 
fouling and to determine the chemical cleaning interval of membrane using traditional mechanistic 
fouling model; and 2) to propose the new fouling index based on the usually obtained traditional 
technique. As the traditional fouling technique use an exponential fouling model, however, this 
method has some shortcomings, such as inadequate comprehension of the fouling mechanism 
and steady state assumption. Therefore, in this study, the coefficient (κ) of the exponential fouling 
model is proposed as a new fouling index to overcome the inadequate understanding of the fouling 
mechanism and steady state assumption in traditional technique. To propose the coefficient (κ) as the 
new fouling index, least-square (LS) method and recursive least-square (RLS) methods are applied 
in the exponential fouling model. The coefficient (κ) shows the similar tendency with the perme-
ability which is another kind of fouling index. It is verified that the coefficient has been validated as 
the new index for diagnosis of the fouling progress as well as the prediction of membrane fouling. 

Keywords: Membrane bioreactor; Membrane fouling; Membrane cleaning interval; Fouling 
mechanistic model; New fouling index; Recursive least square method

1. Introduction

A membrane bioreactor (MBR) system is a combi-
nation of biological degradation process (by activated 
sludge) and direct solid-liquid separation (by membrane 
filtration). Use of an MBR system in membrane technolo-
gy offers several prominent advantages over conventional 
activated sludge (CAS) system in terms of a smaller foot-

print, less sludge production and better effluent quality, 
etc. Hence, MBR has become state-of-the-art process in 
wastewater treatment and it is becoming a more popular 
process is water treatment nowadays [1,2].

However, widespread application of MBRs has 
been impeded by a phenomenon of membrane fouling. 
Membrane fouling refers to a deposition or adsorption 
of material on the surface of the membrane or within 
the pores. The fouling causes a decline in permeate flux 
or increase in trans-membrane pressure (TMP), loss of 
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product quality and deterioration of the membrane etc. 
[3,4]. Main drawback of membrane fouling is high cost of 
operation. Hence, fouling has become the main contribu-
tion to overall MBR operating costs, since high energy is 
required for backflush, aeration and frequent cleaning of 
membrane to remove the foulants [5,6]. Therefore, for an 
economical operation of MBR process, the high energy 
requirement caused by the fouling should be reduced. 
And for a minimization of the energy requirement, a 
precise diagnosis and prediction of the membrane foul-
ing is necessary.

The main drawbacks of use of traditional techniques 
for diagnosis and prediction of the membrane fouling are: 
1) most protocols to diagnosis and prediction of mem-
brane fouling are confidential and provided by manu-
facturers; 2) the membrane fouling mechanisms remain 
poorly understood, for example, steady state operation 
of MBR; and 3) different parameters, required to evaluate 
flux and resistance of the membrane, which are used for 
calculation of membrane fouling need to be evaluated [7]. 
This could generate questionable conclusions regarding 
the real membrane fouling. Therefore, new techniques 
to overcome the drawbacks of the traditional technique 
are necessary for the precise diagnosis and prediction of 
the fouling.

The first objective of this study is to predict the mem-
brane fouling using the traditional techniques, which use 
the trans-membrane pressure (TMP) as a fouling index. 
An exponential fouling model is a traditional technique, 
which is a prevailing mechanistic model in an MBR sys-
tem is used. For an economical and optimal operation of 
MBRs, it needs to determine an appropriate membrane 
chemical cleaning time, since it is important for operators 
to start the membrane cleaning. Therefore, a determina-
tion of the membrane chemical cleaning time based on 
the traditional technique is carried out, too.

As the second objective, a new index for the fouling 
diagnosis is suggested based on the fouling mechanistic 
model to overcome the second drawback of the traditional 
technique. For a verification of the new fouling index, 
value of a new index is compared with permeability, 
which is another index of the membrane fouling.

An outline of this paper is as follows. The first section 
introduces the basic mechanistic equation for membrane 
fouling by an exponential model. In the material and 
method section, motivation of this study is introduced 
and the proposed method is explained. Then two case 
studies of an MBR pilot-plant are illustrated and dis-
cussed. Finally, the conclusions of this article are ad-
dressed.

2. Membrane fouling mechanism

In a constant flux operation of MBR process, the 
trans-membrane pressure (TMP) curve shows the typical 
exponential characteristic with a slow increase during 

the first 1–2 months, followed by a rapid steep increase 
in TMP near the end of the filtration run. The sudden 
rise in TMP near the end of the filtration process is called 
TMP jump [8]. 

TMP exhibits a simple exponential relationship with 
the filtration time, is described by the following math-
ematical expression [9]: 

0TMP TMP t teκ ⋅= ⋅  (1)

where TMP0 is the initial TMP at filtration time t = 0 day, 
prior to the initiation of fouling (kPa). The exponent κt 
is the time-based fouling coefficient (1/d), and is deter-
mined by the characteristics of the MBR system. Once κt 
is known, the membrane cleaning timing can be found 
for the maximum allowable TMP (40–50 kPa). Recovery of 
the membrane should be done at that chemical cleaning 
time at which TMP reaches maximum allowable TMP.

For the MBR system operated in a constant-flux mode, 
the cumulative volume (V) of permeate filtered is the 
product of the applied permeate flux (J), the membrane 
surface area (A) and the filtration time (t) [see Eq. (2)]. 
Therefore, Eq. (1) can be converted into a function of the 
cumulative volume of permeate filtered instead of the 
filtration time, as shown in Eq. (3) [9]:

V JAt=  (2)

[ ]/( )
0 0 0TMP TMP TMP TMPtt VJA Vt Ve e eκκ ⋅ κ ⋅= ⋅ = ⋅ = ⋅  (3)

where κV is defined as the volume-based irreversible 
fouling coefficient, 1/m3.

3. Material and methods

3.1. Motivation of this study

The contribution points of this study are 1) to capture 
the dynamics of membrane fouling by recursive least-
square (RLS) method with updated data set, and 2) to 
monitor and predict the MBR fouling simultaneously 
with new fouling index by updating RLS model. 

The traditional techniques for diagnosis and pre-
diction of the membrane fouling cannot capture the 
dynamics of membrane filtration and fouling, since the 
traditional techniques are developed based on steady 
state assumption of MBRs. The steady state assumption 
has not been justified for the wastewater treatment plant 
in the manner employed such as continuous-flow reactor, 
which operates in dynamic condition [10]. Therefore, a 
dynamic model is necessary and RLS method is used to 
suggest the dynamic model of membrane fouling. The 
basic idea of RLS is to compute the updated parameter 
at certain time by adding a correction term to the previ-
ously estimated parameter once the new information 
becomes available [11]. By applying the RLS method, 
the dynamic prediction model of membrane fouling and 
the recursively updated fouling index are proposed. This 
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proposed method is able to overcome the drawback of 
traditional static membrane fouling technique, since RLS 
can capture dynamic characteristics of the membrane 
fouling mechanism.

3.2. Proposed method

Generally, TMP in the MBR system has an exponential 
relationship with filtration time, that is, lognormal dis-
tributed, which is a kind of non-Gaussian distribution. 
Non-Gaussian process is used to represent the variation 
in time and/or space of many relevant parameters encoun-
tered in applied science and engineering [12]. However, 
because of this non-Gaussian characteristic of exponential 
trend, small changes in MBR operation may affect on the 
progress of membrane fouling. Moreover, this nonlinear 
distribution has shortcoming that the necessity to predict 
the future MBR fouling cause false detection, because the 
predicted values may distort the data information [13]. 

A framework for the 1) diagnosis and prediction of 
membrane fouling using traditional technique; and 2) 
suggestion of mew fouling index is shown in Fig. 1.

First, a variable transformation using natural loga-
rithm is carried out to make the TMP as a Gaussian distri-
bution (from non_Gaussian distribution). The exponential 
fouling model is transformed into a first-order linear 
model as shown in Eq. (4). This linearized fouling model 
is used to diagnosis and predict the membrane fouling.

TMP e ln(TMP) ln( )t t
t tA A t b tκ ⋅= ⋅ → = + κ ⋅ = + κ ⋅  (4)

Second, least-square method is applied to find coeffi-
cient (κt) and intercept (b) of the linearized fouling model 
using original MBR data, in order to predict the TMP as 
the traditional fouling index. To compare the predictive 

Fig. 1. Scheme for prediction of membrane fouling and the proposed new fouling index.

accuracy of lineazied fouling model, a root mean squared 
error (RMSE) is used. RMSE is defined by Eq. (5), where Yi 
is the actually observed value, ˆ

iY  is the predicted value, 
and n is the number of data points [14].
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Third, recursive least-square (RLS) method is used to 
update the model used parameters of the linearized foul-
ing mechanism by using a daily updated MBR data. RLS 
method can be possible to predict continuously updated 
dynamic model parameters. Covariance matrices are 
updated using data and weights at time t and covariance 
matrix at time t – 1, as shown below in Eqs. (6) and (7):

1( ) ( )T T T
t t t t tX X X X x x−= λ +  (6)

1( ) ( )T T T
t t t t tX Y X Y x y−= λ +  (7)

(XTX)t and (XTY)t used in the above equations are 
updated covariance matrices, as covariance vectors sets 
updated xt and yt are the predictor and response vectors 
at time t, and λt(0 < λt ≤ 1) is a forgetting factor. Model 
parameters are computed recursively using the following 
Eqs. (8) and (9):

1( ) ( )T T
t t tb X X X Y−=  (8)

1
1 1( ) ( )T T

t t t t t t tb b X X x y x b−
− −= + −  (9)

The coefficient (κt) and intercept (b) of the fouling 
mechanism are recursively updated in the dynamic op-
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eration of MBR. Therefore, the coefficient (κt) obtained 
in RLS method is used as a new fouling index since the 
coefficients vary as the filtration of MBR progress. To 
verify a validity of the new fouling index, the coefficients 
obtained RLS method is compared with permeability. The 
permeability is defined by Eq. (10):

FluxPermeability
TMP

=  (10)

Permeability is an ability of particle matter to get 
through the membrane, and is regarded as another index 
for the membrane fouling [15]. From the variations of 
the coefficient (κt) and permeability on the same figure a 
similar trend and direct/inverse proportion of new foul-
ing index and permeability is suggested.

3.3. A pilot-scale MBR process

A pilot-scale MBR plant located in Y-city, Korea is a 
source of this study. The MBR plant consists of four basins: 
anoxic 1, aerobic, anoxic 2 and a membrane bioreactor as 
shown in Fig. 2, with capacities of 38 m3, 63.8 m3, 38 m3, 
and 24.3 m3 respectively. Average flowrate of influent 
is 25 m3/d, and the average components of the influent, 
namely biochemical oxygen demand (BOD), chemical 
oxygen demand (COD), total nitrate (TN) and total phos-
phorus (TP) are provided in Table 1.

This MBR plant has been operated under a constant-
flux (or constant flowrate) mode. Sludge retention time 

Fig. 2. Layout of a pilot-scale MBR plant located in Y-city, Korea.

(SRT) for the efficient nitrate treatment is set to more 
than 9 d, and internal recycle rate is maintained at 200% 
of the influent flow. MLSS concentration is kept at 7000– 
9000 mg/L, depends on the characteristics of membrane 
type. To minimize the membrane fouling, the periodic 
coarse bubble is supplied to membrane.

4. Results and discussion

The proposed method is tested on two kinds of data 
obtained in operational periods of a pilot-plant: 1) train-
ing data set, and 2) test data set. The training data set is 
a part of the data set used to fit a model for a system, in 
which it is used to predict regression relation. The test 
data set which is not a part of training set is also used to 
evaluate accuracy of the established model. That is, the 
training data set is used for model development, while 
the test set is used for evaluating the predictive ability 
of the model [16]. The first training data set is collected 
from 2nd March 2009 to 24th April 2009 and the second 
one is obtained from 18th May 2009 to 8th July 2009. 
Two training data sets used here are obtained under 
same operational conditions. Test data set is generated 
randomly and is used to validate the newly proposed 
fouling index, κt. Time gap between two measured data 
points corresponds with time gap for updated parameters 
of RLS methods, which is one day. 

4.1. Fouling diagnosis and prediction by the traditional tech-
nique

We predict the membrane fouling by least-square 
method of the exponential mechanistic model and then 
determine the proper membrane chemical cleaning 
interval based on the fouling model. Fig. 3a shows the 
exponential distribution of TMP of a pilot-scale MBR. Be-
cause these non-linear data have the shortcoming that the 
predictive capability is more inadequate than Gaussian 
distribution, the data linearization by taking the natural 
logarithm is carried out (see Fig. 3b). 

Fig. 4 shows the TMP prediction result by the lin-
earized fouling mechanistic model, which shows to 

Table 1
Compositions of influent stream in the pilot-scale MBR plant 
in Y-city

Components Mean concentration 
(mg/L)

Standard deviation

BOD 166 50.37
COD 301 74.63
TN 38 10.18
TP 6.4 2.20
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Fig. 3. Data transformation from (a) exponential TMP distribution, to (b) linearized TMP distribution.

 (a) Exponential TMP distribution (b) Linearized TMP distribution

Fig. 4. TMP prediction by linearized the fouling mechanistic 
model.

and predicts the membrane fouling well in actual MBR 
plants. In this figure, it is noted that the TMP reaches 
its critical TMP limit much rapidly as operational time 
of MBR is passed from training set 1 to 2. It means that 
the progressive rate of fouling is increased proportion-
ally to operational time. It results from the hindrance of 
membrane operational stability caused by the progress 
in membrane fouling. 

Table 2 presents the results of prediction, which in-
cludes the fouling mechanistic model, RMSE value, and 
determined membrane chemical cleaning interval for 
each data set. To determine the interval of membrane 
chemical cleaning, at which is the operator starts to a 
chemical cleaning, the critical TMP limit is set as 45 kPa 
traditionally. When the TMP arrives to the critical limit, 
the chemical cleaning is carried out to remove the foulants 
on membrane. 

The determined intervals for membrane chemical 
cleaning are almost similar with the timings that the ac-
tual TMP in pilot-scale MBR arrives to the critical limit. 
It means that the exponential fouling model is a prevail-
ing mechanistic model in a MBR system. The membrane 
cleaning interval becomes shorter as operational time 
passes from training set 1 to 2. Although membrane is 

Table 2
The results of the fouling prediction and membrane cleaning interval determination 

Mechanistic model RMSE Critical cleaning interval in 
plant (d)

Predicted cleaning interval 
(d)

Training 1 TMP = 2.634 ·exp0.037t 3.70 42 40
Training 2 TMP = 0.718 ·exp0.106t 5.58 28 32
Test TMP = 1.787 ·exp0.0584t 4.43 37 35

an original exponential trend. The fouling mechanistic 
model demonstrates an excellent fitting results with all 
data sets, and it means that this fouling model explains 
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cleaned chemically, it doesn’t seem that cleaned mem-
brane is better than new one. As mentioned previously, 
it corresponds to the rate at which membrane fouling 
progress accelerated, due to the continuous accumula-
tion of foulants. 

4.2. Proposing of a new fouling index

To suggest the novel index for monitoring membrane 
fouling, recursive least-square method is applied to the 
linearized fouling model and the coefficients (κt) obtained 
in RLS method is proposed as the new fouling index. 
Fig. 5 shows the variation of recursively updated coef-
ficients for three different operational times which are 
different from one another. Plots of new fouling index 
in Fig. 5 have a common characteristic that the value of 
coefficient is decreased continuously as the membrane 
fouling is progressed.

Fig. 6 compares the variations of fouling coefficient 
(κt) and permeability with time, to check the validation 
of the coefficient as the new index. In the pilot-scale MBR 
plants, the MBR is operated under constant-flux mode, 

Fig. 6. Comparison of fouling coefficient (κt) and permeability.

 (a) Training set 1 (b) Training set 2  (c) Test set

Fig. 5. Variations of the recursive coefficient (κt) of the fouling mechanistic model.

 (a) Training set 1 (b) Training set 2 (c) Test set

with a flux of 20 L/m2·h, this value is used to calculate the 
permeability. To compare the values of coefficients with 
permeability more easily, cumulative percentage curves 
of coefficient and permeability are shown in Fig. 6.

In the two training data sets, the coefficient of RLS 
shows the similar trend with the permeability. And the re-
sult of the test set presents the same trend, which matches 
with the two training set results. It means that the coef-
ficient of RLS can be substituted in place of permeability 
(which is another kind of the traditional fouling index) 
for diagnosis of membrane fouling. It is known that the 
speed at which membrane fouling takes place increases 
as the value of the coefficient increases, the coefficient has 
not been suggested as the fouling index. However, this 
sub-study verified that the coefficient of the exponential 
mechanistic fouling model has been validated as the new 
membrane fouling index.

 

4.3. Monitoring and prediction of MBR fouling using new 
fouling index

To diagnose the abnormal conditions of membrane 
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fouling and determine cleaning interval, data obtained 
by RLS is used. Figs. 7b and 7d are the magnified results 
of 7a and 7c. These are used to check abnormality of MBR 
fouling. For training set 1, coefficient, κt has shown a 
plain trend before sharp increase is appeared while the 
intercept, b has shown the opposite trend. In Figs. 7a and 
7b, the time at which the variation lines of coefficient 
and intercept gather a certain point after they are passed 
Center Line can be considered as exhausted occurrence 
of MBR fouling. It is necessary to clean the membrane at 
that time. In accordance with this, first observation which 
has convergent value, 38th day, is decided as the cleaning 
time. Likewise, for training set 2, abnormality of process 
and prediction of MBR fouling can be recognized by find-

(a) The variations of κt and b for training set 1 (b) The enlargement of Fig. 7a with Center Line

(c) The variations of κt and b for training set 2  

ing the values at which κt and b gather into one point after 
passing center line. Cleaning time for the training set 2 is 
determined as 26th days, i.e., 5th observation stabilized 
after passing center line.  

Variations of RMSE values in Fig. 8 are obtained using 
updated values of κt and b in dynamic state operation. 
Figs. 7 and 8 help accurate prediction and monitoring of 
MBRs. 38 days and 26 days in Fig. 7 correspond to the 
points of steep increase in Fig. 8. For the training set 1, 
RMSE trend at 38th day shows a sudden change which 
followed by a flat trend after increase. Similarly, for the 
training set 2, sharp increase found at 26th. 

Integrating the variations of κt, b and RMSE values, 
some inferences in Table 3 are drawn. RMSE values ob-

(d) The enlargement of Fig. 7c with Center Line

Fig. 7. (a) and (c): The linearized fouling model coefficients and intercepts; (b) and (d): their enlargements.
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tained using new fouling index are higher than one by 
traditional technique. However, RMSE values obtained 
using by new fouling index for training set 1, has arisen 
to 1.93 till MBR cleaning time.

5. Conclusion

In this study, a new fouling diagnosis index has been 
proposed for a pilot-scale MBR. Considering the nonlin-
ear characteristic of MBR data with exponential trend, 
the variable transformation of original data was applied, 
and RLS method was used to model the mechanistic 
fouling phenomena. To overcome the drawback of the 
traditional fouling technique, which poorly represents 
the fouling mechanism and steady state assumption of 
MBR, the recursively updated coefficient (κt) of the foul-
ing mechanistic model is suggested as the new fouling 
index which has the dynamic process information. The 
coefficient (κt) in a pilot-scale MBR plant shows the similar 
trend with the permeability of traditional fouling index. 
The coefficient (κt) of the fouling mechanistic model can 
also be used to monitor and predict membrane fouling in 
the dynamic conditions, which can overcome the steady 

Fig. 8. The variations of RMSE values for training set 1 and 
training set 2.

Table 3
The results of the fouling prediction and membrane cleaning interval determination using traditional technique and new foul-
ing index

Predicted cleaning interval by 
traditional technique (d)

RMSE Predicted cleaning interval by 
new fouling index (d)

RMSE

Training 1 40 3.70 38 11.31
Training 2 32 5.58 26 19.39

state assumption.
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