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abstract
Optimal design and systematic uncertainty modeling of a municipal Water Distribution System 
(WDS) aim to minimize operational & construction costs, while meeting demands with required 
pressure levels and water quality. Study about the propagation of uncertainty through the hydraulic 
model provides a basis for general model improvement in an efficient and economic way. The pres-
ent study introduces a novel technique for uncertainty analysis of a WDS, which synchronizes the 
hydraulic network and water quality solving capabilities of EPANET with an interface to MATLAB. 
It treats the pipe friction factors and the nodal demands as input fuzzy variables whereas the output 
fuzzy parameters include pipe discharges, nodal heads and chlorine concentrations. The method-
ology involves decomposition of the given uncertainties into a set of all possible combinations of 
input parameter values, numerical analysis of the hydraulic network, calculation of extremities of 
each unknown variable at each alpha cut level and the final construction of the respective fuzzy 
membership functions. Four distinct types of uncertainties associated with a hydraulic network are 
identified. Besides these, a sample hydraulic network is conceptualized to investigate the responses 
of different head-loss formulae to the variations in uncertainty.

Keywords: Water quality; Uncertainty analysis; α-cut level; Water distribution system; Roughness; 
Fuzzy set; Demand uncertainty

1. Introduction

A reliable municipal Water Distribution System (WDS) 
has been defined in the literature which can satisfy the 
consumer demands in quality and quantity under both 
normal and adverse working conditions [1,2]. Optimal 
design study and systematic uncertainty modeling of 
a WDS are aimed at to minimize operational and con-
struction costs, while meeting quantity requirements 
of maintaining adequate nodal heads, pipe discharges, 
and water quality requirements (e.g., concentrations of 
residual chlorine and fluoride). These parameters rely 

on several factors, like pipe roughness, nodal demands, 
pump characteristics, pipe lengths, diameters, amount 
of disinfectants, etc. The present study primarily inves-
tigates the effects of variations in pipe friction and the 
nodal demands on pipe discharges and nodal heads. 
Interestingly, pipe roughness and nodal demands can’t 
be treated as deterministic parameters. For instance, 
pipe roughness is governed by the period of network 
usage while complex processes like corrosion, erosion, 
etc., constantly degrading the pipe surfaces. Even the 
demands at various nodes vary with time. Such complex 
correlation inhibits by precise prior estimation of these 
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two factors. Furthermore, the cost and time involved 
in their measurements restrain the formulation of any 
proper database that could enable their representation 
in terms of probabilistic language. Besides inadequacy 
of information, imprecision in parameter values due 
to numerous factors precludes the use of mathematical 
tools. However, fuzzy set theory [3] helps translate scanty, 
imprecise information and linguistic jargons associated 
with independent network parameters to mathematical 
functions which can then be employed in an optimization 
framework to determine uncertain information of depen-
dent parameters. Once the magnitude of the uncertainty 
in heads, discharges, and water quality requirements 
are quantified as fuzzy numbers, an engineer can use 
that information in several ways. Mainly safety factors 
can be included in design of network improvements. To 
enhance model predictions, additional field data can be 
collected which will lead to more precise model param-
eters. Finally, different network representations can be 
evaluated by comparing their predictive uncertainties [4].

Lansey et al [5] were the first to suggest an analysis 
that directly considered the uncertainties of WDS mod-
eling. A chance constrained nonlinear programming 
technique was suggested to restrict the probability of 
not satisfying the demand and pressure at each node 
to some acceptable level of tolerance. Bao and Mays [1] 
proposed reliability analysis of pipe networks consider-
ing randomness of uncertain parameters through Monte 
Carlo simulation. Xu and Goulter [6] suggested linear 
probabilistic model based on first-order Taylor’s series 
expansion for quickly carrying out large number of simu-
lations for a WDS. Xu and Gaulter [7] used first-order 
reliability method for uncertainty modeling of a WDS, 
but the approach was only suitable for situations with 
small variations of uncertain parameters. The accuracy 
of first-order model deteriorated when large variations 
in the values of uncertain parameters were involved 
due to the effect of nonlinearity in the hydraulic model. 
Rivelli and Ridolfi [8] framed non-linear fuzzy equations 
for uncertainty modeling of WDS and solved using the 
concepts of fuzzy numbers in an optimization framework. 
Vamvakeridou-Lyroudia et. al. [9] have performed multi-
objective optimization by combining fuzzy reasoning 
with genetic algorithms. Gupta and Bhave [10] proposed 
a technique based on usual hydraulic network analysis 
to determine the membership functions of dependent 
parameters. Their method relied on monotonic relation-
ships between independent and dependent parameters, 
which might become invalid due to the inherent non-
linearity in hydraulic networks. A clustering and global 
variance-based sensitivity methodology is proposed by 
Pasha and Lansey [11] to account for spatial inconsis-
tencies found in the results of their previous studies of 
uncertainty modeling of WDS. Uncertainties in WDS 
modeling creep in due to: (1) used formula [Hazen–Wil-
liams (HW), Darcy–Weisbach (DW) or Chezy–Manning 

(CM)] [12] for hydraulic simulation; (2) coefficients in the 
formula and (3) imprecise knowledge of the values of 
different parameter [13]. There is no literature available 
on uncertainty analysis of WDS that considers all these 
uncertainties, that leads to the motivation of the study 
presented in this paper. The knowledge of propagation of 
uncertainty can be used in developing Decision Support 
System (DSS) to answer the repair vs. replace dilemma 
for water distribution networks [14,15].

The objective of the present study is to understand 
the sources of uncertainty in water distribution system 
modeling so that better modeling and monitoring meth-
odologies can be developed. The study investigates how 
the uncertainties in pipe friction and the nodal demands, 
considered formula & their parameters for hydraulic 
simulation addressed by fuzzy numbers engender uncer-
tainties in water quality, pipe discharges and nodal heads. 
Unlike traditional efforts, the present study develops a 
generic methodology applicable to any WDS network, 
which processes the independent parameter uncertainties 
through a unique algorithm that is executed by EPANET 
[12] and MATLAB (http://www.mathworks.com) [16]. 
EPANET is public domain tool developed by USEPA that 
simulates hydraulic and water quality behavior of pres-
surized pipe networks very accurately. It tracks the flow of 
water in each pipe, the pressure at each node and the con-
centration of a chemical species throughout the network 
during a simulation period comprising of multiple time 
steps. The present method utilizes all the features of EPA-
NET for uncertainty modeling, which brings flexibility in 
simulating the network more realistically. The Program-
mer’s Toolkit accompanying it enables a programmer 
controlled & systematic network analysis using C/C++, 
MATLAB, Visual Basic, etc. In the present study MATLAB 
is chosen since it offers superior software-user interface 
and enhanced flexibility in controlling the execution of 
Toolkit’s functions. The uncertainty induced due to lack 
of precise correlation between the friction factors obtained 
from different formulae is also addressed in the present 
study using the ‘hydraulics’ look-up menu provided in 
the EPANET software. This furnishes an option of choos-
ing one out of Hazen–Williams (HW), Darcy–Weisbach 
(DW) and Chezy–Manning (CM) or Strickler resistance 
formula for the head loss computations. Uncertainty of 
Type C is linked to the task of selecting the best head-
loss formula for a given network. The present work is an 
extension of the model developed by Shradhanand and 
Karmakar [17] considering water quality aspect of WDS.

The paper is organized into four sections: Section 2 
gives an introduction to pipe network hydraulics and 
points out the sources of uncertainty; Section 3 describes 
the proposed methodology elaborately in few subsec-
tions; Section 4 elaborates the model application; Section 
5 explains the results and discussion; and finally Section 
6 presents concluding remarks.
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2. Pipe network hydraulics and sources of uncertainty

Flow in a WDS satisfies two basic principles: (1) 
conservation of mass and (2) conservation of energy. 
Conservation of mass states that, for a steady system, 
the flow into and out of the system must be the same 
and this holds for the entire network and for individual 
nodes. A mass balance equation is written for each node 
in the network:

in out demandQ Q Q− =∑ ∑  (1)

where Qin and Qout are the flows in pipe entering or exiting 
the node and Qdemand is the user demand at that location. 
These demands are uncertain as they are estimated from 
the local user base that can not be predicted exactly since 
they vary continually. In addition, the demand is typically 
represented as a lumped demand for users near the node. 
The second governing equation is a form of conservation 
of energy that describes the relationship between energy 
loss and pipe flow. There are three very popular head loss 
formulae in the hydraulics of WDS, i.e., Hazen–Williams 
(HW), Darcy–Weisbach (DW) or Chezy–Manning (CM) 
formula. A common representation for the three formulae:

B
Lh Aq=  (2)

where hL is head loss (length), q is flow rate (volume/time), 
A and B are resistance coefficient and flow exponent, 
respectively. The expressions for various formulae with 
the values of resistance coefficient and flow exponent are 
tabulated in Table 1, where C, f and n are Hazen–Williams 
(HW), Darcy–Weisbach (DW) or Chezy–Manning (CM) 
roughness coefficients; d and L are diameter and length 
of pipe, respectively. 

In USA and India the HW formula is widely used, 
England prefers DW formula, while the CM is preferred 
in certain parts of European continent [13]. The head loss 
in a pipe calculated by different formulae gives different 
values and all these answers should be taken as correct 
in practice.  

Sources of uncertainty involved in WDS modeling 
and analysis may be classified in four categories: Type A 
(lack of precise measurements) — this uncertainty pro-
vides a snapshot of uncertainty in a network parameter 

Table 1
Pipe head-loss formulae for full flow (head-loss in feet and 
flow rate in cfs) [12]

Formula Resistance co-efficient 
(A) 

Flow exponent 
(B)

Hazen–Williams 4.727 C–1.852 d–4.871 L 1.852

Darcy–Weisbach 0.0252 fd–5L 2
Chezy–Manning 4.66 n2 d–5.33 L 2

at a particular instant of time. It stems from a variety 
of factors. For instance, pipe friction factors represent 
pipe roughness that prominently depends on the wall 
friction encountered by a flowing fluid and the fluid 
friction (viscous drag force). The former relies on precise 
knowledge of average height of protrusions along pipe’s 
entire inner periphery which is practically infeasible. 
Further, imprecision associated with viscous force pro-
motes uncertainty in pipe friction factors. Type B (time 
induced uncertainty in pipe roughness): As explained 
above, the instantaneous wall friction accounts for the 
physical condition of pipe’s inner surface at that moment. 
However, due to the complex biological and chemi-
cal reactions like organic growth, tuberculation, scale 
formation, corrosion, etc. constantly deteriorating the 
surface quality, wall friction becomes a casual function 
varying with the period of network usage. The effect of 
these processes on pipe roughness being indeterminate, 
they introduce a time-dependent uncertainty which is 
classified as type B uncertainty. It is well accepted that 
with age, water carrying pipes are susceptible to an 
increase in pipe roughness which implies an increase in 
Darcy’s friction factor or a decrease in Hazen–Williams 
roughness coefficient. Variations in friction factors over 
sufficiently long periods have been documented by some 
researchers [18,19]. Type C (due to lack of precise correla-
tion between the friction factors obtained from different 
formulae): The ‘hydraulics’ look-up menu provided in the 
EPANET software furnishes an option of choosing one 
out of Hazen–Williams (HW), Darcy–Weisbach (DW) or 
Chezy–Manning (CM) resistance coefficient for the head 
loss computations. Though results from all the three 
are empirically correct, the formula that yields results 
closest to the field observations is the most appropriate 
for the particular network. Owing to distinct theoretical 
origins, the results from the three formulae must be scaled 
appropriately prior to comparison. This necessitates a 
precise correlation between friction factors which in turn 
requires precise flow and hydraulic diameter measure-
ments. Type D (model uncertainty): all the three head-loss 
formulae are empirical relations derived from distinct 
theoretical backgrounds. The Hazen–Williams formula 
is computationally the most convenient and hence the 
most widely used. The Darcy–Weisbach formula incorpo-
rates both viscous drag and wall friction and is the most 
theoretically correct. It applies to all liquids and is valid 
over all flow regimes. However, extensive computational 
overhead linked to the estimation of f (Darcy’s friction 
factor) based on velocity-diameter combination make it 
less popular. Owing to such fundamental dissimilarities 
each formula transmits the uncertainties from the input 
to output uniquely resulting in non-coinciding results. 
In the present study, all these uncertainties are modeled 
using the concepts of fuzzy set theory.

A classical (traditional) set either ‘wholly’ embraces 
an element or ‘wholly’ excludes it, whereas a fuzzy set 
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endorses ‘partial membership’ of an element. Fuzzy sets 
in practice are often understood as fuzzy numbers [20] 
and are represented through membership functions. 
Mathematically, if X is the set of discourse, then fuzzy set 
A in X is defined as the set of all ordered pairs such that,

( ) ( ) [ ]{ }, , , 0,1A AA x x x X x= µ ∈ µ ∈    (3)

Here, μA(x) is the membership function that expresses 
the degree of membership of ‘x’ in terms of a value be-
tween 0 and 1. For present analysis, uncertain parameters 
assume triangular membership functions. The member-
ship function values for pipe friction factors and nodal 
demands have been borrowed from well documented 
literature [10,19,21]. The α-level (alpha-level) cut [20] of 
a fuzzy number A is defined as a set of those elements 
which have ‘at least α membership’:

( ){ }, AA x X xα = ∈ µ ≤ α  (4)

In the present study, the values of pipe roughness 
and nodal demand are assumed as fuzzy numbers with 
known extreme variations and triangular distributions 
following the assumptions of Revelli and Ridolfi [8] and 
Gupta and Bhave [10]. Such a triangular fuzzy number 
(A) can be mathematically described as:

( ) 10,A x x aµ = <  (5)

( ) 1
1 3

3 1
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3 2
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−
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−
 (7)

( ) 20,A x x aµ = >  (8)

where a1, a2, a3 are scalar parameters, a1 and a2 form the 
base of the triangle (also known as the support) showing 
maximum variation of A, while a3 defines the crisp value 
showing most possible value. Next section describes the 
proposed methodology based on the fuzzy sets theory to 
model the uncertainties in WDS analysis.

3. Proposed methodology

The pipe roughness and nodal demand of the entire 
WDS are considered as triangular fuzzy numbers and at 
each alpha-level they are considered as two independent 
events. Following procedure is followed to generate 
membership functions of each pipe flow, nodal head and 
chlorine concentration.

3.1. Procurement of data 

First step for any network uncertainty analysis in-
volves construction of the test network in the EPANET’s 

‘Network Map’ and exporting the same in form of .inp file 
to the MATLAB’s work directory. The devised MATLAB 
code is executed thereby initiating a chain of events. Ini-
tially, a part of the data required for uncertainty analysis 
is acquired from the user while the remaining parameters 
are fetched by exercising several toolkit’s functions on the 
.inp file of the sample network. Among the figures sought 
from user, chief are the number of alpha levels desired 
for the network uncertainty analysis, the membership 
functions of pipe friction factors and the nodal demands. 
These are stored in an array “memberfn” whose physi-
cal layout depicted in Fig. 1, reflects the code execution 
procedure. Along with the data keyed in by the user, 
the program fetches the number of nodes and pipes in 
the given network by evoking a series of functions like 
ENopenH(), ENgetlinkcout(), ENgetnodecount(), etc.

3.2. Computing the α-cut interval of every input membership 
function

Considering a triangular membership function, a hori-
zontal line corresponding to any particular α level shall 
inevitably intersect the function’s curve at two distinct 
points thereby forming an α-cut interval. 

These upper and lower bound points of each α-cut 
interval (corresponding to each of the prescribed α levels) 
are calculated for all the input membership functions. 
These are stored in an array named intersectval, whose 
data storage pattern is shown in Fig. 2.

Here, two columns are allotted per input fuzzy vari-

Fig. 1. Physical layout of the array memberfn and the pattern 
in which values are stored.
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able. Hence, the columns total up to twice the sum of the 
number of pipes and nodes. The number of rows equals 
the number of α levels. All the required data related to 
a particular input variable is summarized in a sub-array 
comprising of two columns and the corresponding rows. 
In each such columnar duplet, the first column stores 
the values of lower bounds (a, c, e, g, i) whereas the sec-
ond column stores the upper bound values (b, d, f, h, i) 
corresponding to different α cut intervals. Such border 
(extreme) values for α cut intervals formed at each alpha 
level are stored row-wise.

3.3. Decoupling the uncertainty in various input parameters in 
the form of all possible combinations of various extreme values 
of α cut intervals corresponding to all variables

Unlike the traditional techniques developed so far 
for uncertainty analysis of a pipe network, this model 
handles the uncertainty of input variables in a unique 
fashion. It is well recognized that at any particular α level, 
the input fuzzy parameters can adopt a value from its 
respective α-cut interval whose extreme values are stored 
in intersectval. There remain two options for the value 
to be assigned to each input variable- the upper bound 
or the lower bound of the corresponding α-cut interval. 
Further, a total of n pipes and m nodes shall yield (n + m) 
input fuzzy parameters. Consequently, there are 2(n + m) 
possibilities in which values can be assigned to input 
fuzzy parameters. In this manner, the input parameter 
uncertainties in the hydraulic network are decomposed 
into a set of 2(n + m) combinations of permissible parameter 
values. All these combinations are figured out and stored 

Fig. 2. Schematic representation of data storage pattern in the array intersectval.

in an array called combinations. This array is structurally 
analogous to a truth table representing a system with the 
nodal demands and pipe friction factors as the inputs. 
Such an array generation is carried out at each α level. 
The above discussion is pictorially summarized in Fig. 3.

3.4. Computing the unknown parameters for a particular 
alpha level

At each α level, all the values of input parameters 
present in one particular row of the array combinations 
are assigned to the respective network elements using 
the toolkit’s functions like ENsetnodevalue() and ENset-
linkvalue(). Thereafter the network is solved with the help 
of function ENsolveH(). This is followed by retrieving the 
values of the unknown parameters with the aid of toolkit’s 
functions like ENgetnodevalue() and ENgetlinkvalue() 
combinations. Such a procedure ensures that all the 
feasible combinations are taken care of. It gives 2(n + m) 
values for each unknown parameter which are stored in 
a separate array. For instance, in the developed code, the 
array nodehead stores all the 2(n + m) values for the head at 
each node. In a similar fashion, the array linkflow stores 
all the 2(n + m) values for the discharge through each pipe. 
These arrays are schematically represented in Fig. 4.

3.5. Sorting the arrays linkflow and nodehead to find the 
maximum and minimum of the unknown parameters for a 
particular α level

Towards the end, the software computes maximum 
and minimum of any unknown variable from the arrays 
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linkflow and nodehead constructed at each alpha level 
(Fig. 5). These form the boundary values for the various 
α-cut intervals of the respective desired parameters.

3.6. Plotting the membership functions of unknown parameters

This is the conclusive step of network uncertainty 
analysis. The boundary values obtained in the previous 
step are used to construct a plot of membership func-
tions for the corresponding desired parameters (pipe 
flows and nodal heads). Subsequently, these curves are 
subjected to meticulous investigation the results of which 
are presented in the following section.

4. Application

This section introduces a test network, which is 
utilized throughout the present study to illustrate the 
proposed procedure for uncertainty modeling. The net-
work is a simple 5 pipes, 4 nodes system and is structur-
ally same to the work of Rivelli and Ridolfi [8]. The data 
for various nodes and pipes has been shown in Fig. 6. 
Several sets of computations for uncertainty analysis are 

Fig. 3. Schematic representation of data storage pattern in the array combinations.

conducted on the network by using the above procedure 
with various input membership functions (Tables 2 and 3) 
and different head-loss formulae. The data on variation in 
pipe roughness values are based on literature [18,19,22]. 
The concentration of chlorine at supply node (node 1) 
is considered as 0.5 mg/L. It is to be noted that the pipe 
friction factor (f) is being considered as uncertain hydrau-
lic parameter following the applications by Rivelli and 
Ridolfi [8] and Gupta and Bhave [10]. The deterministic 
value (crisp value of the fuzzy number) of f is considered 
as 0.85 (in Table 2) for demonstration purpose. The value 
of friction factor depends on the absolute pipe rough-
ness, Reynolds number and pipe discharge. The source 
of uncertainty is actually the absolute roughness of the 
pipe wall.

A rigorous and well planned uncertainty analysis 
drill is conducted for the network using the proposed 
computational procedure. The exercise involved several 
sets of computations performed using a variety of input 
membership functions and head-loss formulae. A thor-
ough investigation culminated in the birth of four distinct 
types of uncertainties coupled to a hydraulic network. 
The first two are intrinsic to any pipe network while 
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Fig. 4. Schematic representation of data storage pattern in the arrays linkflow and nodehead.

Table 2 
Triangular membership functions for pipe friction factors (identical for all 5 pipes)

% Uncertainty Hazen–Williams (C) Darcy–Weisbach (f) Chezy–Manning (n)

10% (121.5  135   148.5) (0.765   0.85   0.935) (0.01215   0.0135   0.01485)
20% (108     135   162) (0.68     0.85   1.02) (0.0108     0.0135   0.0162)

Table 3 
Triangular membership functions for nodal demands with 
10% uncertainty

Uncertainty Node 
index

Triangular membership function

10% 1 (4.7681      5.2979       5.8277)
2 (9.5349     10.5943     11.6537)
3 (7.3102      8.1224       8.9346)

the latter two are related to the head loss computation 
approach adopted for the network’s hydraulic analysis. 
The following section explores the ins and outs of each 
of these types.

5. Results and discussions

The uncertainties in pipe discharges considering 
uncertainty in roughness and nodal demand values are 
shown in Fig. 7 as fuzzy membership functions. A careful 
comparison between the results obtained using various 
head-loss formulae available with EPANET are also 
performed. The uncertainties of types C and D prevent a 
perfect match of crisp values (or the peaks of the member-
ship functions) for flows of any pipe as shown in Fig. 7.

The flow is highest for pipe 1 for which the peaks of 
different discharge membership functions are noticeably 
spaced apart from each other. On the contrary, the peaks 
of discharge membership functions for pipes 2 and 3 
(which have quite low discharges) almost overlap over 
one other. This observation points out a direct correlation 
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Fig. 5. Schematic representation of calculation of the extreme values of α*-cut corresponding to head at node 1.

Fig. 6. Sample network (not to scale).

between the quantum of discharge and the uncertainty 
due to absence of precise correlation between various 
friction factors of different head loss formulae. Similarly, 

Fig. 8 shows the uncertainty in chlorine concentration, 
which clearly shows the nonlinearity of water quality 
simulation model of EPANET.

Response of the three head-loss formulae to fluctua-
tions in input parameter uncertainty is studied by gradu-
ally increasing the support widths (in steps of 10% of the 
crisp value) of their fuzzy sets. A wider support of fuzzy 
set implies enhanced uncertainty in the corresponding 
parameter. In Fig. 9, 10% and 20% uncertainties in a 
parameter indicate that its fuzzy set has supports (0.9N, 
1.1N) and (0.8N, 1.2N) respectively, where N is the crisp 
value. Suitable membership functions for uncertainty 
analysis are substituted from Tables 2 and 3. On increas-
ing the friction factor uncertainty from 10% to 20%, 
with nodal demands fixed at crisp values, output fuzzy 
sets exhibit up to 238% surge in their support widths. 
Particularly, the Hazen–Williams and Chezy–Manning 
models are ‘hyper sensitive’ to variations in friction factor 
uncertainties. However, the Darcy–Weisbach formula is 
quite sensitive to nodal demand uncertainty variations 
while it responds feebly to those of pipe friction factors. 
Thus, it is suitable for analyzing a network wherein the 
friction factor data is less reliable than the nodal demand 
values. If the other two formulae are used, then even a 
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slight discrepancy in the already uncertain friction factor 
data will be unnecessarily amplified thereby deteriorating 
the reliability of final results.

The next bar diagram (Fig. 10) represents the maxi-
mum chlorine concentration obtained at different alpha 
levels for nodes 2 and 3. The x axis represents the 5 alpha 
levels (where level 5 indicates the crisp value of fuzzy 
number) and y axis represents the chlorine concentra-
tion in mg/L. The figure shows that, the concentrations 
at nodes 2 and 3 for five alpha levels obtained from DW 
equation are lower than that obtained from HW and CM. 

The present study formulates a generic methodol-
ogy of uncertainty modeling of WDS considering pipe 
roughness and nodal demand as uncertain parameters. 
Due to space constraint this section is limited to the above 
mentioned discussion on derived results.

Fig. 7. Comparison of membership functions for pipe flows obtained by using different head loss formulae.

Fig. 8. Uncertainties in chlorine concentrations at nodes 2 and 3.

6. Conclusions

The present study performs an exhaustive uncertainty 
analysis on water distribution network considering hy-
draulic and water quality characteristics. Uncertainty in 
a hydraulic network is being categorized into four differ-
ent categories. Type A illustrates uncertainty at a given 
time instant due to inadequacy of or imprecision in data 
values. Type B studies the influence of complex ageing 
processes. Uncorrelated friction factors belonging to dif-
ferent head-loss equations introduce type C uncertainty. 
Different head-loss equations being theoretically distinct 
to empirical relations which uniquely process the input 
uncertainties giving rise to type D uncertainty.

The proposed method bypasses the use of optimiza-
tion model and yet accounts for the inherent non-linearity 
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in a hydraulic network by decoupling the uncertainty at 
every α-level into a set of 2m+n (for m nodes and n pipes) 
possible sequences of fuzzy set extremes. Most promi-
nently, the software computations are independent of the 
physical network layout. This has been achieved by avoid-
ing ‘network specific’ computations like categorization of 
network into loops/trees, formulation of loop equations, 

Fig. 9. Responses of different head-loss formulae to fluctuations in independent parameter uncertainties (ND — nodal demand, 
FF — friction factor).

Fig. 10. Uncertainty in chlorine concentration values (in mg/L) of nodes 2 and 3.

etc. employed by conventional fuzzy uncertainty analysis 
techniques. Besides that EPANET facilitates (a) uncer-
tainty analysis of realistic networks with valves, tanks, 
as well as control schemes (b) convenient alterations (if 
required) in the hydraulic network design. 

The overestimating character of Hazen–Williams and 
Chezy–Manning is attributed to their restricted applica-
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bility. Besides, the Chezy–Manning formula responds 
almost identically towards uncertainty variation in either 
of the two independent parameters. The Hazen–Williams 
is appropriate for network analysis if the nodal demand 
data lack consistency. However, the Darcy–Weisbach 
formula is quite sensitive to nodal demand uncertainty 
variations while it responds feebly to those of pipe fric-
tion factors. Thus, it is suitable for analyzing a network 
wherein the friction factor data is less reliable than the 
nodal demand values. 

Besides the above, the model along with the devised 
code can be of immense assistance for deciding mainte-
nance related issues like which pipes are to be replaced, 
the minimum number of pipes to be replaced for maxi-
mum reduction in uncertainty, etc. It can be used even to 
figure out the most economic way for maximum reduc-
tion in uncertainty, which can be resulted by changing 
pipes, increasing pumping pressure, installation of new 
pumps, etc. Besides reliability studies, it can assist in cost 
optimization through uncertainty reduction. 

The methodology can be used to identify the propa-
gation of uncertainty in a water distribution model. Al-
though, it involves the simulation of all the combinations 
between the different values that each of the uncertain 
parameters of the model can assume. Real circumstances 
can deal with models containing thousands of pipes and 
nodes, this implies that the number of simulations to be 
performed would be so huge that it could become impos-
sible to perform. To avoid this drawback, the number 
of simulations to be conducted must be considerably 
reduced and this can only be achieved by assuming that 
uncertainty relies only on a few of the model parameters 
(the remaining parameters are assumed to be determin-
istic) and these are restricted to a small set of values. The 
trapezoidal membership functions can be used in future 
to address uncertainty in input parameters, which will 
simultaneously model type A and type B uncertainties. 
The methodology can be extended in future by including 
the uncertainties associated with water quality param-
eters [11]. The values of pipe wall chlorine decay and the 
bulk water chlorine decay may be considered as uncertain 
parameters, which can be modeled intrinsically within 
EPANET. The propagation of uncertainty induced by 
wall and bulk decay parameters on chlorine decay and 
residuals can also be traced.
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