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abstract
Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, 
reproducible diagnostic tool for many environmental management, agricultural and industrial 
waste water monitoring applications. In this paper we highlight the ability of NIRS technology to 
be used as a diagnostic tool in agricultural and environmental applications through the success-
ful assessment of Fourier Transform NIRS to predict α-santalol in sandalwood chip samples, and 
maturity of ‘Hass’ avocado fruit based on dry matter content. 
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1. Introduction

Near infrared spectroscopy (NIRS) is a non-invasive 
method of measuring internal/external quality and safety 
attributes of agricultural products using optical light to 
determine chemical composition. The technology offers 
the advantage of being non-destructive, fraction of a sec-
ond per test, with the potential to test every sample in an 
in-line application for various internal/external attributes 
simultaneously. Such technologies may also be utilized 
as tools for quality and sustainable management in the 

production environment. Field applications for soil and 
crop management would enable the primary producer 
to readily monitor individual plants and orchard/crop 
quality regularly for breeding programs, assist in fertil-
izer management, water and waste water monitoring 
and allow the primary producer to make informative 
decisions to achieve final product specifications and long 
term sustainable practices.

Science-based approaches to agricultural and envi-
ronmental management are needed to assist with the 
impact of an increasing population and the demand to 
produce more food from the same amount of land and 
water without causing ecological damage [1]. Climate 
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change and nutrient pollution are currently the top two 
global environmental changes most rapidly increasing in 
their negative impact on the ecosystem [2]. This increases 
the need for reliable and rapid analytical information to 
achieve more environmentally friendly and sustainable 
practices. NIRS has been demonstrated to be an accu-
rate, precise, rapid and non-invasive alternative to wet 
chemistry procedures for providing information about 
relative proportions of C–H, O–H and N–H bonds which 
form the backbone of all biological material  NIRS relies 
on calibrations in known data sets, which utilize absor-
bances at many wavelengths, to predict the composition 
of a sample [3,4]. However, to develop these calibrations 
requires many samples, many hours of work and many 
computer calculations [5]. The time-consuming collec-
tion of reference samples and the lack of reliable, precise 
chemical information may be a factor limiting the adop-
tion of NIRS [1,2]. 

The advantage of NIRS over wet chemistry analyses 
lies in the fact that it is generally non-destructive and may 
be used in-situ, allowing determination of the chemical 
composition of the sample in its environment. The tech-
nique requires no or minimal sample preparation and 
avoids wastage and the need for reagents. Furthermore, 
the technique is multi-analytic allowing several simulta-
neous determinations. As a result, these techniques have 
developed into indispensable tools for academic research 
and industrial quality control, and a wide range of field 
applications from chemistry to agriculture, and from life 
sciences to environmental analysis.

NIRS has received considerable attention over the 
years for analysis of plant material for many constituents 
including: oil, moisture, pH, acidity, soluble solids, pro-
tein, lignin and cellulose [6–13]. NIRS has also supported 
the production of high crop yields through direct analysis 
of shoot tissues as an aid to appropriate fertilizer manage-
ment in Australia and South Africa [1], and is utilized in 
plant breeding programs [6]. NIRS has become accepted 
by the international standards committees in some agri-
cultural applications within the feed and food sectors [6]. 
More recently, there has been increasing interest in soil 
NIRS for precision agriculture, soil mapping and remote 
sensing. The technology has the potential to generate the 
extensive data bases on soil properties needed for generat-
ing spatial structure maps for soil properties that can be 
used for site-specific management of agricultural lands 
[14]. For example, NIRS has been used to determine a 
wide variety of soil parameters such as organic matter, 
pH, total nitrogen, electrical conductivity, extractable 
nutrients, heavy metals, microbial biomass, decomposi-
tion characteristics, salinity and soil quality indicators 
[3,6,13,15–17], with prospects for predicting soil fertility, 
soil erosion, soil infiltration capacity and plant growth [6].  

Shepherd and Walsh [6] report that mineral forms 
of elements and plant constituents that occur in small 
concentrations can often be detectable indirectly, because 

of interactions or associations with other constituents 
that occur in measurable amounts. NIRS assessment in 
the laboratory or in the field has the potential to allow 
many samples to be tested rapidly and economically 
[1,2]. Pollution of water resources by domestic and/or 
industrial discharges has increased considerably in ur-
ban centres as a consequence of population growth [18]. 
The application of NIRS in the past was very limited for 
direct water quality assessment due to the strong water 
absorption of NIR by water. With the development of 
new optical sensors, water quality monitoring by NIRS 
is emerging for the detection of organic pollutants such 
as chlorinated hydrocarbons, pesticides and endocrine 
disrupting compounds [6]. NIRS has also been demon-
strated as a promising alternative for determination of 
chemical oxygen demand in domestic waste water [18].

The application of NIRS in industrial process and 
waste water monitoring holds great potential as an 
on-line, real-time monitoring tool. The real-time moni-
toring capacity of NIRS is a very important feature for 
the application to industrial process and waste water 
monitoring, prediction and control as it would allow fast 
evaluation of the state of the process [19]. NIRS has been 
shown to successfully measure oil, urea, methanol and 
glycerol concentrations and solids content of the waste 
water discharge from biodiesel fuel production processes 
[20,21]. Preliminary work by Dias et al. [19] supports the 
use of NIRS as an on-line quality monitoring tool for 
activated sludge reactors to detect changes in the feed 
influent.  These are only a few of the many potential ap-
plications of NIRS as a tool in agriculture, waste water 
and environmental management. Despite this fact NIRS is 
not yet widely adopted commercially for environmental 
applications [2].

The aim of this study was to assess the potential of 
Fourier Transform (FT) NIRS as an objective and non-
invasive tool for agricultural and environmental man-
agement. The concept of this technology to be used as 
an agricultural and environmental tool is demonstrated 
through the assessment of FT-NIRS to predict ‘Hass’ avo-
cado maturity based on dry organic matter content and 
the effects of geographic location on model performance, 
plus its ability to predict essential oils (i.e., α-santalol) in 
sandalwood chip samples.

2. Materials and methods

2.1. Avocado fruit samples

‘Hass’ avocado fruit were obtained throughout the 
2008 growing season (harvest months: March to Septem-
ber) from two commercial farms in the major production 
district of Central Queensland, Australia. The farms were 
located in the Bundaberg (Latitude: 25° 14’ S, Longitude: 
152° 16’ E) and Childers (Latitude: 25° 15’ S, Longitude: 
152° 16’ E) regions.



 B.B. Wedding et al. / Desalination and Water Treatment 32 (2011) 365–372 367

Avocado fruit were harvested at three maturity 
stages throughout the season, corresponding to early, 
mid and late season harvests to encompass a large dry 
matter range in the test population. For each of the three 
season harvests approximately 100 fruit were randomly 
collected from each farm providing a total of around 600 
individual fruit. Fruit were transported immediately to 
the laboratory located in Cairns, North Queensland and 
maintained at 22–24°C in a controlled temperature room 
prior to analysis and measurements commenced within 
two days of harvest.

2.2. Sandalwood samples

Sandalwood core samples were collected from dif-
ferent regions of Cape York in Australia, and Vanuatu as 
detailed in Table 1. A total of 295 samples were randomly 
collected as part of a separate field survey of natural 
populations of sandalwood in Cape York for comparison 
of oil quality to sandalwood species in the Pacific islands.

2.3. NIR method and data collection

2.3.1. Avocado fruit samples

A commercially available bench-top, Matrix-F, 
FT-NIR spectrophotometer (Bruker Optics, Ettlingen, 
Germany; operating software: OPUS™ version 6.5) in 
the 780–2500 nm range fitted with a fibre-coupled emis-
sion head was used in reflectance mode to obtain NIR 
spectra of whole, intact ‘Hass’ avocados. A path-length 
of approximately 170 mm from the external emission 
head utilizing 4 × 20 watt tungsten light sources to the 
surface of the whole avocado fruit provided a spectral 
scan diameter of approximately 50 mm. 

Due to the large variability in the percentage dry mat-
ter (%DM) within a fruit [22,23] two NIR spectra were 
collected from each fruit, one spectra from each opposing 
side midway between the peduncle and base (i.e., equato-
rial region). Each spectrum measurement, were recorded 
as an average of 32 scans at a resolution of 8 cm–1. A white 
spectralon standard was used as the optical reference 

Table 1
Sandalwood core sample species and collection site details

Species Location, Country Sites

S. lanceolatum Cape York/Australia Injinoo, Lockhart River, Napranum, Kormpuraaw/Kowanyama, Coen, Au-
runkun, Normanton/Delta Downs, Richmond/Basalt Walls, Hopevale.

S. austrocaledonicum Efate, Vanuatu Moso Island
Erromango, Vanuatu Rampunalvat, Pongkil Bay & South River
Tanna, Vanuatu Loanatit Point, Green Point, Imaru and Lomteuneakal
Aniwa, Vanuatu Entire island
Malekula, Vanuatu Wintua and Lawa
North-west Santo, 
Vanuatu

Nokuku and Wusi

standard for the system prior to the collection of each 
set of sample spectra.

2.3.2. Sandalwood samples

Destructive gas chromatography — mass spectrom-
etry (GC-MS) technique was used to analyze a repre-
sentative portion of each of the 295 sandalwood core 
samples following collection. The remainder of each of 
the sandalwood core samples following GC-MS analysis 
were stored in paper envelopes within large sealed plastic 
containers at room temperature. The samples were cut 
into fine chips (2–5 mm diameter) after storage for up to 
19 months and individually scanned in reflectance mode 
using the integrating sphere configuration on a Multi Pur-
pose Analyser (MPA) FT-NIR instrument (Bruker Optics, 
Ettlingen, Germany). A spectrum of each core sample was 
captured over the spectral range of 780–2780 nm. The 
sandalwood chip samples were placed into glass vials 
and scanned on the MPA integrating sphere carousel. In 
obtaining each sample spectrum, 32 scans at a resolution 
of 8 cm-1 were collected and averaged for all samples. A 
total of 4 separate spectra were collected for each sandal-
wood chip sample, with individual samples being mixed 
between each spectrum capture. The 4 spectra from each 
of the 295 chip samples were then averaged to provide 
one averaged spectrum per sample.

2.4. Reference methods

2.4.1. Avocado %DM analysis

The %DM reference measurement was obtained from 
the same area of the fruit that was used to obtain the NIR 
spectrum. To determine the %DM, a 50 mm diameter core 
equal to the NIR scan area was taken perpendicular to 
the surface of the fruit, at a depth of approximately 10–15 
mm. The skin (2–4 mm) was removed from the avocado 
flesh, and the flesh was diced to facilitate drying in a fan-
forced oven at 60–65°C to constant weight (approximately 
72 h). The %DM is defined by the percentage ratio of the 
weight of the dried flesh sample to the original moist flesh 
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sample. It should be re-emphasized that fruit spectra and 
%DM were acquired after sample temperature equilibra-
tion in an air-conditioned laboratory at approximately 
22–24°C, and within two days of harvest.

2.4.2. Sandalwood oil analysis

The GC-MS system consisted of a Shimadzu GC-14B 
with AOC-1400 auto-sampler, with ‘Delta 5.0’ software 
and Dataworx ‘Datacenter 4000’ interface controlling 
the computer. The GC parameters included an initial 
oven temperature of 60°C at 9°C/min for 3 min, and a 
final oven temperature of 200°C for 7 min with an inlet 
temperature of 200°C at 100 KPa and a flame-ionisation 
detector temperature of 300°C. Split injections of 50:1 
were made by an autosampler. Sandalwood cores 
samples were thinly sliced and chipped in preparation 
for chromatography analysis. Where available, >1 g of 
sample was utilised in 10 ml of internal standard solution  
(1 mg/ml tetradecane in ethanol) and bought to the boil 
in a microwave. Samples were placed into GC vials fol-
lowing 48 h of extraction. Samples were analysed for a 
range of essential oils, but only α-santalol content data 
was used in this study. Tetradecane was used as an inter-
nal standard to determine the α-santalol (mg/g) content 
and oil concentration (mg/g) using α-santalol percentage 
from the chromatograph.

2.5. NIR data analysis 

2.5.1. Avocado fruit samples

Statistical analysis was conducted using the com-
mercially available chemometric software package ‘The 
Unscrambler™’ version 9.8 (CAMO, Oslo, Norway).  
Principal component analysis (PCA) was performed 

before partial least squares (PLS) regression models 
were developed and obvious spurious spectra removed.  
PLS regression with segmented cross-validation with 20 
segments was used as the method for development of 
calibration models. Data pretreatment and smoothing 
for all avocado models in this study were based on a 
combination of a 25 point Sovitsky-Golay (SG) spectral 
smoothing (2nd order polynomial) and a first derivative 
transformation (25 point SG smoothing and 2nd order 
polynomial). Significant noise was found within spectral 
ranges 780–843 and 2414–2503 nm for all spectra. Fig. 1 
depicts representative avocado raw spectra from the 
sample population.

Calibration models were developed for each farm/
region and for a combination population encompassing 
both farms/regions. The sample population set for each 
farm and combination population was divided into cali-
bration and prediction sets. Calibration sets were devel-
oped from PCA results providing a global representation 
of the attributes of the entire avocado population while 
eliminating repetition. Model performance was based on 
the coefficient of determination (R2) of the calibration (Rc

2) 
and prediction (Rv

2) data sets; root mean square error of 
cross validation (RMSECV) and root mean square error 
of prediction (RMSEP) in relation to the bias (average 
difference between predicted and actual values) [24]. The 
standard deviation ratio (SDR) was used to determine 
the predictive ability of the calibrations (calculated as the 
ratio of standard deviation (SD) of the data set divided 
by the RMSECV or RMSEP) [25]. The higher the SDR 
statistic the greater the power of the model to predict the 
chemical composition accurately [26]. For example; SDR 
values between 2.0 and 2.4 for ‘difficult’ applications, such 
as high moisture materials including fruit and vegetables 
are regarded as adequate for rough screening; between 2.5 

Fig. 1. Representative raw avocado spectra from the sample population.
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and 2.9 are regarded as adequate for screening; between 
3.0 and 3.4 is regarded as satisfactory for quality control; 
a value between 3.4 and 4.0 is regarded as very good for 
process control; while values above 4.1 are excellent for 
any application [27–29]. 

2.5.2. Sandalwood samples

OPUS™ QUANT (version 6.0 and 6.5) chemometric 
software was used to process all sandalwood spectra 
(wavelength region 834–2330 nm) and constituent data. 
PLS regression was used to build the calibration models 
of the diffuse reflectance spectral data with full cross 
validation. A range of multivariate statistical calibration 
techniques, including PLS and PCA together with various 
mathematical pre-processing, wavelength selection and 
outlier elimination were used to develop calibration mod-
els and determine the robustness of these models. The 
OPUS™ QUANT automatic selection process was used 
to select the best model. The selected model presented 
in this study was based on a combination of a 17 point 
spectral smoothing and a first derivative plus multiplica-
tive scatter correction transformation. Sandalwood model 
performance was assessed as per the avocado models (see 
Section 2.5.1.), however, the residual prediction devia-
tion (RPD) was reported by OPUS™ QUANT package 
instead of an SDR. RPD is similar to the SDR except the 
RPD uses a bias corrected RMSEP or root mean square 
error of calibration (RMSEC) [30].

3. Results and discussion

3.1. Avocado

With horticultural products, a major challenge with 
NIRS predictive models is to ensure that the calibration 

model is robust, so that the model holds across grow-
ing seasons and potentially across growing districts. 
Geographic location (growing district) effects may have 
a major consequence on model robustness as fruit com-
position is subject to within tree variability (i.e., tree age, 
crop load, position within the tree, light effects); within 
orchard variability (i.e., location of tree, light effects); and 
intra-orchard variability, such as soil characteristics, nutri-
tion, weather conditions, fruit age and seasonal variability 
[31,32]. The influence of geographic location variability 
on %DM for whole avocado fruit was subsequently in-
vestigated over the 2008 growing season.

The PLS calibration and prediction model statistics 
for both the Bundaberg and Childers regions and com-
bination of both regions are presented in Table 2. The 
Bundaberg data set of 607 spectra were separated into 
a calibration set (n = 209) and a prediction set (n = 397). 
The validation statistics of the calibration model were 
good and delivered an Rv

2 = 0.93 with an RMSEP = 1.48 
and SDR of 3.82 for %DM. An SDR value between 3.4 and 
4.0 is regarded as very good for process control [27–29], 
and would allow for grading into three groups [33]. The 
Bundaberg PLS model was used to predict on the entire 
Childers population. As expected the application of the 
Bundaberg model to a population from another growing 
district was not as successful, providing a substantially 
reduced predictive performance with an Rv

2 = 0.71, RMSEP 
= 2.68, SDR of 1.85 and bias of 1.99. Similarly, the Childers 
data set of 608 spectra were separated into a calibration 
set (n = 209) and prediction set (n = 399). The Childers 
PLS model also produced good validation statistics (Rv

2 
= 0.92 with an RMSEP = 1.55 and SDR of 3.48) when pre-
dicting fruit from within the Childers region. As with the 
Bundaberg model, the Childers model did not perform 
as well when it was used to predict %DM of fruit from a 
different geographic location.

Table 2
PLS calibration and prediction statistics for %DM for whole ‘Hass’ avocado fruit harvested over the 2008 season for each region 
and combination of both regions

Harvest 2008 Spectra 
n (OR)

%DM 
range

Mean SD LV R2 RMSECV RMSEP Bias SDR

Calibration Prediction

Bundaberg 209 (1) 15.2–35.5 25.6 5.68 5 0.92 1.60 3.8e–7 3.55
Bundaberg 397 (0) 15.6–35.1 25.8 5.66 5 0.93 1.48 0.063 3.82
Childers 608 (0) 16.1–36.2 25.8 5.34 5 0.71 2.86 1.99 1.85

Childers 209 (2) 16.1–36.2 25.6 5.24 7 0.93 1.41 0.014 3.72
Childers 399 (0) 16.5–36.1 26.0 5.40 7 0.92 1.55 –0.216 3.48
Bundaberg 606 (1) 15.2–35.4 25.0 5.66 7 0.75 2.84 –0.163 1.99

Bundaberg & 
Childers

418 (3) 15.2–36.2 25.6 5.53 7 0.91 1.61 8.68e–7 3.43

Bundaberg & 
Childers

796 (0) 15.7–36.1 25.9 5.52 7 0.93 1.51 –0.098 3.66

Note: OR = outliers removed; LV = latent variables
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A generic calibration model was developed by com-
bining both Bundaberg and Childers populations. Model 
predictive performance of the combined population was 
comparable to the individual regional models of Bunda-
berg and Childers, with an Rv

2 = 0.93, RMSEP = 1.51, and 
an SDR of 3.66 (see Fig. 2). These results demonstrate 
that there are spectral differences between growing dis-
tricts and that each individual regional model does not 
incorporate the relevant spectral information enabling 
the model to successfully predict samples containing 
biological variability from a different growing district 
without reduced predictive performance. It is therefore 
important that calibrations be developed on populations 
representative in which sorting is to be attempted.

FT-NIR reflectance spectroscopy shows great promise 
for the application in a commercial, in-line setting for the 
non-destructive prediction of %DM of whole avocado 
fruit. Incorporating physiological variability from popula-
tions representative in which sorting is to be attempted is 
essential during calibration development to ensure model 
robustness and reliable predictive performance.

3.2.Sandalwood

The PLS calibration and prediction statistics for the 
sandalwood feasibility trial are summarised in Table 3. 

Fig. 2. Test set validation for predicted vs. actual dry matter content (%) in avocado samples.

Fig. 3. Test set validation for predicted vs. actual a-santalol content in sandalwood chip samples.

The data set of 295 spectra were randomly separated into 
a calibration set (n = 228) and a prediction set (n = 59). An 
Rc

2 of 0.93 was obtained for the calibration model, with 
an RMSECV of 3.67% and an RPD of 3.81 over a sample 
population range of 0.47–61.8% α-santalol. The validation 
statistics of the calibration model (see Fig. 3) delivered an 
Rv

2 = 0.87 with RMSEP = 4.71 and RPD = 2.72. These results 
were very encouraging and indicate that it is possible to 
use NIRS to predict α-santalol content in sandalwood 
chip samples. 

The performance of a predictive model can be affected 
by many variables, for example temperature, geographic 
region, harvest time, cultivar, data pre-treatment and 
model algorithm [34]. It is therefore expected that model 
prediction statistics for a truly independent popula-
tion will be poorer than the calibration statistics (i.e., 
RMSEP>RMSECV; |bias|>0) [34]. In the case for this 
sandalwood study an RPD of 3.81 indicated that the cali-
bration model prediction would be suitable for process 
control purposes, while the RPD for the validation results 
indicated being only adequate for a screening tool. This 
decrease in RPD and the large prediction error of 4.71% 
may have also resulted from the combined effects of (i) 
the NIR spectrum was not obtained on the exact sandal-
wood sample that was tested by the GC-MS reference 
method and (ii) there was up to a 19 month time lapse 
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Table 3
PLS calibration and prediction statistics for a-santalol content in sandalwood chip samples

Spectra n (OR) α-santalol 
range (mg/g) 

Mean SD LV R2 RMSECV RMSEP RPD Bias

Calibration Prediction

228 (8) 0.8–49 14.3 14.0 8 0.93 3.81 3.81 –0.046
59 (1) 1.1–47.1 11.0 13.2 8 0.87 4.71 2.72 0.101

between the GC-MS and NIR sampling. This time lapse 
may have resulted in a decrease in santalol content due 
to the volatility of the oil in the samples. This was beyond 
the scope of the study which was focused on the ability 
of the technique to differentiate the samples. 

Overall, FT-NIRS shows potential to be used as a rap-
id, non-invasive tool to assess sandalwood oil (α-santalol) 
content in chipped sandalwood samples. The technique 
of utilising NIRS technology for sandalwood quality and 
quantity determination needs to be further developed for 
utilisation as a tool in commercial applications. The tech-
nology offers the potential of being a rapid, non-invasive 
tool for assessing not only oil sample purity and quality 
of liquid oil samples, but also core wood samples in a 
processing plant situation, and seedlings and trees in a 
field environment. This has enormous possibilities for 
field selection of plants for processing and may be linked 
to selective breeding programs. This would enable genetic 
improvement programs to not only focus on quantity but 
also on the quality of the raw material, thus targeting the 
raw material to specific processes and products.

4. Conclusion

NIRS is now becoming readily adopted in many ap-
plications for the non-invasive rapid analysis of a wide 
variety of products. These include both quantitative 
compositional determinations, and qualitative determi-
nations. However, as demonstrated in the application 
to %DM in avocados, it is important that calibrations be 
developed on population’s representative in which as-
sessment is to be attempted. Unfortunately, the process 
of calibration development is a major impediment to the 
rapid adoption of NIRS. The collection and precise analy-
sis of the reference samples remains a time-consuming 
and a potentially costly exercise depending on the type 
of analysis. With this said, NIRS has an obvious place 
in agricultural and environmental applications with its 
core strength in the analysis of biological materials, plus 
low cost of analysis, simplicity in sample preparation, no 
chemical reagent requirements, simultaneous analysis 
of multiple constituents, good repeatability and high 
throughput capability. Also, laboratory based, on-site and 
in field NIR units can provide real-time information, en-
abling immediate decision making and problem solving. 
Thus, NIRS has the potential to be used as a major deci-

sion making tool for many agricultural, environmental 
and industrial waster water applications.
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