Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2011 Desalination Publications. All rights reserved doi: 10/5004/dwt.2011.2876

Photocatalytic degradation of p-xylene over doped titania thin film

Dang Tuyet Phuong^{a,*}, Nguyen Quoc Tuan^b, Bui Thi Hai Linh^a, Le Gia Hy^c, Tran Manh Cuong^a, Tran Thi Kim Hoa^a, Le Minh Cam^d, Vu Anh Tuan^a

^aInstitute of Chemistry, Vietnam academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam Tel. +84 - 4 - 3 8361145; Fax: +84 - 4 - 3 8361283; email: phuongdt@ich.vast.ac.vn

^bUniversity of Da Lat, 01 Phu Dong Thien Vuong, Da Lat, Lam Dong, Vietnam

^cInstitute of Biotechnology, Vietnam academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam

^dFaculty of Chemistry, Hanoi National University of Education 136 Xuan Thuy Road, Cau Giay, Tu Liem, Ha Noi

Received 3 September 2010; Accepted 3 January 2011

ABSTRACT

Doped titania thin film was made by deposition of nano TiO_2 doping with transitional metals (Fe, Cr and V) and non-metal (N) on glass reactor. The thin film was consisted of particles ranging from 15 nm to 20 nm uniformly dispersed on the surface and the thickness of thin film determined by Alpha-Step IQ was 286 nm. The thin film also was characterized by FE-SEM and AFM. To evaluate the photocatalytic activity of the thin film, photocatalytic degradation of p-xylene under UV and visible light irradiation was tested. It showed that doped titania thin film exhibited much higher photocatalytic activity as compared to that of non-doped titania thin film.

Keywords: Nano TiO, and doped TiO, thin film; Photocatalytic activity; p-xylene degradation

1. Introduction

In the past decades, TiO₂ has been the most widely used as photocatalyst because of its non toxicity, inexpensiveness, chemical stability and favorable opto-electronic properties. However, TiO, is active only under UV light irradiation (wave length < 388 nm) due to the wide band gap of 3.2 eV. More than 96% of solar light reaches earth surface is in the range of visible light (ca. 400-600 nm) since most UV is filtered by ozone layer. The modification with the goal of improving the optical absorption and photocatalytic performances, e.g. extending spectral response into visible region and enhancing photocatalytic activity, have received great interest [1-8]. TiO, modification approaches for achieving visible-light-driven photocatalysts by incorporating transition metal ions (e.g. V⁵⁺, Cr³⁺ or Fe³⁺...) to narrowing the band gap has attracted much attention [5-7]. Other approaches such as doping nitrogen atoms into substitutional sites in the crystal structure of TiO, have been made [1,8-12]. Several practical problems arising from the use of powder during the photocatalytic process: a) separation of insoluble catalyst from suspension is difficult, (b) suspended particles tend to aggregate especially at high concentrations and (c) suspensions are difficult to apply on continuous flow syems. The TiO, immobilization as thin film form not only provides an advantage over the drawbacks encountered with powder suspensions but could also endow the surface with photoinduced hydrophilicity, with good uniformity, with properties closely related to the starting powder material [13–16]. Several methods have been employed to fabricate TiO₂ thin films, including e-beam evaporation [17], sputtering [18], chemical vapour deposition [19] dip-coating and sol-gel process [20-23].

To our best knowledge, in the most papers reported in the literature, they used dyes (methylene blue, red methyl, Rodamine B, etc...) as reactants to test

34 (2011) 246–250 October

^{*}Corresponding author.

Presented at the AMS6/IMSTEC10, The 6th conference of the Aseanian Membrane Society in conjunction with the 7th International Membrane Science and Technology Conference, Sydney Australia, November 22–26, 2010

photocatalytic activity of doped TiO₂ under visible light. Most studies demonstrated that doped TiO₂ photocatalysts exhibited much higher photocatalytic activities under visible light as compared to that of non-doped TiO_{2} [5–8,12]. However, this confirmation is not quite "accurate" since dyes are visible light highly sensitive and they can improve a lot of photocatalytic activities of dyes degradation under visible light. Indeed, in the recent publication (Journal of Experimental Nanotechnology, 2011, in press) we report photocatalytic degradation of 2-propanol (colourless compound) over non-doped TiO, and Fe-doped TiO, and it showed that non-doped TiO₂ sample was almost inactive whereas Fe-doped TiO₂ sample exhibited hight photocatalytic activity (conversion of 70%) under visible light. In this paper, we report the photocatalytic activities in the degradation of p-xylene over Fe-, Cr-, V- and N-doped TiO, photocatalysts under visible light.

2. Experimental

2.1. Synthesis of nano TiO, and TiO, doped thin film

Nano TiO₂ and doped TiO₂ were prepared by hydrothermal method (Fig. 1). An amount of commercial TiO₂ powder and isopropyl alcohol was dissolved in a hydrosulfuric acid solution to form clear mixture with the Ti-concentration of 0.25 M at room temperature. The precursor solution was transferred into a Teflon-lined stainless steel autoclave, heated to a temperature of 200°C for 10 h. The obtained products were filtered and washed by distilled water, dried at 100°C for 10 h and calcined at 500°C for 3 h.

Fig. 1. Synthesis scheme of nano TiO_2 and doped TiO_2 by using hydrothermal method.

For non-metal-doping TiO_2 , the aim of our research study is to use urea as a nitrogen source to synthesize N-doping TiO_2 powder by heating the mixture of urea and TiO_2 . In N-doping TiO_2 process, urea and TiO_2 were mixed with various molar for a few minutes in agate mortar. The resulting mixture was calcined at 450–500°C for 3 h.

TiO₂ and doped TiO₂ thin film were prepared by dip-coating and depositing method. Firstly, 2 g of TiO₂ or doped TiO₂ was introduced into a beaker of 100 ml distillate water and stirred using magnetic stirrer for 30 min. Then the suspension containing in beaker was put into a ultrasonic batch for 30 min. Before dip-coating the reactor was cleaned and rough by treatment with the NaOH solution of 1M for two times and then dried at 100°C in an oven over night.

We chose the reactor made by quartz (not glass since glass can filter UV light) to deposit TiO_2 thin film. To make TiO_2 and doped TiO_2 thin film on quartz reactor, a certain amount of TiO_2 and/or doped TiO_2 suspension solution was introduced into a reactor and then the quartz reactor was rotated along to the horizontal direction. After that, the rest of suspension solution was evacuated and the reactor was put into an oven to dry at 100°C for 1 h. The process was repeated at least three times in order to get uniform thin film. The thickness of thin film could be adjusted by the times of dip-coating.

Before to photocatalytic test, the TiO_2 and doped TiO_2 thin film deposited on reactor were activated by heating in a furnace at 450°C–500°C for 3 h and cooled down at room temperature.

2.2. Characterization methods

Products were characterized by X-ray diffraction using CuKα radiation (λ =0.14045 nm) at 30 KV and 20 mA, 0.02° step size and 0.1 sec step time from 20° to 60° on a HUT-PCM-Bruker D8 Advance instrument. The size of crystallites was calculated from XRD data by applying the Scherer's equation and by measuring crystallite size from FE-SEM imagines of TiO₂ and doped TiO₂. The morphologies of TiO₂ and doped TiO₂ particles were investigated by field emission scanning electron microscopy (FE-SEM) using HITACHI S–4800 instrument operating at 10 kV and magnification of 80,000–100,000. The UV-Vis diffuse reflectance spectroscopy was performed in the wavelength range from 250 to 650 nm using a Shimadzu UV-Vis spectrophotometer.

The thickness and surface morphology of TiO₂ films were determined by a field emission scanning electron microscope (FESEM), an atomic force microscope (AFM, Multimode-VEECO-USA) and a surface profiler (Alpha-Step *IQ*, IQ KLA – CTENCOR).

2.3. Catalytic test

Photocatalytic activity was investigated in the gasphase photocatalytic oxidation of p-xylene. The reactor was fixed along vertical direction and faced to three UV lamps (15 w, each) or mercury vapor lamps (125 w, each), which located around the reactor. The reaction condition are as follows: the gas-phase photocatalytic oxidation of p-xylene was carried out in the microflow reactor with the reaction parameters of (concentrations of reaction mixture of p-xylene (C° p-xylene), steam $(C^{\circ}_{H_2O})$ and oxygen $(C^{\circ}_{O_2})$ are 15.94; 11.5 and 285.7 mg/l, respectively. Gas-flow velocity was 61/h. Temperature is 400°C. The catalyst was coated on the surface of quartz tube with area of 68 cm^2 and the loading amount of TiO₂ was 30 mg. The analysis was carried out on GC Agilen 6890 Plus, detector FID, capillary column HP-1 methyl siloxane (30 m; 0.32 mm; 0.25 µm).

3. Results and disscusion

3.1. Characterization of samples

Fig. 2 shows the XRD patterns of TiO₂, V-, Cr-, Fedoped TiO₂ and N-doped TiO₂ samples. The distinctive peaks at 2θ =25.3°, 37.8°, 47.7°, 54.0°, 62.4°, corresponding to the anatase crystal index are observed in all the samples. This indicated that after TiO₂ modification by doping transition metal ions such as V, Cr and Fe as well as doping non-metal (N), the crystalline structure of the anatase phase still remained. Moreover, the intensities of peaks were all most the same, indicating that their crystallites after doping did not change.

FE-SEM experiments were carried out to investigate the morphology of the samples. Fig. 3 presents the FE-

Fig. 2. XRD patterns of non-doped TiO_2 and V-, Cr-, Fe- and N- doped TiO_2 .

SEM images of V-, Cr-, Fe- and N-doped TiO_2 samples. As seen in Fig. 3, no significant differences were observed when comparing the photographs of V-, Fe, Cr-doped TiO_2 and N-doped TiO_2 , consisted of nearly spherical nanoparticles of 15–20 nm. The particle form and size of these samples were similar to those of non-doped TiO_2 sample. In the case of Cr-doped TiO_2 . Particles tend to aggregate, forming bigger particles (20–30 nm).

UV-Vis absorption spectra of V-, Cr-, Fe-doped TiO_2 and N-doped TiO_2 samples are shown in Fig. 4. In the case of TiO_2 , the fundamental absorption edge of TiO_2 , appeared in the UV region at about 385 nm. In comparison to non doped TiO_2 , the absorption edge of V-, Crand Fe- doped TiO_2 and N-doped TiO_2 was broaden and shifted to higher wavelength. The fundamental absorption edge of V-, Cr- and Fe- doped TiO_2 and N-doped TiO_2 appeared in the visible light region at about 500–600 nm. This indicated that UV-Vis absorption is closely related to doping metal ions and non-metal atoms.

Morphology of Fe doped TiO_2 was studied by using AFM (Fig. 5). From the top-view, it can observe that the particle size becomes bigger after depositing on the reactor surface and the surface is not smooth but rough. This indicates the formation of aggregates resulting from heating treatment.

Fig. 3. FE-SEM image of: (A) Fe-doped $\text{TiO}_{2'}$ (B) V-doped $\text{TiO}_{2'}$ (C) Cr-doped $\text{TiO}_{2'}$ (D) N-doped $\text{TiO}_{2'}$ (Ē) TiO_2 powder (starting material) and (F) non-doped TiO_2 .

Fig. 4. UV-Vis diffuse reflectance spectra of V-, Cr-, Fe and N-doped TiO₂ samples.

Fig. 5. AFM image (top-view) of Fe-doped TiO $_{\rm 2}$ thin film calcined at 460°C.

Fig. 6. Surface profile (Alpha-step IQ) of Fe-doped TiO_2 thin film (L: left side and R: right side) calcined at 460°C.

Thickness of the thin film was determined by Alphastep IQ and the surface profile was presented in the Fig. 6. The determined value of thickness is 286 nm.

3.2. Photocatalysis

Photocatalytic decomposition of Volatile Organic Compounds (VOCs) has been received special interests. We have chosen p-xylene as model molecule to test photocatalytic activity. Here we define the yield conversion as gram of reactant completely converted to CO_2 per gram of photocatalyst.

Fig. 7, presents the yield conversion of p-xylene over 0.7 %wt. (V, Cr and Fe) loading TiO₂ catalysts using UV light (λ of 365 nm) and visible light (λ of 470 nm). As observed in Fig. 7, photocatalytic activity using UV light was lower than that using visible light for all doped TiO₂ samples. From these results, it could be concluded that doped TiO₂ samples are more suitable for use of visible light than that of UV light.

The dependence of the yield conversion on the amount of doped transition metal (Fe) is shown in the Fig. 8. As seen in the Fig. 8, the yield conversion increases with increasing Fe content in the range of 0-1% wt. Further increase of Fe content led to decrease the yield. It can be concluded that the content of 1% wt. of Fe loading is optimal.

Fig. 7. Yield conversion of p-xylene over doped TiO_2 catalysts (0.7% wt. of Me loading) under UV and visible light irradiation.

Fig. 8. Yield conversion of p-xylene over Fe-doped TiO_2 samples with different Fe loading under visible light irradiation.

Fig. 9 shows the yield conversion of p-xylene over non-doped TiO₂, Fe-, V-, Cr -doped a TiO₂ and N-doped TiO₂ using visible light with wavelength of 470 nm. As observed in Fig. 9, doped TiO₂ sample exhibited much higher yield conversion as compared to that of the non-doped TiO₂. Among doped TiO₂ samples, sample N-doped TiO₂ (N/Ti molar ratio of 1/1) showed the highest yield conversion. This indicated that non-metal doped TiO, was very effective photocatalyst, especially in visible light. To explain why the Fe-, Cr- and N-doped TiO₂ samples exhibited higher photocatalytic activity in p-xylene degradation as compared to that of non-doped TiO_{γ} , we have done measurements by using different techniques like UV-vis, FT-IR, XPS, etc... and it revealed that by doping with these transition metals and non-metal, it leads to narrowing band gap (higher absorption efficiency of visible light) as well as to create vacancies and defects (Ti-OH groups) acted as "active sites" (results to be published).

Fig. 9. Yield conversion of p-xylene over doped TiO_2 samples under visible light irradiation.

4. Conclusion

Nano TiO_2 was successful synthesized by hydrothermal treatment. The sample was modified by doping transition metal ions (V, Cr, Fe) and non- metal (N). Non-doped TiO₂ and doped TiO₂ samples were characterized by XRD, FE-SEM and UV-Vis. From the characterization results, it revealed that after doping, the structure (anatase phase) still remain and extending spectral response into visible region was noted. Photocatalytic activity in degradation of p-xylene (vapor phase) was investigated. The obtained results showed that in comparison to non-doped TiO₂, the doped TiO₂ samples exhibited much higher photocatalytic activity using visible light instead of UV.

References

- D. Li and H. Haneda,"Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition", Chemosphere, 54 (2004) 1099–1110.
- [2] A.R. Khataeea and M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. Mol. Catal. A: Chem., 328 (2010) 8–26.
 [3] M. Anpo and M. Takeuchi, "The design and development of
- [3] M. Anpo and M. Takeuchi, "The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation", J. Catal., 216 (2003) 505–516.
- [4] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, "Role of oxygen vacancy in the plasma-treated TiO₂ photocatalyst with visible light activity for NO removal", J. Mol. Catal. A: Chem., 161 (2000) 205.
- [5] A. Fuerte, M.D. Hernández-Alonso, A.J. Maira. A. Martínez-Arias, M. Fernández-García, J.C. Conesa and J.Soria, "Visible light – activated nanosized doped-TiO₂ photocatalyst", Chem. Commun., (2001) 2718–2719.

- [6] Jeffrey C.-S. Wu and Chih-Hsien Chen, "A visible-light response vanadium-doped titania nanocatalyst by sol-gel method", J. Photochem. Photobiol. A: Chem., 163 (2004) 509–515.
- [7] C. Adán, A. Bahamonde, M. Fennández- García and A. Martínnez-Arias. "Structure and activity of nanosized iron-doped anatase TiO, catalyst for phenol photocatalytic degration", Appl. Catal. B: Environ., 72 (2007) 11–17.
- [8] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visiblelight photocatalysis in nitrogen-doped titanium oxides", Science, 293 (2001) 269–271.
- [9] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, "Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping" Appl.Catal. B: Environ., 42 (2003) 403–409.
 [10] J.L. Gole, J.D. Stout, C. Burda, Y. Lou and Chen X, "Highly
- [10] J.L. Gole, J.D. Stout, C. Burda, Y. Lou and Chen X, "Highly Efficient Formation of Visible Light Tunable TiO_{2x}N_x Photocatalysts and Their Transformation at the Nanoscale", J. Phys. Chem. B, 108 (2004) 1230–1240.
- [11] H. Irie, Y. Watanaba and K. Hashimoto, "Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_{2x}N_x Powders", J. Phys. Chem. B, 107 (2003) 5483–5486.
- [12] J. Yuan, M. Chen, J. Shi and W. Shangguan, "Preparations and photocatalytic hydrogen evolution of N-doped TiO₂ from urea and titanium tetrachloride", Int. J., Hydrogen Energy, 31 (2006) 1326–1331.
- [13] C. Quinoneza, W. Vallejoa and G. Gordillo, Structural, optical and electrochemical properties of TiO₂ thin films grown by APCVD method, Appl. Surf. Sci., 256 (2010) 4065–4071.
- [14] G. Triani, J.A. Campbell, P.J. Evans, J. Davis, B.A. Latella and R.P. Burford, Low temperature atomic layer deposition of titania thin films, Thin Solid Films, 518 (2010) 3182–3189.
- [15] J. Xiong, S.N. Das, S. Kim, J. Lim, H. Choi and J.M. Myoung, Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO₂ thin films, Sur. Coat. Technol., 204 (2010) 3436–3442.
- [16] N. Barati., M.A. Fagihi Sani, H. Ghasemi, Z. Sadeghian and S.M.M. Mirhoseini, Preparation of uniform TiOh₂ nanostructure film on 316L stainless steel by sol-gel dip coating, Appl. Sur. Sci., 255 (2009) 8328–8333.
- [17] Y.L. Wang and K.Y. Zhang, Variation of the structural and optical properties of sol-gel TiO2 thin films with different treatment temperatures, J. Surf. Coat. Technol., 140 (2001) 155.
- [18] S. Takeda, S. Suzuki, H. Odaka and H. Hosono, Photocatalytic TiO₂ thin filmnext term deposited onto glass by DC magnetron sputtering, J. Thin Solid Films, 392 (2001) 338.
 [19] H.Y. Ha, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong and Hong,
- [19] H.Y. Ha, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong and Hong, Properties of the TiO₂ membranes prepared by CVD of titanium tetraisopropoxide, J. Membr. Sci., 111 (1996) 81.
- [20] L. Hu, T. Yoko, H. Kozuka and S. Sakka, Effects of solvent on properties of sol–gel-derived TiO₂ coating filmsnext term, J. Thin Solid Films, 219 (1992) 18.
- [21] C.J. Brinker and G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic Press, Inc., New York (1990).
- [22] B.H. Kim, J.H. Ahn, J.H. Jeong, Y.S. Jeon, K.O. Jeon and K.S. Hwang, Preparation of TiO₂ thin film on SiO₂ glass by a spin coating-pyrolysis process, J. Ceram. Int., 32 (2006) 223–225.
- [23] Z. Zainal and C.Y. Lee, Properties and photoelectrocatalytic behavior of sol-gel derived TiO₂ thin films, J. Sol-Gel Sci. Technol., 37 (2006) 19–25.